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1. Multivariate Normal Calculations: In computing the sampling distributions for the sample
mean and sample variance statistics, we used properties of the multivariate Normal distribu-
tion. Specifically we used results concerning linear transforms of the Normal random vectors.

Recall that the multivariate normal distribution arises as a location-scale transform of a vector
of iid standard Normal components: let Z = (Z;,.. ., Zn)T be a vector if independent rvs with
Z; ~ Normal(0,1). Consider the transform

X=p+VZ

where pis n x 1 and V is n x n and non-singular. Then X ~ Normal,(u, %), with ¥ = VV . To
see this we may use the multivariate transformation theorem: we have that

n 1/2 n/2
fz(z) = ll;Il <217r> exp {—;zz} <2177> exp {—;ZTZ}

and hence by the transformation theorem

fx(x) = fz (V"' (x = p)) |J]

where | J| is the absolute value of the determinant of the transformation. For this linear transfor-
mation, basic linear algebra results allow us to conclude that

[l = V[

that is, the reciprocal of the determinant of V. Hence if ¥ = VVT, we have that

Fx(x) = (;ﬂ)/ sy WS )

as the z' z term becomes
(VIix—pw} (Vi x—p)}=x—pw) {VIH{V }(x-p)
=(x—p){VVT} 1 (x—p)

and
S = [VVT = V][V =|V|[V|]= V[

The mgf of the multivariate normal is easily computed. If t = (¢1,.. ., tn)T is a vector of reals, we
have by independence that

Mz(t) = Ez [exp{tTZ}} = H Ez [exp{tiZi}] = HMZ
=1

and from the formula sheet we therefore have that

g t2 t't
Mz(t) = exp{l}:exp{}.
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From this result, we compute that
Mx(t) = Ex [exp{tTX}} ~ Ez [exp{tT(u v VZ)}]

= exp{t 1}z [tT(VZ)}]

— expft u} M (V'Z)

1
= exp {tTu + 2tT(VVT)t}

1
= exp {tTu + 2tTEt} .

Now if ¥ has a block diagonal structure

[=n o
=% o)

where Y11 is n1 X n1 and Y99 iS ngy X na, then
b0
- 11
{ 0 Ty

and |X| = |X11]||X22|. Hence if we consider the partition X = (X{, X )" where X; is an n; x 1
vector, then

(x—p) S (= p) = (1 — ) 20 (1 — ) + (2 — o) T 55 (51 — o)

where p1; and p, are the relevant components of p. Therefore in this block diagonal case, we
deduce that

fx(x) = fx,; (x1) fx, (x2)

where

1\™/? 1 1 __—
fx,(x1) = Wexp *i(xlfﬂl) 2y (x1— pq)

2

1\™? 1 1 —
fx,(x2) = - W exXp —§(X2 — ) Yoo (x2 — po)

and hence X; and X are independent. Similarly for the mgf, we have that

1 1 1
t p+ itTZt = <t1TN1 + 2t1Tlet1> + (tgw + 2'5;222'52)

and we conclude independence in the same way.

These results confirm that for the Normal case, the zero blocks in the variance-covariance matrix
¥ indicate independence of the components X; and X,. In general for two variables, having a
zero covariance does not imply that the variables are independent, although the converse is true.



2. Order statistics: If Xq,..., X, is a random sample, we have in the continuous case that the
marginal cdf of Y; = X is

n

Foo) = 3 (1) (Fx@)H1 - o)y

k=j
and the marginal pdf is

n!
(=D n—J)

To see this in the continuous case, if the jth order statistic is at x, then we have

fr; () = ! {Fx (@)Y {1 = Fx(@)}"™ fx(x)

(i) asingle observation at z, which contributes fx(z);
(i) j — 1 observations which have values less than z, which contributes {Fx (z)}/~1;
(iii) n — j observations which have values greater than x, which contributes {1 — Fx (z)}"/;

Thus the required mass/density is proportional to
{Fx (@)}~ fx (@){1 = Fx (2)}" ™.

The normalizing constant is the number of ways of labelling the original = values to obtain this
configuration of order statistics: this is

”X<?:i):<j—wﬁn—ﬁ!

we may choose the value in step (i) in n ways, and then the j — 1 data in step (ii) in (7;:11) ways.

