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MULTIVARIATE PROBABILITY DISTRIBUTIONS

1. The Multinomial Distribution

The multinomial distribution is a multivariate generalization of the binomial distribution. The
binomial distribution can be derived from an “infinite urn” model with two types of objects
being sampled without replacement. Suppose that the proportion of “Type 1” objects in the urn
is § (so 0 < 6 < 1) and hence the proportion of “Type 2” objects in the urn is 1 — 6. If n objects are
sampled, and X is the random variable corresponding to the number of “Type 1” objects in the
sample. Then X ~ Bin(n,0).

Now consider a generalization; suppose that the urn contains d + 1 types of objects (d = 1,2, ...),
with §; being the proportion of Type i objects, for i = 1,...,d + 1. Let X; be the random variable
corresponding to the number of type ¢ objects in a sample of size n, for i = 1,...,d. Then the
joint pmf of vector X = (X7, ... , Xq) " is given by
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where 0 < 6; <1foralli,and 6; + ---+ 604 + 0411 = 1, and where 244, is defined by
Tgr1 =n— (x1+ ...+ zq).
This is the joint pmf for the multinomial distribution. We write
X ~ Multinomial(n, 0y, . ..,604).

2. The Dirichlet Distribution
The Dirichlet distribution is a multivariate generalization of the Beta distribution. The joint pdf of
vector X = (X7y,..., Xd)T is given by
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for0 < x; < 1forallisuchthatzy + - -+ 24+ 4.1 = 1, where o = a1 + - - - + ag11 and where
z4+1 is defined by

Tgp1 =1 —(x1+ -+ 2q).

This is the density function which reduces to the Beta distribution if d = 1. It can also be shown
that the marginal distribution of X; is Beta(cy, o). We write We write

X ~ Dirichlet(aq, ..., aq41).

3. The Multivariate Normal Distribution

The multivariate normal distribution is a multivariate generalization of the normal distribution.
The joint pdf of X = (X7, ... , X4)" tades the form
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where x = (z1,. .. ,:cd)T, pis ad x 1 vector, and ¥ is a symmetric, positive-definite d x d matrix.
It can be shown that all marginal and all conditional distributions derived from the multivariate
normal are also multivariate normal, and that any linear combination

Y = AX

for matrix A also has a multivariate normal distribution.



THE MULTIVARIATE NORMAL DISTRIBUTION
MARGINAL AND CONDITIONALS DISTRIBUTIONS

Suppose that vector random variable X = (X1, Xa,..., X4)" has a multivariate normal distribution

with pdf given by
fx(x) = or 7‘ |1/2 expq —zX X X

where ¥ is the d x d variance-covariance matrix (we can consider here the case where the expected
value p is the d x 1 zero vector; results for the general case are easily available by transformation).

Consider partitioning X into two components X; and X of dimensions d; and dy = d—d; respectively,

that is,
Xy
X = [ X, ] )

We attempt to deduce

(a) the marginal distribution of X, and
(b) the conditional distribution of X5 given that X; = x;.

First, write
Y11 X2
E =
[ Y1 Yoo ]

where 211 is d1 X dl, 222 is d2 X dg, 221 = ZlTQ, and
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so that ¥V =1, (I, is the r x r identity matrix) gives
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where 0 represents the zero matrix of appropriate dimension. More specifically,

Y1uuVi +¥12Var = I ()
Y11 Vi +212Vae = 0 3)
Y01Vi1 + %22V = 0 4)
¥91Vio +X22Va = I, %)

From the multivariate normal pdf in equation (1), we can re-express the term in the exponent as
XTE_IX = X;I—VHXl + XIVlQXQ + X;V21X1 + X;—VQQXQ. (6)

In order to compute the marginal and conditional distributions, we must complete the square in x5 in
this expression. We can write

x'YN7lx = (xg —m) M(xo —m) + ¢ (7)
and by comparing with equation (6) we can deduce that, for quadratic terms in x5,

X;VQQXQ = X2TMX2 M= V22 (8)



for linear terms
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and for constant terms
XIVHXl =c+ mTMm Cc = X;r (V11 — V;1V521V21)X1 (10)
thus yielding all the terms required for equation (7), that is
x 27 = (x2 4+ Viy Vaix1) | Vao(x2 + Vi Varx1) +x{ (Vi1 — Vi, Vay Var)xu, (11)

which, crucially, is a sum of two terms, where the first can be interpreted as a function of x, given x;,
and the second is a function of x; only.

Hence we have an immediate factorization of the full joint pdf using the chain rule for random vari-

ables;
Ix(x) = fx,x, (X2|x1) fx, (x1) (12)
where )
fxa1x, (%2]x1) oc exp {—2(X2 + Vi Vorxi) Voo (x2 + V2_21V21X1)} (13)
giving that
XQ‘Xl =X ~ Normald2 (—V2_21V21X1, V2—21) (14)
and
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giving that
X, ~ Normalyg, (o, (Vi — VQTIV2_21V21)’1> . (16)
But, from equation (3), X2 = —211V12V2_21, and then from equation (2), substituting in 2,
Y11 Vi — 211 V12V Vo =1 Y11= (Vi1 — V12V Va1 )7t = (Vi1 — V3, Vo Vi) 7L

Hence, by inspection of equation (16), we conclude that

’Xl ~ Normaldl (0, 211) y ‘ (17)

that is, we can extract the > blocd of 3 to define the marginal sigma matrix of X;.

Using similar arguments, we can define the conditional distribution from equation (14) more precisely.
First, from equation (3), V2 = —ZﬁlZ‘lngg, and then from equation (5), substituting in V2

Y1 X X129 Ve + 0o Var =Ty 4 Vo =Yg — U1 X' T1g = Yoo — BLE 0.

Finally, from equation (3), tading transposes on both sides, we have that V31311 + V22321 = 0. Then
pre-multiplying by V', and post-multiplying by X!, we have

Vo Vo + 1% =0 Vo Vo = o157,

so we have, substituting into equation (14), that

XQ’Xl = X1 Normald2 (Zngl_llxl, 222 — 22121_11212) . (18)

Thus any marginal, and any conditional distribution of a multivariate normal joint distribution is also
multivariate normal, as the choices of X; and X are arbitrary.
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