
556: MATHEMATICAL STATISTICS I

FAMILIES OF DISTRIBUTIONS: RESULTS AND EXAMPLES

1. Parametric Family: A parametric family, P , of distributions is a collection of probability distributions
indexed by a finite-dimensional parameter, θ:

P ≡ {PX(.; θ) : θ ∈ Θ}

which may be written equivalently in terms of the cdfs FX(.; θ) for θ ∈ Θ. The family is identifiable
if, for θ1, θ2 ∈ Θ

FX(.; θ1) = FX(.; θ2) for all x ⇐⇒ θ1 = θ2.

Typically, θ is an m× 1 vector of real-valued quantities.

• Suppose θ0 ∈ Θ, and suppose X ∼ FX(x; θ0). Suppose θ1 ∈ Θ and consider the likelihood ratio

R(X; θ0, θ1) =
fX(X; θ1)

fX(X; θ0)
=

dFX(X; θ1)

dFX(X; θ0)

say. Then

EX [R(X; θ0, θ1)] =

∫
fX(x; θ1)

fX(x; θ0)
dFX(x; θ0) =

∫
dFX(x; θ1)

dFX(x; θ0)
dFX(x; θ0) =

∫
dFX(x; θ1) = 1.

• Suppose that the pmf/pdf fX(x; θ) is differentiable with respect to θ. The score function, S(x; θ),
is a m× 1 vector with jth element equal to

Sj(x; θ) =
∂

∂θj
log fX(x; θ).

The quantity S(X; θ) = (S1(X; θ), . . . , Sm(X; θ))⊤ is an m-dimensional random variable. Under
certain regularity conditions

EX [S(X; θ)] = 0 (m× 1).

Consider first m = 1; let

ḟX(x; θ) =
d

dθ
fX(x; θ)

Then

EX [S(X; θ)] =

∫
S(x; θ)fX(x; θ) dx =

∫ {
d

dθ
log fX(x; θ)

}
fX(x; θ) dx

=

∫ {
ḟX(x; θ)

fX(x; θ)

}
fX(x; θ) dx

=

∫
d

dθ
fX(x; θ) dx =

d

dθ

{∫
fX(x; θ) dx

}
= 0

provided that the order of the differentiation wrt θ and the integration wrt x can be exchanged.

The result for general m follows by noting that

EX [S(X; θ)] =


EX [S1(X; θ)]

...

EX [Sm(X; θ)]


and applying the calculation for m = 1 for each component.
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• The Fisher Information, I(θ), is an m × m matrix defined as the variance-covariance matrix of
the score random variable S, that is

I(θ) = VarX [S(X; θ)] = EX [S(X; θ)S(X; θ)⊤]

with (j, k)th element equal to
EX [Sj(X; θ)Sk(X; θ)]

The Fisher Information is a constant m×m matrix with elements that are functions of θ. Under
certain regularity conditions, if the pmf/pdf is twice partially differentiable with respect to the
elements of θ, then

I(θ) = −EX [Ψ(X; θ)]

where Ψ(X; θ) is the m×m matrix of second partial derivatives with (j, k)th element equal to

∂2

∂θj∂θk
log fX(X; θ).

In the continuous case, with m = 1: from above∫ {
d

dθ
log fX(x; θ)

}
fX(x; θ) dx = 0

so therefore, differentiating again wrt θ∫ [{
d2

dθ2
log fX(x; θ) fX(x; θ)

}
+

{
d

dθ
log fX(x; θ)

d

dθ
fX(x; θ)

}]
dx = 0 (1)

But

d

dθ
log fX(x; θ) =

ḟX(x; θ)

fX(x; θ)
∴ ḟX(x; θ) =

d

dθ
fX(x; θ) = fX(x; θ)

d

dθ
log fX(x; θ)

so therefore ∫
d

dθ
log fX(x; θ)

d

dθ
fX(x; θ) dx =

∫ {
d

dθ
log fX(x; θ)

