McGill University

Course: MATH 556
Setter: Stephens
Associate Examiner: Steele
Checker: Moodie

Date: November 22, 2007

Faculty of Science

December 2007

MATH 556

MATHEMATICAL STATISTICS I

Setter	Checker	Associate Examiner

McGill University

Faculty of Science

MATH 556

MATHEMATICAL STATISTICS I

Final Examination

Date: 14th December 2007 Time: 2pm-5pm

Examiner: Prof. D. A. Stephens Associate Examiner: Prof. R. J. Steele

This paper contains six questions.

Credit will be given for all questions attempted.

Calculators may not be used. A Formula Sheet is provided.

- 1. Suppose for all of question 1 that continuous random variable X has a Uniform(0,1) distribution.
 - (a) Find the probability density function (pdf) of random variable Y defined by

$$Y = \log\left(\frac{X}{1 - X}\right).$$

Find also the expectation of Y.

6 MARKS

(b) Find the pdf of Z where

$$Z = X(1 - X)$$

Find also the expectation of Z.

6 MARKS

(c) Suppose that X_1 and X_2 are independent, and have the same distribution as X. Find the probability

$$\Pr\left[X_1X_2 > \frac{1}{2}\right]$$

and the probability

$$\Pr\left[(1-X_1)(1-X_2)>\frac{1}{2}\right]$$

8 MARKS

- 2. Suppose that Z_1 and Z_2 are independent random variables each having a Normal(0,1) distribution.
 - (a) Find the joint pdf of random variables X_1 and X_2 defined by

$$X_1 = \frac{Z_1}{Z_2} X_2 = Z_1 + Z_2.$$

8 MARKS

(b) Find the marginal distribution of X_1 .

4 MARKS

(c) Find the covariance between random variables Y_1 and Y_2 where

$$Y_1 = Z_1^2$$
 $Y_2 = Z_1^3$

4 MARKS

(d) Find the moment generating function of

$$V = \alpha Z_1 + \beta Z_2$$

for real constants α and β .

4 MARKS

Show your working in all cases.

3. (a) Suppose that X has pdf

$$f_X(x) = \frac{1}{2\sigma} \exp\{-|x/\sigma|\}$$
 $-\infty < x < \infty$

for parameter $\sigma > 0$. Find the characteristic function of X.

8 MARKS

(b) Suppose that X_1, \ldots, X_n are independent and identically distributed random variables with characteristic function

$$C_X(t) = \exp\{-|t|^{\alpha}\}$$
 $t \in \mathbb{R}$

for parameter $0 < \alpha \le 2$.

(i) Are X_1, \ldots, X_n continuous random variables ? Justify your answer.

2 MARKS

(ii) Is the distribution of X_1, \ldots, X_n infinitely divisible ? Justify your answer.

4 MARKS

(iii) Find real constants a_n and b_n such that T_n defined by

$$T_n = a_n + b_n \sum_{i=1}^n X_i$$

has the same distribution as X_1 .

6 MARKS

4. (a) Suppose that X is a random variable, with mgf $M_X(t)$ defined on a neighbourhood (-h,h) of zero. Let a be a real value. Show that

$$P[X \ge a] \le e^{-at} M_X(t) \qquad \text{for } 0 < t < h.$$

You must prove explicitly every step that you use.

10 MARKS

(b) State and prove Minkowski's Inequality for random variables X and Y.

You may quote without proof Hölder's Inequality: if X and Y are two random variables, and p,q>1 satisfy

$$p^{-1} + q^{-1} = 1$$

then

$$|E_{f_{X,Y}}[XY]| \le E_{f_{X,Y}}[|XY|] \le \{E_{f_X}[|X|^p]\}^{1/p} \{E_{f_Y}[|Y|^q]\}^{1/q}$$

10 MARKS

5. (a) (i) Write down the form of an *Exponential Family distribution* in its *natural* (or *canonical*) parameterization.

5 MARKS

(ii) Suppose that X has a one-parameter, natural Exponential Family distribution with natural parameter η , and pmf/pdf $f_X(x|\eta)$. Show that

$$E_{f_X}[X] = \kappa(\eta)$$

for some function κ to be identified.

You may quote without proof properties of the score function.

5 MARKS

(iii) Suppose that $X \sim Gamma(\alpha, 1)$. Is the distribution of Y = 1/X an Exponential Family distribution ? If so, find the natural parameter. If not, explain why not.

