MATH 556 - FALL 2022

Mid-Term Examination: Solutions

1. Identify which of the following functions are legitimate specifications for pmfs or pdfs (denoted f) or cdfs (denoted F) for a scalar random variable, giving reasons as to your conclusions. Note that $\mathbb{1}_{A}(x)$ is the indicator function for set A that takes the value 1 if $x \in A$ and zero otherwise.
(a) For some constant c, the function

$$
f(x)=\frac{c e^{-x}}{\left(1+e^{-x}\right)^{3}} \quad x \in \mathbb{R}
$$

is proposed as a pdf.
This is a pdf as it is non-negative and integrable on \mathbb{R}; in fact

$$
\int_{-\infty}^{\infty} \frac{e^{-x}}{\left(1+e^{-x}\right)^{3}} d x=\left[-\frac{1}{2\left(1+e^{-x}\right)^{2}}\right]_{-\infty}^{\infty}=\frac{1}{2}
$$

so $c=2$.
5 Marks
(b) The function

$$
F(x)=\frac{1}{2} \mathbb{1}_{\{0\}}(x)+\frac{1}{2} \mathbb{1}_{[0, \infty)}(x)\left(1-e^{-x}\right) \quad x \in \mathbb{R}
$$

is proposed as a cdf.
This is a not a cdf as

$$
\lim _{x \longrightarrow \infty}=\frac{1}{2}
$$

5 Marks
(c) For some constant c, the function

$$
f(x)=c \mathbb{1}_{\mathcal{\chi}}(x) \frac{1}{x!}
$$

is proposed as a pmf with support $\mathbb{K} \equiv\{1,2, \ldots\}$.
This is a valid pmf: it is a positive function on \mathbb{X}, and as the Poisson $(1) \mathrm{pmf}$ takes the form

$$
e^{-1} \frac{1}{x!} \quad x \in\{0,1,2, \ldots\}
$$

the function is clearly also summable. In fact

$$
\sum_{x=1}^{\infty} \frac{1}{x!}=\sum_{x=0}^{\infty} \frac{1}{x!}-1=e-1
$$

using the Poisson pmf sum. Thus $c=1 /(e-1) \bumpeq 0.5819767$.
2. (a) Suppose X is continuous with $c d f$

$$
F_{X}(x)=\frac{e^{x+1}}{1+e^{x+1}} \quad x \in \mathbb{R}
$$

Find the quantile function for $X, Q_{X}(p)$ for $0<p<1$.
5 Marks
In this case, we may solve

$$
p=\frac{e^{x+1}}{1+e^{x+1}} \quad \Longleftrightarrow \quad x=\log \left(\frac{p}{1-p}\right)-1
$$

so therefore $0<p<1$

$$
Q_{X}(p)=\log \left(\frac{p}{1-p}\right)-1=\operatorname{logit}(p)-1
$$

say.
(b) Suppose Y is continuous with cdf

$$
F_{Y}(y)=\left\{\begin{array}{cl}
0 & y<0 \\
\frac{y^{2}}{4+y^{2}} & y>0
\end{array}\right.
$$

Find the quantile function for $Y, Q_{Y}(p)$ for $0<p<1$.
5 Marks
Here we solve

$$
p=\frac{y^{2}}{4+y^{2}} \quad \Longleftrightarrow \quad y=\sqrt{\frac{4 p}{(1-p)}}
$$

so therefore for $0<p<1$

$$
Q_{Y}(p)=\sqrt{\frac{4 p}{(1-p)}}=2 \sqrt{\frac{p}{(1-p)}} .
$$

(c) Find a transformation $g(\cdot)$ such that for variable X from part $(a), g(X)$ has the same distribution as Y from part (b).
The transformation we need is

$$
Y=Q_{Y}\left(F_{X}(X)\right)=2 \sqrt{\exp \{X+1\}}
$$

as then, for $y>0$,

$$
\begin{aligned}
F_{Y}(y)=P_{Y}[Y \leq y] & =P_{X}[2 \sqrt{\exp \{X+1\}} \leq y] \\
& =P_{X}\left[\exp \{X+1\} \leq y^{2} / 4\right] \\
& =P_{X}\left[X \leq \log \left(y^{2} / 4\right)-1\right] \\
& =\frac{y^{2} / 4}{1+y^{2} / 4}
\end{aligned}
$$

3. Suppose that X_{1} and X_{2} have a joint pdf given by

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=c \mathbb{1}_{\boldsymbol{\chi}}\left(x_{1}, x_{2}\right) \exp \left\{-x_{1}\right\}
$$

where $\mathcal{X}=\left\{\left(x_{1}, x_{2}\right): 0<x_{2}<x_{1}<\infty\right\}$, for some constant c
Note that we may write

