556: MATHEMATICAL STATISTICS |
FAMILIES OF DISTRIBUTIONS: RESULTS AND EXAMPLES

1. Parametric Family: A parametric family, P, of distributions is a collection of probability distributions
indexed by a finite-dimensional parameter, 6:

P ={Px(.;0):0¢c O}

which may be written equivalently in terms of the cdfs Fx(.;6) for # € ©. The family is identifiable

if, for 91,92 €0
Fx(.;601) = Fx(.;03) forallz = 01 = 05.

Typically, 6 is an m x 1 vector of real-valued quantities.
e Suppose 0y € ©, and suppose X ~ Fx(x;0p). Suppose ¢, € © and consider the likelihood ratio
fx(X;01)  dFx(X;01)

R(X;60,61) = Fx(X;00)  dFx(X;00)
say. Then
Ex[R(X;00,601)] = mdﬁ((m;@o) - /mdFX(w;GO) N /dFX(m;91) -t

e Suppose that the pmf/pdf fx(x;0) is differentiable with respect to 6. The score function, S(x;0),
isa m x 1 vector with jth element equal to

0
Sj($§ ) = 90, log fx(x;0).
J

The quantity S(X;0) = (S1(X;6),...,Sn(X;0))" is an m-dimensional random variable. Under
certain regularity conditions
Ex[S(X;0)]=0 (m x 1).

Consider first m = 1; let
: d

fx(x:0) = @fx(xﬁ)

Then
Ex(SC0)] = [S@ofxoar = [{fonfxlo) | fe(wio)

I CE
_ d%fX(x;e) dz = % {/fx(a:;Q) dx} —0

provided that the order of the differentiation wrt § and the integration wrt x can be exchanged.

The result for general m follows by noting that

Ex[S1(X;0)]
Ex[S(X;0)] = :
Ex [Sim(X;0)]

and applying the calculation for m = 1 for each component.



e The Fisher Information, Z(6), is an m x m matrix defined as the variance-covariance matrix of
the score random variable S, that is

Z(6) = Varx[S(X;6)] = Ex[S(X;60)S(X;6) ]
with (7, k)th element equal to
Ex[S;(X;0)5k(X;0)]

The Fisher Information is a constant m x m matrix with elements that are functions of 6. Under
certain regularity conditions, if the pmf/pdf is twice partially differentiable with respect to the
elements of ¢, then

Z(0) = —Ex[¥(X;0)]

where ¥ (X 0) is the m x m matrix of second partial derivatives with (j, k)th element equal to

82
90,00,

log fx (X;0).
In the continuous case, with m = 1: from above

/{;glong($?9)}fx(:n;9) de — 0

so therefore, differentiating again wrt 0

2
[ i oerxto) ss@o) b+ { Gosrcwo) Goxwof| w=0
But
d x (230 : d d
o f(a0) = PRI (i) = ffx(5i6) = fx(5i6) 5 log fx(i6)

so therefore

2
[ 35108 fx(wi6) Lifx(wit) do = | {jelogfx(:c;@} fx(z:0) de

and so substituting into equation (1) above, we have
2

/{jmlogfx(a:ﬂ) fX(x;9)} dz = —/{jelogfx(fv;e)}ZfX(ﬂﬁg) dx

of equivalently

2

2
Ex [;02 long($;¢9)} = —Ex [{;fglogfx(x;e)} ] = Ex[S(X;0)7]

so that, as Ex[S(X;60)] =0,

2

[EX {;192 log fX($,0):| = —VarX[S(X;H)].



Example : Binomial(n, )

Ifx(z;0) = (Z)ex(l ) r€{0,1,...,n}

so that
r n-—z xr —nb

d
S(x;0) = — log fx(x;0) 6 1-0 6(1-6)

do

Hence

Ex(S(X:0)] ~ Ex | 7| = EXE 0

o0~ ei-0 °

as X ~ Binomial(n, ) yields Ex[X] = nf. For the second derivative

2 X n—=x

d
g2 108 fx(2:0) = — 5 — 102

so that
2 Ex[X] n-—Ex[X]

d
1(9) =—Ex |:d92 log fX(Xve):| B2 + (1 — 9)2
and as Ex[X] = n#, we have

nb n — nb n
I0) ==+ 0 =0z ~ o0 -9

Example : Poisson(\)

-\
J‘»'X(:C;A)zexlA zef{0,1,...}
so that
S@:) = L log fx(w:n) = £ 1
d\ A
Hence
Ex[S(X;\)] =Ex K - 1} = [EXA[X} ~1=0

as X ~ Poisson(\) yields Ex[X] = \. For the second derivative

2

d T
Wlong(xﬂ\) = e
so that ) X
d Ex|X 1
I = — 71 X' = = .