}2

fX(x; θ) dx

and so substituting into equation (1) above, we have∫ {
d2

dθ2
log fX(x; θ) fX(x; θ)

}
dx = −

∫ {
d

dθ
log fX(x; θ)

}2

fX(x; θ) dx

of equivalently

EX

[
d2

dθ2
log fX(x; θ)

]
= −EX

[{
d

dθ
log fX(x; θ)

}2
]
= EX [S(X; θ)2]

so that, as EX [S(X; θ)] = 0,

EX

[
d2

dθ2
log fX(x; θ)

]
= −VarX [S(X; θ)].
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Example : Binomial(n, θ)

fX(x; θ) =

(
n

x

)
θx(1− θ)n−x x ∈ {0, 1, . . . , n}

so that
S(x; θ) =

d

dθ
log fX(x; θ) =

x

θ
− n− x

1− θ
=

x− nθ

θ(1− θ)
.

Hence

EX [S(X; θ)] = EX

[
X − nθ

θ(1− θ)

]
=
EX [X]− nθ

θ(1− θ)
= 0

as X ∼ Binomial(n, θ) yields EX [X] = nθ. For the second derivative

d2

dθ2
log fX(x; θ) = − x

θ2
− n− x

(1− θ)2

so that

I(θ) = −EX

[
d2

dθ2
log fX(X; θ)

]
=
EX [X]

θ2
+

n− EX [X]

(1− θ)2

and as EX [X] = nθ, we have

I(θ) = nθ

θ2
+

n− nθ

(1− θ)2
=

n

θ(1− θ)

Example : Poisson(λ)

fX(x;λ) =
e−λλx

x!
x ∈ {0, 1, . . .}

so that
S(x;λ) =

d

dλ
log fX(x;λ) =

x

λ
− 1

Hence

EX [S(X;λ)] = EX

[
X

λ
− 1

]
=
EX [X]

λ
− 1 = 0

as X ∼ Poisson(λ) yields EX [X] = λ. For the second derivative

d2

dλ2
log fX(x;λ) = − x

λ2

so that

I(λ) = −EX

[
d2

dλ2
log fX(X;λ)

]
=
EX [X]

λ2
=

1

λ
.
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2. Location-Scale Family: A location-scale family is a family of distributions formed by translation and
rescaling of a standard family member. Suppose that f0(x) is a pdf. If µ and σ > 0 are constants then

fX(x;µ, σ) =
1

σ
f0((x− µ)/σ)

is also a pdf.

• if σ = 1 we have a location family: fX(x;µ) = f0(x− µ)

• if µ = 0 we have a scale family: fX(x;σ) = f0(x/σ)/σ

Example : Normal distribution family

f0(x) =

(
1

2π

)1/2

exp

{
−1

2
x2

}

fX(x;µ, σ) =

(
1

2πσ2

)1/2

exp

{
− 1

2σ2
(x− µ)2

}

Example : Exponential distribution family

f0(x) = e−x x > 0

fX(x;µ, σ) =
1

σ
e−(x−µ)/σ x > µ

Note that X is a random variable with pdf fX(x) = fX(x;µ, σ) (the location-scale family member)
if and only if there exists another random variable Z with fZ(z) = f0(z) (the standard member)
such that X = σZ + µ that is, if X is a linear transformation of a standard random variable Z.

3. Exponential Families: A family of pdfs/pmfs is an Exponential Family if it can be expressed

fX(x; θ) = h(x) exp


m∑
j=1

cj(θ)Tj(x)−A(θ)

 = h(x) exp
{
c(θ)⊤T(x)−A(θ)

}
for all x ∈ R, where θ ∈ Θ is a l-dimensional parameter vector (initially we take l = m).

• h(x) ≥ 0 is a function that does not depend on θ

• A(θ) is a function that does not depend on x

• T(x) = (T1(x), . . . , Tm(x))⊤ is a vector of real-valued functions that do not depend on θ.