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=c x_{1} \exp \left\{-x_{1}\right\} \frac{1}{x_{1}} \quad 0<x_{2}<x_{1}<\infty
$$

and deduce that

$$
\begin{aligned}
f_{X_{1}}\left(x_{1}\right) & =x_{1} \exp \left\{-x_{1}\right\} \quad x_{1}>0 \\
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) & =\frac{1}{x_{1}} \quad 0<x_{2}<x_{1}
\end{aligned}
$$

so $X_{1} \sim \operatorname{Gamma}(2,1)$ and $X_{2} \mid X_{1}=x_{1} \sim \operatorname{Uniform}\left(0, x_{1}\right)$.
(a) Find the value of c.

From the above logic, we have $c=1$.
4 Marks
(b) Find the marginal pdf of X_{1}.

For $x_{1}>0$, we have

$$
f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2}=\int_{0}^{x_{1}} \exp \left\{-x_{1}\right\} d x_{2}=x_{1} \exp \left\{-x_{1}\right\}
$$

4 Marks
(c) Find the conditional pdf of X_{2} given that $X_{1}=x_{1}$, where $x_{1}>0$.

We have that for $0<x_{2}<x_{1}$, when $x_{1}>0$,

$$
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=\frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)}=\frac{1}{x_{1}} .
$$

4 Marks
(d) Are X_{1} and X_{2} independent? Justify your answer.
X_{1} and X_{2} are not independent as the joint pdf does not factorize into a product of a function of x_{1} and a function of x_{2} due to the indicator function.

3 Marks
4. Suppose that X_{1} and X_{2} are independent Exponential(1) random variables.
(a) Find $\mathbb{E}_{X_{1}}\left[X_{1}^{3}\right]$.

4 Marks

$$
\mathbb{E}_{X_{1}}\left[X_{1}^{3}\right]=\int_{0}^{\infty} x_{1}^{3} \exp \left\{-x_{1}\right\} d x_{1}=\Gamma(4)=6
$$

using the fact that the integrand is the kernel of a $\operatorname{Gamma}(4,1) \mathrm{pdf}$.
(b) Find

$$
\mathbb{E}_{X_{1}, X_{2}}\left[X_{1}^{3}+X_{2}^{3}\right]=\int_{0}^{\infty} \int_{0}^{\infty}\left(x_{1}^{3}+x_{2}^{3}\right) f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
$$

where $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ is the joint pdf of X_{1} and X_{2}.
5 Marks
By direct calculation

$$
\begin{aligned}
\mathbb{E}_{X_{1}, X_{2}}\left[X_{1}^{3}+X_{2}^{3}\right] & =\int_{0}^{\infty} \int_{0}^{\infty}\left(x_{1}^{3}+x_{2}^{3}\right) f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& =\int_{0}^{\infty} \int_{0}^{\infty}\left(x_{1}^{3}+x_{2}^{3}\right) \exp \left\{-x_{1}\right\} \exp \left\{-x_{2}\right\} d x_{1} d x_{2} \quad \text { independence } \\
& =\int_{0}^{\infty} x_{1}^{3} \exp \left\{-x_{1}\right\} d x_{1}+\int_{0}^{\infty} x_{2}^{3} \exp \left\{-x_{2}\right\} d x_{2} \\
& =12
\end{aligned}
$$

Can also use the general result that

$$
\mathbb{E}_{X_{1}, X_{2}}\left[X_{1}^{3}+X_{2}^{3}\right]=\mathbb{E}_{X_{1}}\left[X_{1}^{3}\right]+\mathbb{E}_{X_{2}}\left[X_{2}^{3}\right] .
$$

irrespective of independence.
(c) For $y>0$, find

$$
P_{X_{1}, X_{2}}\left[X_{1}<y X_{2}\right]
$$

6 Marks
This probability is given by

$$
\begin{aligned}
P_{X_{1}, X_{2}}\left[X_{1}<y X_{2}\right] & =\int_{0}^{\infty} \int_{0}^{y x_{2}} \exp \left\{-x_{1}\right\} \exp \left\{-x_{2}\right\} d x_{1} d x_{2} \\
& =\int_{0}^{\infty}\left(1-\exp \left\{-y x_{2}\right\}\right) \exp \left\{-x_{2}\right\} d x_{2} \\
& =\left[-\exp \left\{-x_{2}\right\}+\frac{1}{1+y} \exp \left\{-(y+1) x_{2}\right\}\right]_{0}^{\infty} \\
& =1-\frac{1}{(y+1)} \\
& =\frac{y}{1+y}
\end{aligned}
$$

