McGill University

Faculty of Science

MATH 556

MATHEMATICAL STATISTICS I

Final Examination

Date: 4th December 2008 Time: 9am-12pm

Examiner: Prof. D. A. Stephens Associate Examiner: Prof. R. J. Steele

This paper contains six questions.

Credit will be given for all questions attempted.

Calculators may not be used. A Formula Sheet is provided.

$$Y_1 = \frac{1}{X_1} Y_2 = \frac{1}{X_2}$$

(i) Find the pdf of Y_1 .

4 MARKS

(ii) Find the expectation and variance of Y_2 . State explicitly conditions for the expectation and variance to exist.

6 MARKS

The distribution of Y_1 and Y_2 is termed the *inverse-Gamma* distribution.

(b) Find the joint pdf of random variables

$$Z_1 = X_1 + X_2 Z_2 = Y_1 + Y_2$$

and show that marginally Z_1 has a Gamma distribution.

5 MARKS

Marginally, does Z_2 have an inverse-Gamma distribution ? Justify your answer.

5 MARKS

2. (a) For a scalar random variable X, the cumulant generating function (cgf), K_X , is defined in terms of the moment generating function, M_X , by

$$K_X(t) = \log M_X(t)$$
 $t \in (-h, h)$, some $h > 0$

Find expressions for the expectation and variance of X in terms of K_X .

6 MARKS

(b) For random variable X, consider the one parameter Exponential Family distribution,

$$f_X(x|\eta) = h(x)c(\eta) \exp \{\eta x\}$$

Find the form of $K_X(t)$, and an expression for $\mathbb{E}_{f_X}[X]$ in terms of one or more of the functions and parameters that appear in the pdf.

8 MARKS

(c) Show how the cumulant generating function plays a role in the *exponential tilting construction* of the Exponential Family of distributions. Illustrate your description with specific reference to the $Normal(\theta,1)$ distribution.

6 MARKS

- 3. (a) Consider scalar random variable X.
 - (i) Define the characteristic function of X, $C_X(t)$.

2 MARKS

(ii) Show that $|C_X(t)| \leq 1$ for all $t \in \mathbb{R}$.

2 MARKS

(iii) Describe how to diagnose whether a characteristic function corresponds to a discrete or a continuous distribution.

4 MARKS

(iv) State the *inversion formula* for a characteristic function known to belong to a **discrete** distribution.

2 MARKS

(b) Find $C_X(t)$ if X is a continuous random variable with

$$f_X(x) = \exp\{-x - e^{-x}\}$$
 $x \in \mathbb{R}$.

5 MARKS

(c) Find $f_X(x)$ if $C_X(t)$ is given by

$$C_X(t) = 1 - |t|$$
 $-1 < t < 1$

and zero otherwise.

5 MARKS

4. (a) State and prove Jensen's Inequality in the univariate case. Define the Kullback-Leibler divergence between two pdfs f_1 and f_2 each with support \mathbb{R} , $\mathbb{K}(f_1, f_2)$, and prove that

$$\mathbb{K}(f_1, f_2) \ge 0.$$

10 MARKS

(b) Suppose that $X \sim Normal(0, \sigma^2)$. Find a function of σ , $l(\sigma)$, such that

$$P_X[-2 \le X \le 2] \ge l(\sigma)$$

which does **not** involve the standard normal cdf. Justify your answer.

4 MARKS

(c) If $X \sim Poisson(\mu)$, show that

$$P_X[X \ge 2\mu] \le e^{\mu(e-3)}$$

Justify your answer.

6 MARKS

5. (a) A finite mixture model is a specific form of hierarchical model whose density, f_Y , takes the form

$$f_Y(y|\underline{\pi}, \underline{\theta}, L) = \sum_{l=1}^{L} f_l(y|\theta_l)\pi_l.$$

Explain the components of this specification, that is, the functions f_1, \ldots, f_L , the parameters $\theta_1, \ldots, \theta_L$, and the parameters π_1, \ldots, π_L .

