1 DEFINITIONS, TERMINOLOGY, NOTATION

1.1 EVENTS AND THE SAMPLE SPACE

- An **experiment** is a one-off or repeatable process or procedure for which
 (a) there is a well-defined set of (possible) outcomes
 (b) the actual outcome is not known with certainty.
- A **sample outcome**, \(\omega \), is precisely one of the (possible) outcomes of an experiment.
- The **sample space**, \(\Omega \), of an experiment is the set of all (possible) outcomes.

\(\Omega \) is a set in the mathematical sense, so set theory notation can be used. For example, if the sample outcomes are denoted \(\omega_1, \omega_2, \ldots \), say, then the sample space of an experiment can be

- a **finite** list of sample outcomes, \(\{\omega_1, \ldots, \omega_k\} \)
- an **infinite** list of sample outcomes, \(\{\omega_1, \omega_2, \ldots\} \)
- an **interval** or **region** of a real space, \(\{\omega : \omega \in \mathbb{A} \subseteq \mathbb{R}^d\} \)

An **event**, \(E \), is a designated collection of sample outcomes. Event \(E \) **occurs** if the actual outcome of the experiment is one of this collection; for any event \(E, E \subseteq \Omega \).

- the collection of **all** sample outcomes, \(\Omega \),
- the collection of **none** of the sample outcomes, \(\emptyset \) (the **empty set**).

1.1.1 OPERATIONS IN SET THEORY

Set theory operations can be used to manipulate events in probability theory. Consider events \(E, F \subseteq \Omega \). Then the three basic operations are

<table>
<thead>
<tr>
<th>Operation</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Union</td>
<td>(E \cup F)</td>
<td>(E) or (F) both occur</td>
</tr>
<tr>
<td>Intersection</td>
<td>(E \cap F)</td>
<td>both (E) and (F) occur</td>
</tr>
<tr>
<td>Complement</td>
<td>(E')</td>
<td>(E) does not occur</td>
</tr>
</tbody>
</table>

Consider events \(E, F, G \subseteq \Omega \).

<table>
<thead>
<tr>
<th>Property</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutativity</td>
<td>(E \cup F = F \cup E)</td>
</tr>
<tr>
<td></td>
<td>(E \cap F = F \cap E)</td>
</tr>
<tr>
<td>Associativity</td>
<td>(E \cup (F \cup G) = (E \cup F) \cup G)</td>
</tr>
<tr>
<td></td>
<td>(E \cap (F \cap G) = (E \cap F) \cap G)</td>
</tr>
<tr>
<td>Distributivity</td>
<td>(E \cup (F \cap G) = (E \cup F) \cap (E \cup G))</td>
</tr>
<tr>
<td></td>
<td>(E \cap (F \cup G) = (E \cap F) \cup (E \cap G))</td>
</tr>
<tr>
<td>De Morgan's Laws</td>
<td>((E \cup F)' = E' \cap F')</td>
</tr>
<tr>
<td></td>
<td>((E \cap F)' = E' \cup F')</td>
</tr>
</tbody>
</table>

Union and intersection are **binary** operators, that is, they take only two arguments, and thus the bracketing in the above equations is necessary. For \(k \geq 2 \) events, \(E_1, E_2, \ldots, E_k \),

\[
\bigcup_{i=1}^{k} E_i = E_1 \cup \ldots \cup E_k \quad \text{and} \quad \bigcap_{i=1}^{k} E_i = E_1 \cap \ldots \cap E_k
\]

for the union and intersection of \(E_1, E_2, \ldots, E_k \), with a further extension for \(k \) **infinite**.
1.1.2 MUTUALLY EXCLUSIVE EVENTS AND PARTITIONS

Events E and F are **mutually exclusive** if $E \cap F = \emptyset$, that is, if events E and F cannot both occur. If the sets of sample outcomes represented by E and F are **disjoint** (have no common element), then E and F are mutually exclusive.

Events $E_1, \ldots, E_k \subseteq \Omega$ form a **partition** of event $F \subseteq \Omega$ if

(a) $E_i \cap E_j = \emptyset$ for $i \neq j, i, j = 1, \ldots, k$

(b) $\bigcup_{i=1}^k E_i = F$

so that each element of the collection of sample outcomes corresponding to event F is in **one and only one** of the collections corresponding to events E_1, \ldots, E_k.