• c(x) = (c1(θ), . . . , cm(θ))⊤ is a vector of real-valued functions that do not depend on x.

• The support of fX(x; θ) does not depend on θ.

• The family is termed natural if m = 1 and T1(x) = x.
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Example : Binomial(n, θ) for 0 < θ < 1

For x ∈ {0, 1, . . . , n} ≡ X,

f(x; θ) =

(
n

x

)
θx(1− θ)n−x =

(
n

x

)
(1− θ)n

(
θ

1− θ

)x

=

(
n

x

)
exp

{
log

(
θ

1− θ

)
x− n log(1− θ)

}
• m = 1

• h(x) = 1X(x)

(
n

x

)
.

• A(θ) = n log(1− θ)

• T1(x) = x

• c1(θ) = log(θ/(1− θ)) = log θ − log(1− θ)

Example : Normal(µ, σ2)

For x ∈ R,

fX(x;µ, σ2) =

(
1

2πσ2

)1/2

exp

{
− 1

2σ2
(x− µ)2

}
=

(
1

2π

)1/2

exp

{
− x2

2σ2
+

µx

σ2
− 1

2
log σ2 − µ2

2σ2

}
• m = 2, θ = (µ, σ2)⊤

• h(x) = 1/
√
2π

• A(θ) = A(µ, σ2) = (log σ2 + µ2/σ2)/2

• T1(x) = −x2/2, T2(x) = x

• c1(θ) = 1/σ2, c2(θ) = µ/σ2

Example : Suppose, for θ > 0

fX(x; θ) =
1

θ
exp

{
1− x

θ

}
x > θ

and zero otherwise. Then

• m = 1, θ = θ

• h(x) = e1[θ,∞)(x)

• A(θ) = log θ

• T1(x) = x
• c1(θ) = −1/θ

but the support of fX(x; θ) depends on θ so this is not an Exponential Family distribution.

• Parameterization We can reparameterize from θ to η = (η1, . . . , ηm)⊤ by setting ηj = cj(θ) for
each j, and write

fX(x; η) = h(x) exp


m∑
j=1

ηjTj(x)−K(η)

 = h(x) exp
{
η⊤T(x)−K(η)

}
.

η is termed the natural or canonical parameter and

K(η) = A(c−1(η))
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• Parameter space: Let H be the region of Rm defined by

H ≡
{
η :

∫ ∞

−∞
h(x) exp

{
η⊤T(x)

}
dx < ∞

}
H is the natural parameter space. For η ∈ H, we must have

exp{K(η)} =

∫ ∞

−∞
h(x) exp

{
η⊤T(x)

}
dx

It can be shown that H is a convex set, that is, for 0 ≤ λ ≤ 1,

η1, η2 ∈ H =⇒ λη1 + (1− λ)η2 ∈ H.

Note that
HΘ =

{
c(θ) = (c1(θ), . . . , cm(θ))⊤ : θ ∈ Θ

}
⊆ H.

HΘ can be considered the natural parameter space induced by Θ

Example : Binomial(n, θ)

η = log

(
θ

1− θ

)
⇐⇒ θ =

eη

1 + eη

so that

fX(x; η) =

{(
n

x

)
1{0,1,...,n}(x)

}
exp{ηx− n log(1 + eη)}.

Natural parameter space:∫ ∞

−∞
h(x) exp

{
η⊤T(x)

}
dx =

n∑
x=0

(
n

x

)
exp {ηx} < ∞ ∀ η ∴ H ≡ R.

Example : Normal(µ, σ2)

Natural parameters:
η = (η1, η2)

⊤ = (1/σ2, µ/σ2)⊤

so that

fX(x; η) =
( η1
2π

)1/2
exp

{
− η22
2η1

}
exp

{
−η1x

2

2
+ η2x

}
Natural parameter space: this density will be integrable with respect to x if and only if η1 > 0,
so H ≡ R+ × R.