2. Location-Scale Family: A location-scale family is a family of distributions formed by translation and
rescaling of a standard family member. Suppose that fo(x) is a pdf. If ; and o > 0 are constants then

fx (@ p,0) = ffo(w— /o)

is also a pdf.
e if 0 = 1 we have a location family: fx(z;p) = fo(z — p)

e if 4y = 0 we have a scale family: fx(z;0) = fo(x/o)/0

Example : Normal distribution family

R e
Ime) = (ga) op{- o nt}

Example : Exponential distribution family

fo(x) = e x>0
Fx(wimo) = Leewir s
o

Note that X is a random variable with pdf fx(z) = fx(z;u, o) (the location-scale family member)
if and only if there exists another random variable Z with fz(z) = fo(z) (the standard member)
such that X = 0Z + p that s, if X is a linear transformation of a standard random variable Z.

3. Exponential Families: A family of pdfs/pmfs is an Exponential Family if it can be expressed

fx(x;0) = h(z) exp {Z c;i(0)T;(z) — A(Q)} = h(x) exp {C(Q)TT(:C) — A(Q)}

j=1
for all z € R, where § € O is a [-dimensional parameter vector (initially we take I = m).
e h(xz) > 0is a function that does not depend on 6

e A(0) is a function that does not depend on x
(

e T(z) = (Ti(z),...,Tn(x))" is a vector of real-valued functions that do not depend on 6.

c(x) = (c1(0),...,cm(0))" is a vector of real-valued functions that do not depend on .

The support of fx(z;6) does not depend on 6.

The family is termed natural if m = 1 and T} (z) = =.



Example : Binomial(n,8) for 0 < 6 < 1
Forx € {0,1,...,n} =X,

F(2:0) = <Z> 67(1 — )" = <Z> 1- )" (&) - <Z> exp {log <1f9> z —nlog(l — a)}

em=1

he) = 1x(a@)

A(0) = nlog(l —6)
Ti(z)=x
c1(0) =log(0/(1 —0)) =logl — log(1 — 0)

Example : Normal(p, 0?)
For z € R,

1/2 1/2 2 2
fx (@5 p,0%) = (27302) exp {—;2(9: - u)z} = (;ﬂ) exp {—;‘2 + % - %logfﬂ - QMUQ}
em=20=(u0?)"
h(z) =1/V2m
A(0) = A(p,0%) = (log 0 + */0?) /2
o Ti(z)=—2%/2, Th(x) =z
o c1(0) =1/0?, c2(0) = p/o?

Example: Suppose, for § > 0

fe(wst) = gew{1-T} >

and zero otherwise. Then

em=10=40
h(z) = elpo0)(7)
A(f) = log0
Ti(z)=x
c1(0)=-1/6

but the support of fx(x;0) depends on 6 so this is not an Exponential Family distribution.

e Parameterization We can reparameterize from 6 to n = (n1,...,mm) ' by setting ; = ¢;(0) for
each j, and write

(1) = h(ir) exp {Z 1T (@) - K<n>} = () exp {n ) ~ K ()}
j=1

n is termed the natural or canonical parameter and
K(n) =A™ ()
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e Parameter space: Let H be the region of R™ defined by

MW= {n : /OO h(z) exp {nTT(x)} dz < oo}

— 00

H is the natural parameter space. For n € H, we must have

exp{Km) = [ hiz)esp {1 T(0)} do

It can be shown that H is a convex set, thatis, for 0 < \ <1,
n,n EH — )\771+(1—/\)772 e H.

Note that
He = {0(9) —(1(8),. ... em(@)T : B € @} CH.

He can be considered the natural parameter space induced by ©
Example : Binomial(n, )

=lo i = 0= el
=18\ 1y T 1t

so that

etain) = { (1) 201 @) f explie - ntog(r + en).

Natural parameter space:

/Oo h(z) exp {nTT(x)} dz = zn: (Z) exp{nz} <oco ¥y . H=R

- =0

Example : Normal(u,o?)
Natural parameters:

n=(n,m)" =1/% pu/c?)"