4 MARKS

(b) Consider the three-level hierarchical model:

LEVEL 3: $\mu \in \mathbb{R}, \tau, \sigma > 0$

Fixed parameters

LEVEL 2: $M \sim Normal(\mu, \tau^2)$

LEVEL 1: $X_1, ..., X_n | M = m \sim Normal(m, \sigma^2)$

where X_1, \ldots, X_n are mutually conditionally independent given M, denoted $X_i \perp X_j \mid M$, for all i, j. Find the (marginal) variance-covariance matrix of the n-dimensional vector random variable $X = (X_1, \ldots, X_n)^\mathsf{T}$.

6 MARKS

6. (a) Suppose that random variable X_n has cdf

$$F_{X_n}(x) = \left(\frac{n\lambda x}{1 + n\lambda x}\right)^n \qquad 0 < x < \infty$$

and zero otherwise, for parameter $\lambda>0$. If it exists, find the limiting distribution of X_n as $n\longrightarrow\infty$.

6 MARKS

(b) Suppose X_1, \ldots, X_n are a random sample from a distribution with cdf F_X given by

$$F_X(x) = 1 - x^{-1}$$
 $x \ge 1$

and zero otherwise. Show that $Z_n = \min\{X_1, \dots, X_n\}$ has a degenerate limiting distribution as $n \longrightarrow \infty$, but that $U_n = (Z_n)^{\alpha_n}$ has the same distribution as X_n for some real value α_n .

8 MARKS

(c) Find an approximation to the distribution of the random variable

$$T_n = \exp\{-1/\overline{X}_n\}$$

where \overline{X}_n is the mean of a random sample from an $Exponential(\lambda)$ distribution, and n is large. 6 MARKS

		DISC	DISCRETE DISTRIBUTIONS				
	RANGE	PARAMETERS	MASS FUNCTION	CDF	$E_{f_X}\left[X\right]$	$Var_{f_X}\left[X ight]$	MGF
$Bernoulli(\theta)$	{0,1}	$\theta \in (0,1)$	$\theta^x (1-\theta)^{1-x}$	۲,	θ	$\overline{ heta(1- heta)}$	$\frac{1}{1-\theta+\theta e^t}$
$Binomial(n, \theta)$	$\{0,1,,n\}$	$n \in \mathbb{Z}^+, \theta \in (0,1)$	$\binom{n}{x} \theta^x (1-\theta)^{n-x}$		θu	$n\theta(1- heta)$	$(1 - \theta + \theta e^t)^n$
$Poisson(\lambda)$	$\{0,1,2,\}$	$\lambda \in \mathbb{R}^+$	$\frac{e^{-\lambda}\lambda^x}{x!}$		K	X	$\exp\left\{\lambda\left(e^{t}-1\right)\right\}$
Geometric(heta)	$\{1, 2,\}$	$\theta \in (0,1)$	$(1- heta)^{x-1} heta$	$1-(1-\theta)^x$	$\frac{1}{\theta}$	$\frac{(1-\theta)}{\theta^2}$	$\frac{\theta e^t}{1 - e^t (1 - \theta)}$
$NegBinomial(n,\theta) \mid \{n, n+1,\}$	$\{n,n+1,\ldots\}$	$n \in \mathbb{Z}^+, \theta \in (0,1)$	$\binom{x-1}{n-1}\theta^n(1-\theta)^{x-n}$		$\frac{u}{\theta}$	$\frac{n(1-\theta)}{\theta^2}$	$\left(rac{ heta e^t}{1-e^t(1- heta)} ight)^n$
or.	$\{0,1,2,\}$	$n \in \mathbb{Z}^+, \theta \in (0,1)$	$\binom{n+x-1}{x}\theta^n(1-\theta)^x$		$\frac{n(1-\theta)}{\theta}$	$\frac{n(1-\theta)}{\theta^2}$	$\left(\frac{\theta}{1 - e^t(1 - \theta)}\right)^n$

For CONTINUOUS distributions (see over), define the GAMMA FUNCTION

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \, dx$$

and the LOCATION/SCALE transformation $Y=\mu+\sigma X$ gives $\langle \ldots - \ldots \rangle_{-1}$