• Regular Exponential Family: The family is termed regular if
I. H ≡ HΘ.

II. In the natural parameterization, neither the ηj nor the Tj(x) satisfy linearity constraints.
III. H is an open set in Rm.

If only I. and II. hold, the exponential family is termed full.

• Curved Exponential Family: The family is termed curved if

dim(θ) = l < m
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• Results for the Exponential Family: If

fX(x; θ) = h(x) exp


m∑
j=1

cj(θ)Tj(x)−A(θ)


then, for l = 1, . . . ,m,

Sl(x; θ) =
∂

∂θl
log fX(x; θ) =

m∑
j=1

∂cj(θ)

∂θl
Tj(x)−

∂A(θ)

∂θl
=

m∑
j=1

ċjl(θ)Tj(x)− Ȧl(θ)

say. But, for each l, EX [Sl(X; θ)] = 0, so therefore, for l = 1, . . . ,m,

EX

 m∑
j=1

ċjl(θ)Tj(X)

 = Ȧl(θ).

By a similar calculation

VarX

 m∑
j=1

ċjl(θ)Tj(X)

 = Äll(θ)− EX

 m∑
j=1

c̈jll(θ)Tj(X)


where

Äll(θ) =
∂2A(θ)

∂θ2l
ẅjll(θ) =

∂2cj(θ)

∂θ2l

Example : Binomial(n, θ)

fX(x; θ) =

(
n

x

)
(1− θ)n exp

{
log

(
θ

1− θ

)
x

}
so that

c1(θ) = log

(
θ

1− θ

)
A(θ) = −n log(1− θ) S(x; θ) = − n

1− θ
+

x

θ(1− θ)
.

From the result above
EX [ċ11(θ)T1(X)] = Ȧl(θ)

that is

EX

[
1

θ(1− θ)
X

]
=

n

1− θ
∴ EX [X] = nθ.

Note that in the natural (canonical) parameterization

log fX(x; η) = log h(x) +
m∑
j=1

ηjTj(x)−K(η)

so that, using the arguments above for l = 1, . . . ,m,

EX [Tl(X)] = K̇l(θ) VarX [Tl(X)] = K̈ll(θ)
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• Independent random variables from the Exponential Family
Suppose that X1, . . . , Xn are independent and identically distributed rvs, with pmf or pdf
fX(x; θ) in the Exponential Family. Then the joint pmf/pdf for X = (X1, . . . , Xn)

⊤ takes the
form

fX(x; θ) =
n∏

i=1

fX(xi; θ) =
n∏

i=1

h(xi) exp


m∑
j=1

cj(θ)Tj(xi)−A(θ)


= H(x) exp


m∑
j=1

cj(θ)Tj(x)− nA(θ)


where

H(x) =
n∏

i=1

h(xi) Tj(x) =
n∑

i=1

Tj(xi).

• Alternative construction of the Exponential Family Suppose that f0(x) is a pmf/pdf with
corresponding mgf M(t) (presumed to exist in a neighbourhood of zero), so that

M(t) =

∫
etxf0(x) dx = exp{K(t)}

and K(t) = logM(t) is the cumulant generating function. Now suppose that f0(x) = exp{g0(x)}.
Then

exp{K(t)} = M(t) =

∫
etxeg0(x) dx =

∫
etx+g0(x) dx.