1.1.3 SIGMA-ALGEBRAS

A (countable) collection of subsets, \mathcal{E}, of sample space Ω, say $\mathcal{E} = \{E_1, E_2, \ldots\}$, is a **sigma-algebra** if

I $\Omega \in \mathcal{E}$

II $E \in \mathcal{E} \implies E' \in \mathcal{E}$

III If $E_1, E_2, \ldots \in \mathcal{E}$, then $\bigcup_{i=1}^\infty E_i \in \mathcal{E}$.

If \mathcal{E} is an algebra of subsets of Ω, then

(i) $\emptyset \in \mathcal{E}$

(ii) If $E_1, E_2 \in \mathcal{E}$, then $E_1', E_2' \in \mathcal{E}$.

so \mathcal{E} is also **closed under intersection**.

1.2 THE PROBABILITY FUNCTION

For an event $E \subseteq \Omega$, the **probability that E occurs** is written $P(E)$.

Interpretation : $P(.)$ is a **set-function** that assigns “weight” to collections of possible outcomes of an experiment. There are many ways to think about precisely how this assignment is achieved;

CLASSICAL : “Consider equally likely sample outcomes ...”

FREQUENTIST : “Consider long-run relative frequencies ...”

SUBJECTIVE : “Consider personal degree of belief ...”

or merely think of $P(.)$ as a set-function.
1.3 PROPERTIES OF $P(.)$: THE AXIOMS OF PROBABILITY

Consider sample space Ω. Then probability function $P(.)$ acts on a sigma-algebra \mathcal{E} defined on Ω

$$P: \mathcal{E} \rightarrow \mathbb{R}$$

and satisfies the following properties:

(I) Let $E \in \mathcal{E}$. Then $0 \leq P(E) \leq 1$.

(II) $P(\Omega) = 1$.

(III) If E_1, E_2, \ldots are mutually exclusive events, then

$$P \left(\bigcup_{i=1}^{\infty} E_i \right) = \sum_{i=1}^{\infty} P(E_i).$$

1.3.1 COROLLARIES TO THE PROBABILITY AXIOMS

For events $E, F \subseteq \Omega$

1. $P(E') = 1 - P(E)$, and hence $P(\emptyset) = 0$.

2. If $E \subseteq F$, then $P(E) \leq P(F)$.

3. In general, $P(E \cup F) = P(E) + P(F) - P(E \cap F)$.

4. $P(E \cap F') = P(E) - P(E \cap F)$.

5. $P(E \cup F) \leq P(E) + P(F)$.

6. $P(E \cap F) \geq P(E) + P(F) - 1$.

The general addition rule for probabilities and Boole’s Inequality extend to more than two events. Let E_1, \ldots, E_n be events in Ω. Then

(i) $P \left(\bigcup_{i=1}^{n} E_i \right) \leq \sum_{i=1}^{n} P(E_i)$.

(ii) $P \left(\bigcup_{i=1}^{n} E_i \right) = \sum_{i} P(E_i) - \sum_{i<j} P(E_i \cap E_j) + \sum_{i<j<k} P(E_i \cap E_j \cap E_k) - \ldots + (-1)^{n+1} P \left(\bigcap_{i=1}^{n} E_i \right)$

(i) follows from 5; for (ii), construct the events $F_1 = E_1$ and

$$F_i = E_i \cap \left(\bigcup_{k=1}^{i-1} E_k \right)'$$

for $i = 2, 3, \ldots, n$. Then F_1, F_2, \ldots, F_n are disjoint, and $\bigcup_{i=1}^{n} E_i = \bigcup_{i=1}^{n} F_i$, so

$$P \left(\bigcup_{i=1}^{n} E_i \right) = P \left(\bigcup_{i=1}^{n} F_i \right) = \sum_{i=1}^{n} P(F_i).$$

Now, by the corollary above, for $i = 2, 3, \ldots, n$,

$$P(F_i) = P(E_i) - P \left(E_i \cap \left(\bigcup_{k=1}^{i-1} E_k \right) \right) = P(E_i) - P \left(\bigcup_{k=1}^{i-1} (E_i \cap E_k) \right)$$

and the result follows by recursive expansion of the second term for $i = 2, 3, \ldots, n$.