$$f_Y(y) = f_X\left(\frac{y-\mu}{\sigma}\right)\frac{1}{\sigma} \hspace{1cm} F_Y(y) = F_X\left(\frac{y-\mu}{\sigma}\right) \hspace{1cm} M_Y(t) = e^{\mu t} M_X(\sigma t) \hspace{1cm} \mathsf{E}_{f_Y}\left[Y\right] = \mu + \sigma \mathsf{E}_{f_X}\left[X\right] \hspace{1cm} \mathsf{Var}_{f_Y}(x) = e^{\mu t} M_X(\sigma t) \hspace{1cm} \mathsf{E}_{f_Y}\left[Y\right] = \mu + \sigma \mathsf{E}_{f_X}\left[X\right] \hspace{1cm} \mathsf{Var}_{f_Y}(x) = e^{\mu t} M_X(\sigma t) \hspace{1cm} \mathsf{E}_{f_Y}\left[Y\right] = \mu + \sigma \mathsf{E}_{f_X}\left[X\right] \hspace{1cm} \mathsf{Var}_{f_Y}(x) = e^{\mu t} M_X(\sigma t) \hspace{1cm} \mathsf{E}_{f_Y}\left[Y\right] = \mu + \sigma \mathsf{E}_{f_X}\left[X\right] \hspace{1cm} \mathsf{Var}_{f_Y}(x) = e^{\mu t} M_X(\sigma t) \hspace{1cm} \mathsf{E}_{f_Y}\left[X\right] = \mu + \sigma \mathsf{E}_{f_X}\left[X\right] \hspace{1cm} \mathsf{Var}_{f_Y}(x) = e^{\mu t} M_X(\sigma t) \hspace{1cm} \mathsf{E}_{f_Y}\left[X\right] = \mu + \sigma \mathsf{E}_{f_X}\left[X\right] = \mu + \sigma \mathsf{E}_$$

$$\mathsf{Var}_{f_Y}\left[Y
ight] = \sigma^2 \mathsf{Var}_{f_X}\left[X
ight]$$

			CONTINUOUS DISTRIBUTIONS	RIBUTIONS			
		PARAMS.	PDF	CDF	$E_{f_X}\left[X\right]$	$Var_{f_{X}}\left[X ight]$	MGF
	×		f_X	F_X			M_X
Uniform(lpha,eta) (standard model $lpha=0,eta=1)$	(lpha,eta)	$lpha < eta \in \mathbb{R}$	$\frac{1}{\beta - \alpha}$	$\frac{x-\alpha}{\beta-\alpha}$	$\frac{(\alpha+\beta)}{2}$	$\frac{(\beta - \alpha)^2}{12}$	$\frac{e^{\beta t} - e^{\alpha t}}{t(\beta - \alpha)}$
$Exponential(\lambda)$ (standard model $\lambda=1)$	+	+ ₩ + ₩ + ₩ + ₩ + ₩ + ₩ + ₩ + ₩ + ₩ + ₩	$\lambda e^{-\lambda x}$	$1 - e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\left(\frac{\lambda}{\lambda-t}\right)$
Gamma(lpha,eta) (standard model $eta=1$)	+	$\alpha, \beta \in \mathbb{R}^+$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$		$\frac{\alpha}{\beta}$	$\frac{\alpha}{eta^2}$	$\left(\frac{\beta}{\beta-t}\right)^{\alpha}$
Weibull(lpha,eta) (standard model $eta=1)$	+ #	$\alpha, \beta \in \mathbb{R}^+$	$\alpha eta x^{\alpha-1} e^{-eta x^{\alpha}}$	$1 - e^{-\beta x^{\alpha}}$	$\frac{\Gamma(1+1/\alpha)}{\beta^{1/\alpha}}$	$\frac{\Gamma\left(1+2/\alpha\right)-\Gamma\left(1+1/\alpha\right)^{2}}{\beta^{2/\alpha}}$	
$Normal(\mu,\sigma^2)$ (standard model $\mu=0,\sigma=1)$	丝	$\mu \in \mathbb{R}, \sigma \in \mathbb{R}^+$	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$		μ	σ^2	$e^{\{\mu t + \sigma^2 t^2/2\}}$
Student(u)	ĸ	$ u \in \mathbb{R}^+ $	$\frac{(\pi\nu)^{-\frac{1}{2}\Gamma\left(\frac{\nu+1}{2}\right)}}{\Gamma\left(\frac{\nu}{2}\right)\left\{1+\frac{x^2}{\nu}\right\}^{(\nu+1)/2}}$		0 (if $\nu > 1$)	$rac{ u}{ u-2}$ (if $ u>2$)	
Pareto(heta, lpha)	+	$\theta, \alpha \in \mathbb{R}^+$	$\frac{\alpha \theta^{\alpha}}{(\theta + x)^{\alpha + 1}}$	$1 - \left(\frac{\theta}{\theta + x}\right)^{\alpha}$	$\frac{\theta}{\alpha - 1}$ (if $\alpha > 1$)	$\frac{\alpha\theta^2}{(\alpha-1)(\alpha-2)}$ (if $\alpha>2$)	
Beta(lpha,eta)	(0,1)	$\alpha, \beta \in \mathbb{R}^+$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$		$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	