MATH 556 – FALL 2019 MID-TERM EXAMINATION

SOLUTIONS

1. (a) Not a pmf: function sums to 3.

3 Marks

(b) Valid pmf: support is finite, and function is bounded on that support, so *c* is finite.

3 Marks

(c) Valid pdf: function is integrable on $\mathbb R$ as $\Phi(x)$ is bounded, and function is positive on $\mathbb R$.

3 Marks

(d) Not a cdf: we have $\lim_{x \to \infty} F(x) = \frac{1}{2} < 1$.

3 Marks

(e) Valid cdf with $c_1 = c_2 = 1/\sqrt{2}$: function satisfies the three conditions (limit conditions, non-decreasing, right-continuous, even at x = 1, where $F(x) = 1/\sqrt{2}$).

3 Marks

2. (a) We have that for $y \in \mathbb{R}$

$$f_Y(y) = \sum_{x=0}^{1} f_{Y|X}(y|x) f_X(x) = \phi(y+1)(1-\theta) + \phi(y-1)\theta$$

where $\phi(x)$ is the standard Normal pdf.

3 Marks

For the expectation, by direct calculation

$$\mathbb{E}_Y[Y] = \int_{-\infty}^{\infty} y(\phi(y+1)(1-\theta) + \phi(y-1)\theta) \, dy$$

and by standard properties of integrals we have

$$\mathbb{E}_Y[Y] = (1 - \theta) \int_{-\infty}^{\infty} y \phi(y+1) \, dy + \theta \int_{-\infty}^{\infty} y \phi(y-1) \, dy$$

which, by changing variables in the integrals, we can rewrite as

$$\mathbb{E}_Y[Y] = (1 - \theta) \int_{-\infty}^{\infty} (z - 1)\phi(z) dz + \theta \int_{-\infty}^{\infty} (z + 1)\phi(z) dz.$$

Then by properties of the standard Normal, we have

$$\mathbb{E}_{Y}[Y] = ((1 - \theta) \times (-1)) + (\theta \times 1) = 2\theta - 1.$$

Similarly

$$\begin{split} \mathbb{E}_{Y}[Y^{2}] &= (1 - \theta) \int_{-\infty}^{\infty} y^{2} \phi(y + 1) \, dy + \theta \int_{-\infty}^{\infty} y^{2} \phi(y - 1) \, dy \\ &= (1 - \theta) \int_{-\infty}^{\infty} (z - 1)^{2} \phi(z) \, dz + \theta \int_{-\infty}^{\infty} (z + 1)^{2} \phi(z) \, dz \\ &= \mathbb{E}_{Z}[Z^{2}] + (2\theta - 1) \mathbb{E}_{Z}[Z] + 1 \end{split}$$

where $Z \sim Normal(0,1)$. Thus $\mathbb{E}_Y[Y^2] = 2$, and thus

$$Var_Y[Y] = \mathbb{E}_Y[Y^2] - {\mathbb{E}_Y[Y]}^2 = 2 - (2\theta - 1)^2 = 1 + 4\theta(1 - \theta).$$

Note: we can also use the method of *iterated expectation* here.

6 Marks

(b) Z can only take values on $\{0, 1, 2, 3\}$ with positive probability. We have

$$f_Z(z) = \begin{cases} (1-\theta)^2 & z = 0\\ \theta(1-\theta) & z = 1\\ \theta(1-\theta) & z = 2\\ \theta^2 & z = 3\\ 0 & \text{otherwise} \end{cases}$$

6 Marks

3. (a) (i) We have that $Q_X(p) = \inf\{x : F_X(x) \ge p\}$, so

$$Q_X(p) = \begin{cases} -1 & 0$$

5 Marks

(ii) Y can only take values on $\{0,1\}$, and $Y \sim Bernoulli(1/2)$.

(iii) The pmf is symmetric about zero, so $\mathbb{E}_X[X^3] = 0$. 3 MARKS

(b) We have

$$\log \frac{f_0(x)}{f_1(x)} = \log \left[\frac{\lambda_0^x e^{-\lambda_0}}{\lambda_1^x e^{-\lambda_1}} \right] = x \log(\lambda_0/\lambda_1) - (\lambda_0 - \lambda_1)$$

Now, it is evident that the KL divergence is the expectation of this logged quantity under the distribution f_0 , and as $\mathbb{E}_{f_0}[X] = \lambda_0$ we have

$$KL(f_0, f_1) = \mathbb{E}_{f_0} \left[\log \frac{f_0(X)}{f_1(X)} \right] = \mathbb{E}_{f_0} \left[X \log(\lambda_0/\lambda_1) - (\lambda_0 - \lambda_1) \right] = \lambda_0 \log(\lambda_0/\lambda_1) - (\lambda_0 - \lambda_1).$$

5 Marks

4. (a) We have

$$P_{X_1,X_2}\left[\frac{X_1}{X_2} > 1\right] = P_{X_1,X_2}\left[X_1 > X_2\right] = \frac{1}{2}.$$

as X_1 and X_2 are independent and identically distributed.

3 Marks

(b) We have for fixed y < 0,

$$P_Y[Y \le y] = P_{X_1, X_2}[X_1 - X_2 \le y] = \int_0^\infty \int_{x_1 - y}^\infty e^{-x_1} e^{-x_2} dx_2 dx_1$$

as for y < 0, the set A_y is the region in the positive quadrant above the line $x_1 - x_2 = y$. Thus

$$F_Y(y) = \int_0^\infty e^{-x_1} \left\{ \int_{x_1 - y}^\infty e^{-x_2} dx_2 \right\} dx_1 = \int_0^\infty e^{-x_1} e^{-(x_1 - y)} dx_1$$
$$= e^y \int_0^\infty e^{-2x_1} dx_1 = \frac{1}{2} e^y$$

For y > 0, note that

$$P_Y[Y \ge y] = P_Y[-Y \le -y] = P_{X_1, X_2}[X_2 - X_1 \le -y]$$

but by symmetry of form, $X_2 - X_1$ has the same distribution as $X_1 - X_2$. Thus for y > 0

$$F_Y(y) = 1 - P_Y[Y \ge y] = 1 - F_Y(-y) = 1 - \frac{1}{2}e^{-y}$$

and hence we have on differentiation (separately for y > 0 and y < 0) that

$$f_Y(y) = \frac{1}{2}e^{-|y|}$$
 $y \in \mathbb{R}$.

This is the *Double Exponential* (or *Laplace*) distribution.

12 Marks