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1. Suppose for all of question 1 that continuous random variable X has a Uni form(0,1) distribution.

(a) Find the probability density function (pdf) of random variable Y defined by

Find also the expectation of Y.
6 MARKS

(b) Find the pdf of Z where
Z=X(1-X)

Find also the expectation of Z.
6 MARKS

(c) Suppose that X; and Xo are independent, and have the same distribution as X. Find the
probability

1
Pr |:X1X2 > 2:|
and the probability

Pr [(1 - X1)(1—-Xy) > ;]

8 MARKS

2. Suppose that Z; and Z; are independent random variables each having a Normal(0, 1) distribution.

(a) Find the joint pdf of random variables X; and X5 defined by
Z

X1 =— Xo =21+ Zs.
L= 7 2 1+ 22
8 MARKS
(b) Find the marginal distribution of Xj.
4 MARKS
(c) Find the covariance between random variables Y7 and Y2 where
Y| = 73 Yy = 7}
4 MARKS
(d) Find the moment generating function of
V=aZ + 2
for real constants « and (3.
4 MARKS

Show your working in all cases.
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3. (a) Suppose that X has pdf
1
fX(x):Q—exp{—]x/J]} —00 < x <00
o
for parameter ¢ > 0. Find the characteristic function of X.
8 MARKS

(b) Suppose that Xji,...,X,, are independent and identically distributed random variables with
characteristic function

Ox(t) = exp{—[t|*} teR

for parameter 0 < o < 2.

(i) Are Xi,..., X, continuous random variables ? Justify your answer.
2 MARKS
(i) Is the distribution of X7,..., X, infinitely divisible ? Justify your answer.
4 MARKS
(iii) Find real constants a,, and b,, such that 7,, defined by
n
Ty = an +bn »_ X
i=1
has the same distribution as X7j.
6 MARKS

4. (a) Suppose that X is a random variable, with mgf Mx (t) defined on a neighbourhood (—h, k) of
zero. Let a be a real value. Show that

PIX >a] <e “Mx(t) for0<t<h.

You must prove explicitly every step that you use.

10 MARKS

(b) State and prove Minkowski's Inequality for random variables X and Y.

You may quote without proof Hélder's Inequality: if X and Y are two random variables, and
p,q > 1 satisfy

piHgt=1
then
|Erey (XY < Ep JIIXY[] < {Ep [|IXIPRYP LB (Y]}

10 MARKS
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5. (a) (i) Write down the form of an Exponential Family distribution in its natural (or canonical)
parameterization.
5 MARKS
(i) Suppose that X has a one-parameter, natural Exponential Family distribution with natural
parameter 7, and pmf/pdf fx(z|n). Show that
Ep[X] = r(n)

for some function x to be identified.

You may quote without proof properties of the score function.
5 MARKS
(iii) Suppose that X ~ Gamma(a,1). Is the distribution of Y = 1/X an Exponential Family
distribution 7 If so, find the natural parameter. If not, explain why not.

4 MARKS

(b) Consider the three-level hierarchical model:
LEVEL3: pueR,7,0>0 Fixed parameters
LEVEL2: M ~ Normal(u,7?)
LEVEL 1: Xji,...,X,|M =m ~ Normal(m,c?)

where Xi,...,X,, are mutually conditionally independent given M, denoted X; L X; | M,
for all 4, j. Find the (marginal) variance-covariance matrix of the n-dimensional vector random
variable X = (X1,...,X,)".

6 MARKS

6. (a) Suppose that random variable X,, has cdf

Fx,(z) = (

and zero otherwise, for parameter A > 0. If it exists, find the limiting distribution of X, as

nAL

n
— O0<z<
1—|—n)\ﬂc> T

n — oo.
6 MARKS
(b) Suppose X1i,..., X, are a random sample from a distribution with cdf Fx given by

Fx(z)=1—2"1 x>1

and zero otherwise. Show that Z,, = min{Xy,...,X,} has a degenerate limiting distribution
as n — oo, but that U,, = (Z,,)*" has the same distribution as X,, for some real value a,.
8 MARKS

(c) Find an approximation to the distribution of the random variable
T, = exp{—1/X,}

where X, is the mean of a random sample from an Ezponential()\) distribution, and n is large.
6 MARKS
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