Hence, dividing through by exp{K(t)}, we have that∫
etx+g(x)−K(t) dx = 1

and also that the integrand is non-negative. Thus, for all t for which M(t) exists,

fX(x; t) = exp{tx+ g0(x)−K(t)} = f0(x) exp{tx−K(t)}

is a valid pdf. If we set t = η, h(x) = f0(x) = exp{g0(x)} then

fX(x; η) = h(x) exp{ηx−K(η)}

and we see that fX(x; η) is an exponential family member with natural parameter η. The
pmf/pdf fX(x; t) is termed the exponential tilting of f0(x), with expectation and variance

d

dη
K(η) = K̇(η)

d2K(η)

dη2
= K̈(η).

respectively. Note further that if

fX(x; η) = h(x) exp {ηx−K(η)} .

then, for t small enough,

MX(t) =

∫
etxh(x) exp {ηx−K(η)} dx = exp{−K(η)}

∫
h(x) exp {(η + t)x} dx

= exp{K(η + t)−K(η)}.
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• The Exponential Dispersion Model: Consider the model

f(x; θ, ϕ) = exp

d(x, ϕ) +
1

r(ϕ)

m∑
j=1

cj(θ)Tj(x)−
A(θ)

r(ϕ)


where r(ϕ) > 0 is a function of dispersion parameter ϕ > 0.

In this model, using the previous results, we see that the expectation is unchanged compared
to the Exponential Family model by the presence of the term r(ϕ), but the variance is modified
by a factor of 1/r(ϕ).

Example : Binomial(n, θ)

fX(x; θ) =

(
n

x

)
1{0,1,...,n}(x) exp

{
log

(
θ

1− θ

)
x− n log(1− θ)

}
.

Let Y = X/n, so that

fY (y; θ, ϕ) =

(
1/ϕ

y/ϕ

)
1{0,ϕ,2ϕ,...,1}(y/ϕ) exp

{
1

ϕ

[
y log

(
θ

1− θ

)
− log(1− θ)

]}
where ϕ = 1/n. Note that

EY [Y ] = θ = µ

say, and
VarY [Y ] = ϕθ(1− θ) = ϕV (µ)

where V (µ) = µ(1−µ) is the variance function. Thus the exponential dispersion model allows
separate modelling of mean and variance.

4. Convolution Families: The convolution of functions g and h is a function written g ◦ h, which is
defined by

g ◦ h(y) =
∫ ∞

−∞
g(x)h(y − x) dx.

Now if X1 and X2 are independent random variables with marginal pdfs fX1 and fX2 respectively,
then the random variable Y = X1 + X2 has a pdf that can be determined using the multivariate
transformation result. If we use dummy variable Z = X1, then

Z = X1

Y = X1 +X2

}
⇐⇒

{
X1 = Z

X2 = Y − Z

which is a transformation with Jacobian 1. Thus

fY (y) =

∫ ∞

−∞
fZ,Y (z, y) dz =

∫ ∞

−∞
fX1,X2(z, y − z) dz =

∫ ∞

−∞
fX1(x)fX2(y − x) dx

so we can see that the pdf of Y is computed as the convolution of fX1 and fX2 .

A family of distributions, F , is closed under convolution if

f1, f2 ∈ F =⇒ f1 ◦ f2 ∈ F

For independent random variables X1 and X2 with pdfs f1 and f2 in a family F , closure under
convolution implies that the random variable Y = X1 +X2 also has a pdf in F .

This concept is closely related to the idea of infinite divisibility, decomposibility, and self decomposibility.
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• Infinite Divisibility : A probability distribution for rv X is infinitely divisible if, for all positive
integers n, there exists a sequence of independent and identically distributed rvs Zn1, . . . , Znn such
that X and

Zn =

n∑
j=1

Znj

have the same distribution, that is, the characteristic function of X can be written

φX(t) = {φZ(t)}n

for some characteristic function φZ .
• Decomposability : A probability distribution for rv X is decomposable if

φX(t) = φX1(t)φX2(t)

for two characteristic functions φX1 and φX2 so that

X = X1 +X2

where X1 and X2 are independent rvs with characteristic functions φX1 and φX2 .
• Self-Decomposability : A probability distribution for rv X is self-decomposable if

φX(t) = {φX1(t)}2

for characteristic function φX1 so that

X = X1 +X2

where X1 and X2 are independent identically distributed rvs with characteristic function φX1 .

