556: MATHEMATICAL STATISTICS |
GENERAL RESULTS FOR THE SAMPLE MEAN AND VARIANCE STATISTICS

Suppose that X7, ..., X, is a random sample from a distribution, with finite expectation y and variance
o?. Consider the sample mean and sample variance statistics X and s* and denote
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(a) and (b) follow from elementary properties of expectations and variances for independent random

variables. For (c), note that
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where line (1) follows from the fact that for any random variable X
0? = Ex[X?] — Ex[X]? = Ex[X?] — 12
and the result of parts (a) and (b).

Normal case: For the same calculations in the Normal case, recall the fundamental transformation
results for Normal random variables:

(i) If X ~ Normal(0,1), then
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(i) If Xyq,...,X, ~ Normal(0,1) are independent random variables, then
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(iii) If Y1 ~ x2, and Y2 ~ x2, are independent random variables, then
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Suppose that X1, ..., X, is a random sample from a normal distribution, say X; ~ Normal(u, a?).
Define the sample mean and sample variance statistics X and s? as the random variables
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Then
(@) X ~ Normal(u,0?/n)
(b) X is independent of {X; — X,i=1,...,n}, and X and s? are independent random variables

(c) The random variable
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has a chi-squared distribution with n — 1 degrees of freedom.

For (a) the proof straightforward using mgfs. For (b) the result follows by considering the multivariate
transformation theorem: the joint pdf Xi, ..., X, is the normal density
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Thus Y = AX, or equivalently X = A~'Y, where A is the n x n matrix with (4, j)th element
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where T = 1 3 #; is the observed sample mean. Thus the joint pdf of X, ..., X,, takes the form
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Now
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The Jacobian of the transformation is n, so the joint density of Y7, ..., Y}, is given by the multivariate
transformation theorem as
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and therefore Y; is independent 0f7Y2, ...,Y,. Hence X is indegendent of the random variables
{Y;=X,-X,i=2,..,n}. Finally, X is also independent of X; — X as
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and of s?, which is a function only of {X; — X, i =1,...,n}. As X is independent of these variables,
X and s? are also independent.

For (c) the random variables that appear as sums of squares terms in the joint pdf are
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or Vi = Vo + V3, say. Now, X; ~ Normal(u, 02), so therefore
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as the X;s are independent, and, using mgfs, the sum of n independent Gamma(1/2,1/2) variables
has a Gamma(n/2,1/2) distribution. Similarly, as X ~ Normal(u,0?/n), V3 ~ X3 By part (b), V5 and
V3 are independent, and so the mgfs of Vi, V5 and V3 are related by
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As Vi and V3 are Gamma random variables, My, and My, are given by

My, (t) = (1/12/;)”/2 and My, (t) = (1/12/;)1/2.

So therefore
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which is also the mgf of a Gamma random variable, and hence
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and the result follows.

Alternative inductive proof of (c): Let X, and s?, k = 1,2, ..., n denote the sample mean and sample
variance random variables derived from the first k variables. Now, for k& > 2, it can be shown after
some manipulation that
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say, where Z ~ Normal(0,1). Thus s3 ~ x3. Now for the inductive hypothesis, presume that
(k —1)s ~ Xi-1

so that, using the identity in (2),
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The two terms on the right hand side are independent (using the result in (b)); the first term is x3_,
distributed, the second term is x7 distributed, so ks;_, is x}, distributed and the inductive argument is
completed.