3
1.4 CONDITIONAL PROBABILITY

For events $E, F \subseteq \Omega$ the conditional probability that F occurs given that E occurs is written $P(F|E)$, and is defined by

$$P(F|E) = \frac{P(E \cap F)}{P(E)}$$

if $P(E) > 0$.

NOTE: $P(E \cap F) = P(E)P(F|E)$, and in general, for events E_1, \ldots, E_k,

$$P \left(\bigcap_{i=1}^{k} E_i \right) = P(E_1)P(E_2|E_1)P(E_3|E_1 \cap E_2) \ldots P(E_k|E_1 \cap E_2 \cap \ldots \cap E_{k-1}).$$

This result is known as the chain or multiplication rule.

Events E and F are independent if

$$P(E|F) = P(E)$$

so that $P(E \cap F) = P(E)P(F)$.

Extension: Events E_1, \ldots, E_k are independent if, for every subset of events of size $l \leq k$, indexed by \{i_1, \ldots, i_l\}, say,

$$P \left(\bigcap_{j=1}^{l} E_{i_j} \right) = \prod_{j=1}^{l} P(E_{i_j}).$$

1.5 THE THEOREM OF TOTAL PROBABILITY

THEOREM

Let E_1, \ldots, E_k be a partition of Ω, and let $F \subseteq \Omega$. Then

$$P(F) = \sum_{i=1}^{k} P(F|E_i)P(E_i)$$

PROOF

E_1, \ldots, E_k form a partition of Ω, and $F \subseteq \Omega$, so

$$F = (F \cap E_1) \cup \ldots \cup (F \cap E_k)$$

$$\Rightarrow P(F) = \sum_{i=1}^{k} P(F \cap E_i) = \sum_{i=1}^{k} P(F|E_i)P(E_i)$$

3, as $E_i \cap E_j = \emptyset$).

Extension: If we assume that Axiom 3 holds, that is, that P is countably additive, then the theorem still holds, that is, if E_1, E_2, \ldots are a partition of Ω, and $F \subseteq \Omega$, then

$$P(F) = \sum_{i=1}^{\infty} P(F \cap E_i) = \sum_{i=1}^{\infty} P(F|E_i)P(E_i)$$

if $P(E_i) > 0$ for all i.

4
1.6 BAYES THEOREM

THEOREM

Suppose \(E, F \subseteq \Omega \), with \(P(E)P(F) > 0 \). Then

\[
P(E|F) = \frac{P(F|E)P(E)}{P(F)}
\]

PROOF

\[
P(E|F)P(F) = P(E \cap F) = P(F|E)P(E), \quad \text{so} \quad P(E|F)P(F) = P(F|E)P(E).
\]

Extension: If \(E_1, \ldots, E_k \) are disjoint, with \(P(E_i) > 0 \) for \(i = 1, \ldots, k \), and form a partition of \(F \subseteq \Omega \), then

\[
P(E_i|F) = \frac{P(F|E_i)P(E_i)}{\sum_{i=1}^{k} P(F|E_i)P(E_i)}
\]

The extension to the countably additive (infinite) case also holds.

NOTE: in general, \(P(E|F) \neq P(F|E) \)

1.7 COUNTING TECHNIQUES

Suppose that an experiment has \(N \) equally likely sample outcomes. If event \(E \) corresponds to a collection of sample outcomes of size \(n(E) \), then

\[
P(E) = \frac{n(E)}{N}
\]

so it is necessary to be able to evaluate \(n(E) \) and \(N \) in practice.

1.7.1 THE MULTIPLICATION PRINCIPLE

If operations labelled \(1, \ldots, r \) can be carried out in \(n_1, \ldots, n_r \) ways respectively, then there are

\[
\prod_{i=1}^{r} n_i = n_1 \times \ldots \times n_r
\]

ways of carrying out the \(r \) operations in total.

Example 1.1 If each of \(r \) trials of an experiment has \(N \) possible outcomes, then there are \(N^r \) possible sequences of outcomes in total. For example:

(i) If a multiple choice exam has 20 questions, each of which has 5 possible answers, then there are \(5^{20} \) different ways of completing the exam.

(ii) There are \(2^m \) subsets of \(m \) elements (as each element is either in the subset, or not in the subset, which is equivalent to \(m \) trials each with two outcomes).