4 MARKS

Find the form of the moment generating function, M_Y , corresponding to f_Y .

4 MARKS

(b) Suppose that X_1, \ldots, X_n is a random sample from a $Normal(\mu, 1)$ distribution. Find the distribution of the statistic

$$V = \sum_{i=1}^{n} (X_i - \overline{X})^2$$

You may quote without proof results concerning the sampling distribution of statistics derived from a normal random sample.

8 MARKS

(c) Suppose that X_1, \ldots, X_n is a random sample from an $Exponential(\lambda)$ distribution. Find the distribution of the statistic

$$Y_1 = \min\{X_1, \dots, X_n\}$$

You may quote without proof results concerning the sampling distribution of order statistics derived from a random sample.

4 MARKS

6. (a) Suppose $\{X_n\}$ are an independent sequence of random variables with cdf

$$F_X(x) = \frac{1}{1 + e^{-x}}$$
 $x \in \mathbb{R}$

Let $Y_n = \max\{X_1, \dots, X_n\}$. Show that for large n and y > 0,

$$P[Y_n > y] = 1 - \exp\{-ne^{-y}\}.$$

6 MARKS

(b) Suppose $\{X_n\}$ are an independent sequence of $Poisson(\lambda)$ random variables. Let

$$M_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Show that $M_n \xrightarrow{p} \lambda$ as $n \longrightarrow \infty$. If random variable T_n is defined by $T_n = e^{-M_n}$, find an approximation to the distribution of T_n for large n.

8 MARKS

(c) Suppose that $X \sim Gamma(\alpha, 1)$. By considering the variable

$$Z_{\alpha} = \frac{X - \alpha}{\sqrt{\alpha}}$$

or otherwise, construct an approximation to the distribution of Z_{α} for large α .

6 MARKS

		DISC	DISCRETE DISTRIBUTIONS				
	RANGE	PARAMETERS	MASS FUNCTION f_X	CDF	$E_{f_X}\left[X ight]$	$Var_{f_{X}}\left[X ight]$	MGF
Bernoulli(heta)	{0,1}	$\theta \in (0,1)$	$\theta^x (1-\theta)^{1-x}$		θ	$\theta(1- heta)$	$1 - \theta + \theta e^t$
$Binomial(n, \theta)$	$\{0,1,,n\}$	$n \in \mathbb{Z}^+, \theta \in (0,1)$	$\binom{n}{x} \theta^x (1-\theta)^{n-x}$		θu	$n\theta(1-\theta)$	$(1 - \theta + \theta e^t)^n$
$Poisson(\lambda)$	{0,1,2,}	λ ∈ℝ ⁺	$\frac{e^{-\lambda \lambda^x}}{x!}$		~	K	$\exp\left\{\lambda\left(e^{t}-1\right)\right\}$
Geometric(heta)	$\{1, 2,\}$	$\theta \in (0,1)$	$(1-\theta)^{x-1}\theta$	$1 - (1 - \theta)^x$	$\frac{1}{\theta}$	$\frac{(1- heta)}{ heta^2}$	$\frac{\theta e^t}{1 - e^t (1 - \theta)}$
$NegBinomial(n,\theta)$ $\{n,n+1,\}$ or $\{0,1,2,\}$	$\{n, n + 1,\}$ $\{0, 1, 2,\}$	$n \in \mathbb{Z}^+, \theta \in (0, 1)$ $n \in \mathbb{Z}^+, \theta \in (0, 1)$	$ \binom{x-1}{n-1} \theta^n (1-\theta)^{x-n} $ $ \binom{n+x-1}{x} \theta^n (1-\theta)^x $		$\frac{\frac{n}{\theta}}{n(1-\theta)}$	$\frac{n(1-\theta)}{\theta^2}$ $\frac{n(1-\theta)}{\theta^2}$	$ \left(\frac{\theta e^t}{1 - e^t(1 - \theta)}\right)^n \\ \left(\frac{\theta}{1 - e^t(1 - \theta)}\right)^n $