5. Hierarchical Models: A hierarchical model is a model constructed by considering a series of distri-
butions at different levels of a “hierarchy” that together, after marginalization, combine to yield the
distribution of the observable quantities.

Example : A three-level model

Consider the three-level hierarchical model:

LEVEL 3 : λ > 0 Fixed parameter

LEVEL 2 : N ∼ Poisson(λ)

LEVEL 1 : X|N = n, θ ∼ Binomial(n, θ)

Then the marginal pmf for X is given by

fX(x; θ, λ) =

∞∑
n=0

fX|N (x|n; θ, λ)fN (n;λ).

By elementary calculation, we see that X ∼ Poisson(λθ)

fX(x; θ, λ) =
(λθ)xe−λθ

x!
x = 0, 1, . . . .
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Example : A three-level model

Consider the three-level hierarchical model:

LEVEL 3 : α, β > 0 Fixed parameters

LEVEL 2 : Y ∼ Gamma(α, β)

LEVEL 1 : X|Y = y ∼ Poisson(y)

Then the marginal pdf for X is given by

fX(x;α, β) =

∫ ∞

0
fX|Y (x|y)fY (y;α, β) dy.

A general K-level hierarchical model can be specified in terms of K vector random variables:

LEVEL K : XK = (XK1, . . . , XKnK
)⊤

... :
...

LEVEL 2 : X2 = (X21, . . . , X2n2)
⊤

LEVEL 1 : X1 = (X11, . . . , X1n1)
⊤

The hierarchical model specifies the joint distribution via a series of conditional independence assump-
tions, so that

fX1,...,XK
(x1, . . . ,xK) = fXK

(xk)

K−1∏
k=1

fXk|Xk+1
(xk|xk+1)

where

fXk|Xk+1
(xk|xk+1) =

nk∏
j=1

fk(xkj |xk+1)

that is, at level k in the hierarchy, the random variables are taken to be conditionally independent given
the values of variables at level k + 1.

The uppermost level, Level K, can be taken to be a degenerate model, with mass function equal to
1 at a set of fixed values.

Example : A three-level model

Consider the three-level hierarchical model:

LEVEL 3 : θ, τ2 > 0 Fixed parameters

LEVEL 2 : M1, . . . ,ML ∼ Normal(θ, τ2) Independent

LEVEL 1 : For l = 1, . . . , L : Xl1, . . . , Xlnl
|Ml = ml ∼ Normal(ml, 1)

where all the Xlj are conditionally independent given M1, . . . ,ML

For random variables X,Y and Z, we write X ⊥ Y | Z if X and Y are conditionally independent
given Z, so that in the above model

Xl1j1 ⊥ Xl2j2 |M1, . . . ,ML

for all l1, j1, l2, j2.
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(i) Finite Mixture Models

LEVEL 3 : L ≥ 1 (integer), π1, . . . , πl with 0 ≤ πl ≤ 1 and
L∑
l=1

πl = 1, and θ1, . . . , θL

LEVEL 2 : X ∼ fX(x;π, L) with X ≡ {1, 2, . . . , L} such that PX [X = l] = πl

LEVEL 1 : Y |X = l ∼ fl(y; θl)

where fl is some pmf or pdf with parameters θl. Then

fY (y;π, θ, L) =
L∑
l=1

fY |X(y|x; θl)fX(x;πl) =
L∑
l=1

fl(y; θl)πl

This is a finite mixture distribution: the observed Y are drawn from L distinct sub-populations
characterized by pmf/pdf f1, . . . , fL and parameters θ1, . . . , θL, with sub-population propor-
tions π1, . . . , πL.