1.7.2 SAMPLING FROM A FINITE POPULATION

Consider a collection of \(N \) items, and a sequence of operations labelled \(1, \ldots, r \) such that the \(i \)th operation involves selecting one of the items remaining after the first \(i - 1 \) operations have been carried out. Let \(n_i \) denote the number of ways of carrying out the \(i \)th operation, for \(i = 1, \ldots, r \). Then

(a) **Sampling with replacement**: an item is returned to the collection after selection. Then \(n_i = N \) for all \(i \), and there are \(N^r \) ways of carrying out the \(r \) operations.

(b) **Sampling without replacement**: an item is not returned to the collection after selected. Then \(n_i = N - i + 1 \), and there are \(N(N - 1)\ldots(N - r + 1) \) ways of carrying out the \(r \) operations.

e.g. Consider selecting 5 cards from 52. Then

(a) leads to \(52^5 \) possible selections, whereas

(b) leads to \(52 \times 51 \times 50 \times 49 \times 48 \) possible selections

NOTE: The order in which the operations are carried out may be important e.g. in a raffle with three prizes and 100 tickets, the draw \{45, 19, 76\} is different from \{19, 76, 45\}.

NOTE: The items may be **distinct** (unique in the collection), or **indistinct** (of a unique type in the collection, but not unique individually). For example, the numbered balls in a lottery, or individual playing cards, are **distinct**. However balls in the lottery are regarded as “WINNING” or “NOT WINNING”, or playing cards are regarded in terms of their suit only, are **indistinct**.

1.7.3 PERMUTATIONS AND COMBINATIONS

- A **permutation** is an ordered arrangement of a set of items.
- A **combination** is an unordered arrangement of a set of items.

RESULT 1 The number of permutations of \(n \) distinct items is \(n! = n(n - 1)\ldots 1 \).

RESULT 2 The number of permutations of \(r \) from \(n \) distinct items is

\[
P_r^n = \frac{n!}{(n-r)!} = n(n-1)\ldots(n-r+1) \quad \text{(by the Multiplication Principle)}.
\]

If the order in which items are selected is not important, then

RESULT 3 The number of combinations of \(r \) from \(n \) distinct items is

\[
C_r^n = \binom{n}{r} = \frac{n!}{r!(n-r)!} \quad \text{(as } P_r^n = r!C_r^n \text{)}.
\]

- recall the **Binomial Theorem**, namely

\[
(a + b)^n = \sum_{i=0}^{n} \binom{n}{i} a^i b^{n-i}.
\]

Then the number of subsets of \(m \) items can be calculated as follows; for each \(0 \leq j \leq m \), choose a subset of \(j \) items from \(m \). Then

\[
\text{Total number of subsets} = \sum_{j=0}^{m} \binom{m}{j} = (1 + 1)^m = 2^m.
\]

If the items are **indistinct**, but each is of a unique type, say Type I, \ldots, Type \(\kappa \) say, (the so-called **Urn Model**) then, then a more general formula applies:
RESULT 4 The number of distinguishable permutations of \(n \) indistinct objects, comprising \(n_i \) items of type \(i \) for \(i = 1, \ldots, \kappa \) is

\[
\frac{n!}{n_1! n_2! \ldots n_\kappa!}
\]

Special Case: if \(\kappa = 2 \), then the number of distinguishable permutations of the \(n_1 \) objects of type I, and \(n_2 = n - n_1 \) objects of type II is

\[
C_{n_2}^n = \frac{n!}{n_1!(n-n_1)!}
\]

Also, there are \(C_r^n \) ways of partitioning \(n \) distinct items into two “cells”, with \(r \) in one cell and \(n - r \) in the other.