)= (N o [ _ma’
fx(xm) = (%) exp { o [ OPT Ty TR
Natural parameter space: this density will be integrable with respect to x if and only if 7; > 0,
soH=RT xR.

so that

e Regular Exponential Family: The family is termed reqular if

I. H=He.
II. In the natural parameterization, neither the 7; nor the 7;(x) satisfy linearity constraints.
III. H is an open set in R™.

If only I. and II. hold, the exponential family is termed full.

e Curved Exponential Family: The family is termed curved if

dim(@) =1l <m



Results for the Exponential Family: If

fx(x;0) = ) exp {Z (9)}

then, forl=1,...,m,

2
Q.)
=

=

0
Si(z;0) = 5710ng z;0)

: j:l
say. But, for each [, Ex[S;(X;0)] = 0, so therefore, for i =1,...,m,
Ex |:Z le ] Al(e)
j=1

By a similar calculation

Varx | Y éu(0)T;(X) | = Ay(6) — Ex [Z aﬂ,(e)TJ(X)}
j=1 Jj=1
where GRA(S 5. (0)
Ay(0) = o2 W (6) aél?

Example : Binomial(n, )

Fx(:0) = (Z) (1 0)"exp {log (139) x}

so that

c1(0) = log (1 ﬁ 9) A(0) = —nlog(1l —6) S(z;0) = — +

From the result above )
Ex [¢11(0)T1(X)] = Ai(6)
that is

Ex [9(11_9))(] = 1% o Ex[X]=no.

Note that in the natural (canonical) parameterization

log fx (w;7) = log h(x) + Zm (n)
so that, using the arguments above forl =1,...,m,
Ex [T}(X)] = K;(0) Varx [T3(X)] = Ky(0)



Independent random variables from the Exponential Family

Suppose that Xi,..., X, are independent and identically distributed rvs, with pmf or pdf
fx(x;0) in the Exponential Family. Then the joint pmf/pdf for X = (X3,...,X,)" takes the
form

HfX ris0) = H () exp {ZC;‘(@TJ'(%) - A(G)}

where

Alternative construction of the Exponential Family Suppose that fyo(x) is a pmf/pdf with
corresponding mgf M (t) (presumed to exist in a neighbourhood of zero), so that

M(t) = / e fo() di = exp{K (1))

and K (t) = log M (t) is the cumulant generating function. Now suppose that fo(x) = exp{go(z)}.
Then

exp{K(t)} = M(t) = /etxego(x) dr — /etz’—i-go(x) da.
Hence, dividing through by exp{ K (t)}, we have that

/eterg(z)K(t) do — 1

and also that the integrand is non-negative. Thus, for all ¢ for which M () exists,
fx (;t) = exp{te + go(x) — K(t)} = fo(x) exp{te — K(t)}
is a valid pdf. If we set t = 1, h(z) = fo(x) = exp{go(x)} then
fx () = h(z) exp{nz — K(n)}

and we see that fx(z;7n) is an exponential family member with natural parameter 7. The
pmf/pdf fx(x;t) is termed the exponential tilting of fy(z), with expectation and variance

d . d’K
. (n)

P K ().

respectively. Note further that if
fx(@;m) = h(z) exp {nz — K(n)} .

then, for ¢ small enough,

Mx(t) = /emh(w) exp {nz — K(n)} dx = exp{—K(n }/ Jexp {(n +t)z} dx

= exp{K(n+1t) — K(n)}.



e The Exponential Dispersion Model: Consider the model

) = ex X LmC‘ l‘—A(g)
f(xa97¢)_ p{d( ,¢)+T(¢); J(Q)TJ( ) T(¢)}

where r(¢) > 0is a function of dispersion parameter ¢ > 0.

In this model, using the previous results, we see that the expectation is unchanged compared
to the Exponential Family model by the presence of the term r(¢), but the variance is modified
by a factor of 1/r(¢).

Example : Binomial(n, )

Let Y = X/n, so that

fy(y;0,9) = <;§z> 140,6,26,...,1} (Y/®) exp {; {y log (&) — log(1 — 9)] }

where ¢ = 1/n. Note that
Ey[Y]=0=u

say, and
Vary [Y] = ¢6(1 — 0) = ¢V (1)

where V(1) = p(1 — p) is the variance function. Thus the exponential dispersion model allows
separate modelling of mean and variance.