For CONTINUOUS distributions (see over), define the GAMMA FUNCTION

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \, dx$$

and the LOCATION/SCALE transformation $Y=\mu+\sigma X$ gives $f_Y(y) = f_X\left(\frac{y-\mu}{\sigma}\right)\frac{1}{\sigma}$

$$F_Y(y) = F_X\left(\frac{y-\mu}{\sigma}\right)$$

$$M_Y(t) = e^{\mu t} M_X(\sigma t) \qquad \qquad \mathsf{E}_{f_Y} \left[Y \right] = \mu + \sigma \mathsf{E}_{f_X} \left[X \right]$$

$$\mathsf{Var}_{f_Y}\left[Y
ight] = \sigma^2 \mathsf{Var}_{f_X}\left[X
ight]$$

			CONTINUOUS DISTRIBUTIONS	RIBUTIONS			
		PARAMS.	PDF	CDF	$E_{f_X}\left[X ight]$	$Var_{f_{X}}\left[X ight]$	MGF
	×		f_X	F_X			M_X
Uniform(lpha,eta) (standard model $lpha=0,eta=1)$	(α,β)	$lpha < eta \in \mathbb{R}$	$\dfrac{1}{eta-lpha}$	$\frac{x-\alpha}{\beta-\alpha}$	$\frac{(\alpha+\beta)}{2}$	$\frac{(eta-lpha)^2}{12}$	$\frac{e^{\beta t} - e^{\alpha t}}{t(\beta - \alpha)}$
$Exponential(\lambda)$ (standard model $\lambda=1)$	+	→ □ □ → □ → □ → □ → □ → □ → □ → □ → □ →	$\lambda e^{-\lambda x}$	$1 - e^{-\lambda x}$	λ	$\frac{1}{\lambda^2}$	$\left(\frac{\lambda}{\lambda-t}\right)$
Gamma(lpha,eta) (standard model $eta=1$)	+	$lpha,eta\in\mathbb{R}^+$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$		$\frac{\alpha}{eta}$	$\frac{\alpha}{eta^2}$	$\left(rac{eta}{eta-t} ight)^{lpha}$
Weibull(lpha,eta) (standard model $eta=1$)	+	$\alpha, \beta \in \mathbb{R}^+$	$lpha eta x^{lpha - 1} e^{-eta x^{lpha}}$	$1 - e^{-\beta x^{\alpha}}$	$\frac{\Gamma(1+1/\alpha)}{\beta^{1/\alpha}}$	$\frac{\Gamma(1+2/\alpha)-\Gamma(1+1/\alpha)^2}{\beta^{2/\alpha}}$	
$Normal(\mu,\sigma^2)$ (standard model $\mu=0,\sigma=1)$	M	$\mu \in \mathbb{R}, \sigma \in \mathbb{R}^+$	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$		μ	σ^2	$e\{\mu t + \sigma^2 t^2/2\}$
Student(u)	凶	$ u \in \mathbb{R}^+ $	$\frac{(\pi\nu)^{-\frac{1}{2}\Gamma\left(\frac{\nu+1}{2}\right)}}{\Gamma\left(\frac{\nu}{2}\right)\left\{1+\frac{x^2}{\nu}\right\}^{(\nu+1)/2}}$		$0 (\text{if } \nu > 1)$	$\frac{\nu}{\nu-2} (\text{if } \nu > 2)$	
Pareto(heta, lpha)	+ 🖽	$\theta, \alpha \in \mathbb{R}^+$	$\frac{\alpha\theta^{\alpha}}{(\theta+x)^{\alpha+1}}$	$1 - \left(\frac{\theta}{\theta + x}\right)^{\alpha}$	$\dfrac{ heta}{lpha-1}$ (if $lpha>1$)	$\frac{\alpha\theta^2}{(\alpha-1)(\alpha-2)}$ (if $\alpha>2$)	
Beta(lpha,eta)	(0,1)	$\alpha, \beta \in \mathbb{R}^+$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$		$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	