1.7.4 PROBABILITY CALCULATIONS

Recall that if an experiment has \(N \) equally likely sample outcomes, and event \(E \) corresponds to a collection of sample outcomes of size \(n(E) \), then

\[
P(E) = \frac{n(E)}{N}
\]

Example 1.2 A True/False exam has 20 questions. Let \(E = \) “16 answers correct at random”. Then

\[
P(E) = \frac{\text{Number of ways of getting 16 out of 20 correct}}{\text{Total number of ways of answering 20 questions}} = \frac{\binom{20}{16}}{2^{20}} = 0.0046
\]

Example 1.3 Sampling without replacement. Consider an Urn Model with 10 Type I objects and 20 Type II objects, and an experiment involving sampling five objects without replacement. Let \(E = \) “precisely 2 Type I objects selected”. We need to calculate \(N \) and \(n(E) \) in order to calculate \(P(E) \). In this case \(N \) is the number of ways of choosing 5 from 30 items, and hence

\[
N = \binom{30}{5}
\]

To calculate \(n(E) \), we think of \(E \) occurring by first choosing 2 Type I objects from 10, and then choosing 3 Type II objects from 20, and hence, by the multiplication rule,

\[
n(E) = \binom{10}{2} \binom{20}{3}
\]

Therefore

\[
P(E) = \frac{\binom{10}{2} \binom{20}{3}}{\binom{30}{5}} = 0.360
\]

This result can be obtained using a conditional probability argument; consider event \(F \subseteq E \), where \(F = \) “sequence of objects 11222 obtained”. Then

\[
F = \bigcap_{i=1}^{5} F_{ij}
\]
where \(F_{ij} = \text{“type j object obtained on draw } i \text{” } i = 1, \ldots, 5, j = 1, 2 \). Then
\[
P(F) = P(F_{11})P(F_{21} | F_{11}) \cdots P(F_{52} | F_{11}, F_{21}, F_{32}) = \frac{10 \cdot 9 \cdot 20 \cdot 19 \cdot 18}{30 \cdot 29 \cdot 28 \cdot 27 \cdot 26}
\]
Now consider event \(G \) where \(G = \text{“sequence of objects 12122 obtained”} \). Then
\[
P(G) = \frac{10 \cdot 20 \cdot 9 \cdot 19 \cdot 18}{30 \cdot 29 \cdot 28 \cdot 27 \cdot 26}
\]
i.e. \(P(G) = P(F) \). In fact, any sequence containing two Type I and three Type II objects has this probability, and there are \(\binom{5}{2} \) such sequences. Thus, as all such sequences are mutually exclusive,
\[
P(E) = \binom{5}{2} \frac{10 \cdot 9 \cdot 20 \cdot 19 \cdot 18}{30 \cdot 29 \cdot 28 \cdot 27 \cdot 26} = \frac{\binom{10}{2} \binom{20}{3}}{\binom{30}{5}}.
\]

Example 1.4 Sampling with replacement. Consider an Urn Model with 10 Type I objects and 20 Type II objects, and an experiment involving sampling five objects with replacement. Let \(E = \text{“precisely 2 Type I objects selected”} \). Again, we need to calculate \(N \) and \(n(E) \) in order to calculate \(P(E) \). In this case \(N \) is the number of ways of choosing 5 from 30 items with replacement, and hence
\[
N = 30^5
\]
To calculate \(n(E) \), we think of \(E \) occurring by first choosing 2 Type I objects from 10, and 3 Type II objects from 20 in any order. Consider such sequences of selection
\[
\begin{array}{ll}
\text{Sequence} & \text{Number of ways} \\
1 \ 1 \ 2 \ 2 \ 2 & 10 \times 10 \times 20 \times 20 \times 20 \\
1 \ 2 \ 1 \ 2 \ 2 & 10 \times 20 \times 10 \times 20 \times 20 \\
\vdots & \vdots \\
\end{array}
\]
extc., and thus a sequence with 2 Type I objects and 3 Type II objects can be obtained in \(10^2 20^3 \) ways. As before there are \(\binom{5}{2} \) such sequences, and thus
\[
P(E) = \frac{\binom{5}{2} 10^2 20^3}{30^5} = 0.329.
\]
Again, this result can be obtained using a conditional probability argument; consider event \(F \subseteq E \), where \(F = \text{“sequence of objects 11222 obtained”} \). Then
\[
P(F) = \left(\frac{10}{30} \right)^2 \left(\frac{20}{30} \right)^3
\]
as the results of the draws are independent. This result is true for any sequence containing two Type I and three Type II objects, and there are \(\binom{5}{2} \) such sequences that are mutually exclusive, so
\[
P(E) = \binom{5}{2} \left(\frac{10}{30} \right)^2 \left(\frac{20}{30} \right)^3
\]