4. Convolution Families: The convolution of functions g and h is a function written g o h, which is
defined by

goh(y) = / 9(@)h(y — z) dz.
Now if X; and X, are independent random variables with marginal pdfs fx, and fx, respectively,

then the random variable Y = X; + X5 has a pdf that can be determined using the multivariate
transformation result. If we use dummy variable Z = X1, then

Z = Xi X = 7
<
Y = Xi+X5 Xy = Y7

which is a transformation with Jacobian 1. Thus

Fr(y) = / Y fav(zy) dz = / Y Fo ey — ) ds = / @) fly — 1) de

so we can see that the pdf of Y is computed as the convolution of fx, and fx,.

A family of distributions, F, is closed under convolution if
fi,fo€F = fiofa e F

For independent random variables X; and X, with pdfs f; and f; in a family F, closure under
convolution implies that the random variable Y = X; + X5 also has a pdf in F.

This concept is closely related to the idea of infinite divisibility, decomposibility, and self decomposibility.

9



¢ Infinite Divisibility : A probability distribution for rv X is infinitely divisible if, for all positive
integers n, there exists a sequence of independent and identically distributed rvs Zy;, ..., Zyy such

that X and .
Tn =" Zn
j=1

have the same distribution, that is, the characteristic function of X can be written

ox(t) = {pz(t)}"

for some characteristic function ¢ .
e Decomposability : A probability distribution for rv X is decomposable if

px(t) = px, (t)px, (1)
for two characteristic functions ¢ x, and ¢x, so that
X=X1+Xy

where X; and X, are independent rvs with characteristic functions ¢ x, and ¢x,.
e Self-Decomposability : A probability distribution for rv X is self-decomposable if

px(t) = {ox, (1)}
for characteristic function ¢ x, so that
X=X1+X5

where X and X are independent identically distributed rvs with characteristic function ¢x;, .

5. Hierarchical Models: A hierarchical model is a model constructed by considering a series of distri-
butions at different levels of a “hierarchy” that together, after marginalization, combine to yield the
distribution of the observable quantities.

Example : A three-level model

Consider the three-level hierarchical model:

LEVEL 3 : A>0 Fixed parameter
LEVEL 2 : N ~ Poisson(\)
LEVEL 1 : X|N = n,0 ~ Binomial(n, )

Then the marginal pmf for X is given by
Fx(@:0,0) = fxin(@ln; 0, \) fa(ns ).
n=0

By elementary calculation, we see that X ~ Poisson(\6)

()\0)936—)\0

fx(w:6,3) = ==

z=0,1,....

10



Example : A three-level model

Consider the three-level hierarchical model:

LEVEL 3: a,B>0 Fixed parameters
LEVEL 2 : Y ~ Gamma(a, B)
LEVEL1: X|Y =y ~ Poisson(y)

Then the marginal pdf for X is given by

Fx(aio, B) = /0 " e (aly) fy (v o B) dy.

A general K-level hierarchical model can be specified in terms of K vector random variables:

LEVELK : Xgx = (Xg1,..., Xkng)"

LEVEL2 : Xy=(Xo1,...,Xon,) "
LEVEL1 : X;=(Xi1,...,X1n,)"

The hierarchical model specifies the joint distribution via a series of conditional independence assump-

tions, so that
K-1

X X (X150 XK) = X (Xk) H I X1 (Xk[Xk11)
k=1

where

ng
xRk xrgn) = [T frl@nslxiia)
j=1

that is, at level £ in the hierarchy, the random variables are taken to be conditionally independent given
the values of variables at level k£ + 1.

The uppermost level, Level K, can be taken to be a degenerate model, with mass function equal to
1 at a set of fixed values.

Example : A three-level model

Consider the three-level hierarchical model:

LEVEL 3 : 9,72 >0  Fixed parameters
LEVEL?2: My, ...,Mp ~ Normal(9,7%)  Independent
LEVEL 1 : Forl=1,...,L: Xp,..., Xip,|M; = my ~ Normal(mg, 1)

where all the X;; are conditionally independent given M, ..., M,

For random variables X,Y and Z, we write X L Y | Z if X and Y are conditionally independent
given Z, so that in the above model

Xlljl 1 Xlgjg ‘ Ml,. "’ML

for all Iy, j1, l2, jo.