Note that if M1, . . . ,ML are the mgfs corresponding to f1, . . . , fL, then

MY (t) =

L∑
l=1

πlMl(t)

(ii) Random Sums

LEVEL 3 : θ, ϕ (fixed parameters)

LEVEL 2 : X ∼ fX(x;ϕ) with X ≡ {0, 1, 2, . . .}

LEVEL 1 : Y1, . . . , Yn|X = x ∼ fY (y; θ) (independent), and S =
x∑

i=1

Yi

Then, by the law of iterated expectation,

MS(t) = ES

[
etS

]
= EX

[
ES|X

[
etS

∣∣X]]
= EX

[
EfY|X

[
exp

{
t

X∑
i=1

Yi

}∣∣∣∣X
]]

= EX

[
{MY (t)}X

]
= GX(MY (t))

where GX is the factorial mgf (or pgf) for X defined in a neighbourhood (1− h, 1 + h) of 1 for
some h > 0 as

GX(t) = MX(log t) = EX [tX ] t ∈ (1− h, 1 + h).

By a similar calculation,
GS(t) = GX(GY (t)).

For example, if X ∼ Poisson(ϕ), then

GS(t) = exp {ϕ(GY (t)− 1)}

is the pgf of S. Expanding the pgf as a power series in t yields the pmf of S.
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Example : Branching Process

Consider a sequence of generations of an organism; let Si be the total number of individuals in
the ith generation, for i = 0, 1, 2, . . .. Suppose that fX is a pmf with support X ≡ {0, 1, 2, . . .}.
• Generation 0 : S0 ∼ fX(x;ϕ)

• Generation 1 : Given S0 = s0, let

S11, . . . , S1s0 |S0 = s0 such that S1j ∼ fX(x;ϕ), with S1j1 ⊥ S1j2 for all j1, j2

and set

S1 =

s0∑
j=1

S1j

is the total number of individuals in the 1st generation. S1j is the number of offspring of
the jth individual in the zeroth generation.

• Generation i : Given Si−1 = si−1, let

Si1, . . . , Sisi−1 |Si−1 = si−1 such that Sij ∼ fX(x;ϕ) (independent)

and set

Si =

si−1∑
j=1

Sij

Let Gi be the pgf of Si. Then, by recursion, we have

Gi(t) = Gi−1(GX(t)) = Gi−2(GX(GX(t))) = · · · = GX(GX(· · ·GX(GX(t)) · · · ))

that is, an i+ 1-fold iterated calculation.

(iii) Location-Scale Mixtures

LEVEL 3 : θ Fixed parameters

LEVEL 2 : M,V ∼ fM,V (m, v; θ)

LEVEL 1 : Y |M = m,V = v ∼ fY |M,V (y|m, v)

where

fY |M,V (y|m, v) =
1

v
f

(
y −m

v

)
that is a location-scale family distribution, mixed over different location and scale parameters
with mixing distribution fM,V .

Example : Scale Mixtures of Normal Distributions

LEVEL 3 : θ

LEVEL 2 : V ∼ fV (v; θ)

LEVEL 1 : Y |V = v ∼ fY |V (y|v) ≡ Normal(0, g(v))

for some positive function g. For example, if

Y |V = v ∼ Normal(0, v−1) V ∼ Gamma

(
1

2
,
1

2

)
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then by elementary calculations, we find that

fY (y) =
1

π

1

1 + y2
y ∈ R ∴ Y ∼ Cauchy.

The scale mixture of normal distributions family includes the Student, Double Exponential and
Logistic as special cases.

Moments of location-scale mixtures can be computed using the law of iterated expectation.
The location-scale mixture construction allows the modelling of

• skewness through the mixture over different locations
• kurtosis through the mixture over different scales

Example : Location-Scale Mixtures of Normal Distributions

Suppose M and V are independent, with

M ∼ Exponential(1/2) V ∼ Gamma(2, 1/2)

and
Y |M = m,V = v ∼ Normal(m, 1/v)

Then the marginal distribution of Y is given by

fY (y) =

∫ ∞

0

∫ ∞

0
fY |M,V (y|m, v)fM (m)fV (v) dm dv

which can most readily be examined by simulation. The figure below depicts a histogram of
10000 values simulated from the model, and demonstrates the skewness of the marginal of Y .
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