This heuristic argument can verified using direct computation. Recall that in the continuous case
the joint pdf of order statistics Y1, ..., Y, with ¥; = X is

e ya (s oyn) = nlfx(yn) - fx (yn) = n! fo(yj) Y1 < ... <Yn

=1

as there are n! configurations of the s that yield identical order statistics, and the result follows
by the Theorem of Total Probability. We obtain the marginal pdf of Y} by integrating out the other
n— 1 variables: we do this in the order y1, v, ..., y;—1, then yp, yn—1, ..., yj4+1, and remember that
there is a constraint on the support of the pdf

yr<y2 < <Y1 <Y <Yj+1 < <Yn-1<Yn

e Integrate out yi:

n

T ixtop) [~ fx) dn = T] s Fx (o)
—00 =2

1=2

o Integrate out ys:

n! [T £x (wy) /@/3 fx (W) Fx (y2) dy2 = %!HfX(yj){FX(y3)}2
i=3 -

=3

using the general calculus result that

b b
: 0 1) ar = [2{9(75)}2] = 5 (g~ {o(@))



e Integrate out ys:
n! 1~ Ya 9 n! 15 3
5 1Lrxtw) [ fxtom Pt dus = 55 T Ax ) Fx (o)
i=4 o =4
Repeating this to finally integrate out up to j — 1 leaves

n! L ‘7
ng;((ijx(yj)}j "

Now we begin integrating from y,, downwards:

e Integrate out y,:

n—1 o)
(]i‘l); HfX(yj){FX(yj)}j_l/ Fx (yn) dyn
i=j Yn—-1
n—1
= (Jfll)' H Fx (i {Ex () ¥ ~H{1 = Fx(yn-1)}

e Integrate out y,,—1:

Yn—2

n—2 oo
(jﬁll)u E fx(yj){Fx(yj)}jl/ Fx n){1 = Fx (yn-1) dyn—1

' n—2

= oy L x ) )P~ (1 = ()

and so on until we have integrated out y;;1 to obtain

iy PP - ) )

The cdf is also readily computable by direct calculation using integration by parts:

fv;(y) =

Yi n! Y i— n—j
Fot) = [ )t = i [ O @Y ™ (1= Fx(0)

= n! |:1{Fx(t)}j {1 _ FX(t)}nj:| Yj
(G—DUn—5)"1J N
G O E O (1 ey e

- (?) {Fx ()} {1 — Fx(y;)}"™

" <ZL> (n _‘7) /_i fX(t){FX(t)}j {1 _ FX(t)}n—j_l di



Note that in the integrand the power on the second term is reduced to n — j — 1. Therefore, using
this calculation recursively to we obtain

n

S (1) eyt 11 Pty

k=j

Using either the heuristic approach, or direct computation, it is possible to construct the joint pdf
for Y} = X(]) and Y}, = X(k) fOI'j < k as

fy;vi Wi ye) = n(n — 1)<?: f) (”;i; 1)

Fx () fx () {Fx ()Y~ H{Fx (e) = Fx ()} 771 = Fxe(y)}" "

for y; < yi, and zero otherwise. In the special case of j = 1 and k = n, we obtain

Fve Wiyn) = n(n = 1) fx (1) fx () {Fx (yn) = Fx (1)} ™% 1< yn

In this case, we can also construct the joint cdf: we have that

Fy, v, (y1,yn) = Py, [Y1 <91, Y0 <y

= Pxy,..x, [ﬂ(Xz < Yn)
i=1

— Px, .x, [ﬂ(yl <X; < yn)]

=1
= {Fx(yn)}" = {Fx(yn) — Fx(y1)}"

by independence, as we have the partition

(Yn < yn) = ((Yl < yl) N (Yn < yn)) U ((Yl > yl) N (Yn < yn))
where

e the event (Y), < y,) corresponds to the event that all of X, ..., X, are less than or equal to
the value ¥, so

e the event (Y7 > y1) N (Y, < y,)) is equivalent to all X; lying between y; and y,,

n

(V1> 1) N (Y <) = [0 < Xi < yn)
=1

and the result follows by probability Axiom III