11



(i) Finite Mixture Models

L
LEVEL 3 : L > 1 (integer), 1, ..., m with0 < m < 1and Zm =1,andfy,...,0
=1

LEVEL2: X ~ fx(z;m, L)withX={1,2,...,L}suchthat Px[X =] =m
LEVEL1: Y|X =1~ fi(y;6)
where f; is some pmf or pdf with parameters 6;. Then

L

L
Fr(ym 0,L) = fyix(ulw: 0) fx (wsm) =D fily; 0)m

=1 =1

This is a finite mixture distribution: the observed Y are drawn from L distinct sub-populations
characterized by pmf/pdf fi,..., fr and parameters 61, ..., 0, with sub-population propor-
tions 7y, ..., L.

Note that if My, ..., M}, are the mgfs corresponding to f1,..., fr, then

L
My(t) = Z WlMl(t)
=1

(ii) Random Sums
LEVEL 3 : 0, ¢ (fixed parameters)
LEVEL2: X ~ fx(x;¢)withX ={0,1,2,...}
LEVEL1: Yi,....Y,|X =z~ fy(y;0) (independent), and S = iYi
i=1

Then, by the law of iterated expectation,

Ms(t) = Es [¢"*] = Ex [Esx [¢"]X]]

where G x is the factorial mgf (or pgf) for X defined in a neighbourhood (1 — h,1 + h) of 1 for
some h > 0 as
Gx(t) = Mx(logt) = Ex[tX] te(1—h,1+h).

By a similar calculation,
Gs(t) = Gx(Gy (1))
For example, if X ~ Poisson(¢), then

Gs(t) = exp{o(Gy(t) — 1)}

is the pgf of S. Expanding the pgf as a power series in ¢ yields the pmf of S.

12



Example : Branching Process

Consider a sequence of generations of an organism; let .S; be the total number of individuals in
the ith generation, for i = 0,1, 2, .. .. Suppose that fx is a pmf with support X = {0,1,2,...}.

e Generation 0: Sy ~ fx(x;¢)
e Generation 1: Given Sy = s, let
3117 ey 5130|So = S0 such that Slj ~ fx(ZE; gf)), with Sljl 1 Sljz for all j1,j2

and set
50
Si=> 8y
j=1

is the total number of individuals in the 1st generation. Sy, is the number of offspring of
the jth individual in the zeroth generation.
e Generationi: Given S;_1 = s;_1, let
Sity -3 Sis; 11Si—1 = si—1 suchthat S;; ~ fx(x;¢) (independent)

and set
Si—1

Si=Y_ S
j=1
Let G; be the pgf of S;. Then, by recursion, we have
Gi(t) = Gi—1(Gx (1)) = Gi—2(Gx (Gx (1)) = - - = Gx(Gx (- - Gx(Gx () ---))
that is, an ¢ + 1-fold iterated calculation.
(iii) Location-Scale Mixtures

LEVEL3: 6 Fixed parameters
LEVEL2: M,V ~ fary(m,v;0)
LEVEL1: Y[M =m,V =v~ fymv(ylm,v)

where

Frimy (ylm,v) = % f (y - m)

v

that is a location-scale family distribution, mixed over different location and scale parameters
with mixing distribution fyy .

Example : Scale Mixtures of Normal Distributions

LEVEL 3: 0
LEVEL2: V ~ fy(v;6)
LEVEL1: Y|V =v~ fy(ylv) = Normal(0, g(v))

for some positive function g. For example, if

11
Y|V =v ~ Normal(0,v™") V ~ Gamma <2,2>

13



then by elementary calculations, we find that

1 1

fr(y)

The scale mixture of normal distributions family includes the Student, Double Exponential and
Logistic as special cases.

Moments of location-scale mixtures can be computed using the law of iterated expectation.
The location-scale mixture construction allows the modelling of

o skewness through the mixture over different locations
e kurtosis through the mixture over different scales

Example : Location-Scale Mixtures of Normal Distributions

Suppose M and V are independent, with
M ~ Exponential(1/2) V ~ Gamma(2,1/2)

and
Y|IM =m,V =v ~ Normal(m,1/v)

Then the marginal distribution of Y is given by

friy) = /0 h /0 " Fy it (. w) far (m) fi (v) dm do

which can most readily be examined by simulation. The figure below depicts a histogram of
10000 values simulated from the model, and demonstrates the skewness of the marginal of Y.
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