MATH 556 - EXERCISES 1

Not for assessment.

1. The absolutely continuous cdf F_X has density

$$f_X(x) = c \exp\{-\lambda |x - \theta|\}$$
 $x \in \mathbb{R}$

for parameters $\lambda > 0$ and $\theta \in \mathbb{R}$.

Compute

- (a) The constant *c*;
- (b) The cdf F_X ;
- (c) The quantile function Q_X ;
- (d) The *expectation* $\mathbb{E}_X[X]$, defined by

$$\mathbb{E}_X[X] = \int_{-\infty}^{\infty} x f_X(x) \ dx$$

(e) The *variance* $Var_X[X]$, defined by

$$Var_X[X] = \mathbb{E}_X[(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) dx$$

where $\mu = \mathbb{E}_X[X]$.

- 2. Find the quantile function, $Q_X(p)$ for 0 , for the following cases:
 - (a) X is distributed as Weibull(3,2) (given on the Distributions Formula Sheet).
 - (b) *X* has the discrete distribution with

$$f_X(x) = c\mathbb{1}_{\{1,2,\dots,10\}}(x) \qquad x \in \mathbb{R}$$

for some *c* to be determined.

(c) *X* has the distribution with

$$F_X(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{2} & 0 \le x < 1 \\ \frac{3}{4} & x = 1 \\ (1 - c \exp(-(x - 1)) & x > 1 \end{cases}$$

for some c to be determined.

MATH 556 Exercises 1 Page 1 of 2

3. Suppose that X has a standard Normal distribution, $X \sim Normal(0,1)$ with pdf

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\} \qquad x \in \mathbb{R}$$

For a transformation Y = g(X) of X for some real-valued function $g(\cdot)$, we may compute the cdf of Y using the identity

$$F_Y(y) = P_Y[Y \le y] = P_X[g(X) \le y] \qquad y \in \mathbb{R}$$

Compute and sketch (or plot) the pdfs of the following transformed random variables

- (a) $Y_1 = X^2$
- (b) $Y_2 = |X|$
- (c) $Y_3 = 2X X^2$
- (d) $Y_4 = F_X(X)$, where $F_X(.)$ is the cdf of X.

Hint: you do not need to compute the explicit form of $F_X(x)$ in this case, simply use the fact that it is a strictly increasing function.

4. Show that if $X \sim Pareto(\theta, \alpha)$ (parameterized as on the distributions handout), then

$$X \stackrel{d}{=} g(Z)$$

where $Z \sim Exponential(1)$, and g(.) is some transformation to be found.

5. Suppose that X is a continuous random variable with support $\mathbb{X} = \mathbb{R}$, and with cdf $F_X(x)$. Suppose that Y is a transformed variable given by

$$Y = \{F_X(X)\}^k$$

for positive integer *k*. Find the expectation of *Y*.

Hint: note that $0 \le Y \le 1$ with probability 1; use the result

$$\mathbb{E}_Y[Y] = \int_0^1 y f_Y(y) \ dy \equiv \int_{-\infty}^\infty \{F_X(x)\}^k f_X(x) \ dx.$$

6. A collection of d random variables $X = (X_1, \dots, X_d)$ are termed independent if

$$f_{X_1,\ldots,X_d}(x_1,\ldots,x_d) = \prod_{j=1}^d f_{X_j}(x_j)$$
 for all $(x_1,\ldots,x_d) \in \mathbb{R}^d$.

Consider the joint pdf defined on the unit cube $(0,1)^3$.

$$f_{X_1,X_2,X_3}(x_1,x_2,x_3) = c(1-\sin(2\pi x_1)\sin(2\pi x_2)\sin(2\pi x_3))$$

and zero otherwise, for some constant *c*.

- (a) Are (X_1, X_2) independent?
- (b) Are (X_1, X_2, X_3) independent?

Justify your answers by considering the relevant marginal distributions.

MATH 556 Exercises 1 Page 2 of 2