McGill University

Course: MATH 556
Setter: Stephens
Associate Examiner: Vandal
Checker: Moodie

Date: November 28, 2006

Faculty of Science

December 2006

MATH 556

MATHEMATICAL STATISTICS I

 Setter	Checker	Associate Examiner

McGill University

Faculty of Science

MATH 556 MATHEMATICAL STATISTICS I

Final Examination

Date: 8th December 2006 Time: 2pm-5pm

This paper contains six questions.

Credit will be given for all questions attempted.

Calculators may not be used. A Formula Sheet is provided.

1. (a) Suppose that random variable X has a $Gamma\left(\alpha,1\right)$ distribution, for parameter $\alpha>0$. Find the probability density function (pdf) of random variable Y defined by

$$Y = \frac{1}{X}.$$

Find also the expectation of Y.

(b) Suppose that continuous random variable U has a cumulative distribution function (cdf), F_U , given by

$$F_U(u) = \exp\{-\exp\{-u\}\}$$
 $u \in \mathbb{R}$.

Find the pdf of random variable V defined by

$$V = U^2$$
.

(c) Suppose that X and Y are positive, independent continuous random variables with cdfs F_X and F_Y and pdfs f_X and f_Y respectively. Show that

$$P[X < Y] = \iint_{\Lambda} f_X(x) f_Y(y) dx dy$$

for a suitably defined set A.

By considering the ranges of integration carefully, and making a change of variables, deduce that

$$P[X < Y] = \int_{0}^{1} F_{X} (F_{Y}^{-1}(t)) dt.$$

where F_Y^{-1} is the inverse function for the 1-1 function F_Y .

2. (a) Suppose that Z_1 and Z_2 are independent random variables each having an Exponential(1) distribution. Find the joint pdf of random variables Y_1 and Y_2 defined by

$$Y_1 = \frac{Z_1}{Z_1 + Z_2} \qquad Y_2 = Z_1 + Z_2.$$

(b) The joint pmf/pdf of random variables X and Y can be specified in the following way:

$$f_{X,Y}(x,y) = f_{X|Y}(x|y) f_Y(y)$$
.

Find the marginal pmf of X

(i) if

$$X|Y = y \sim Binomial(n, y)$$

for positive integer n, and continuous random variable Y has a standard uniform distribution, $Y \sim Uniform(0,1)$;

(ii) if

$$X|Y = y \sim Exponential(y)$$

and $Y \sim Exponential(\beta)$ for parameter $\beta > 0$.

3. (a) For a scalar random variable X, define the cumulant generating function (cgf), K_X , and show that

$$K_X^{(1)}(0) = E_{f_X}[X] \qquad K_X^{(2)}(0) = Var_{f_X}[X]$$

where $K_X^{(r)}(t)$ denotes the rth derivative of K_X with respect to t.

Assume that K_X exists, and quote without proof properties of the moment generating function (mgf), M_X .

(b) Suppose that continuous random variable X has pdf given by

$$f_X(x) = c \exp\{-\lambda |x|\}$$
 $x \in \mathbb{R}$

for parameter $\lambda > 0$, and constant c. Find the characteristic function (cf) for X, $C_X(t)$.

- (c) Prove that the standard Normal distribution is infinitely divisible.
- (d) Suppose that random variable Y has cf defined by

$$C_Y(t) = \cos(t)$$
 $t \in \mathbb{R}$.

Find the skewness of Y, ς , where

$$\varsigma = \frac{E_{f_Y}[(Y - \mu)^3]}{\sigma^3}$$

where μ and σ^2 are the expectation and variance of Y.

4. (a) Suppose that real constants a,b,p,q satisfy a,b>0 and p,q>1 with

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Prove that

$$\frac{1}{p} a^p + \frac{1}{q} b^q \ge ab$$

with equality if and only if $a^p = b^q$.

Hence prove Hölder's Inequality: If X and Y are two random variables, and p,q>1 satisfy the above identity,

$$|E_{f_{X,Y}}[XY]| \le E_{f_{X,Y}}[|XY|] \le \{E_{f_X}[|X|^p]\}^{1/p} \{E_{f_Y}[|Y|^q]\}^{1/q}$$

(b) Prove that for random variables X and Y having joint pdf $f_{X,Y}$,

$$\{Cov_{f_{X,Y}}[X,Y]\}^2 \le Var_{f_X}[X]Var_{f_Y}[Y]$$

- 5. (a) Show that the $Poisson(\lambda)$ and $Binomial(n, \theta)$ distributions are one parameter Exponential Family Distributions, and in each case find the natural (or canonical) parameter.
 - (b) Consider the following three level hierarchical model

 $\mbox{LEVEL 3}: \ \ r \in \{1,2,\ldots\} \qquad \qquad \mbox{Fixed parameter}$

LEVEL 2: $V \sim Gamma(r/2, r/2)$

 $\mathsf{LEVEL}\ 1:\ \ X|V=v\sim Normal(0,v^{-1})$

Find the kurtosis of X, κ , defined by

$$\kappa = \frac{E_{f_X}[(X - \mu)^4]}{\sigma^4}$$

where μ and σ^2 are the expectation and variance of X. State precisely conditions on r for the kurtosis to be finite.

6. (a) Suppose that continuous random variables X_1, \ldots, X_n are independent and identically distributed with cdf F_X specified by

$$F_X(x) = \frac{x^2}{1+x^2}$$
 $x > 0$.

and zero otherwise. Let Y_n be the maximum order statistic derived from X_1,\ldots,X_n , that is,

$$Y_n = \max\{X_1, \dots, X_n\}$$

Show that, in the limit as $n\to\infty$,the limiting distribution of Y_n does not exist, but that the limiting distribution of Z_n defined by

$$Z_n = Y_n / \sqrt{n}$$

does exist and is a continuous distribution.

(b) Suppose that random variable Y_n can be written as

$$Y_n = \sum_{i=0}^n X_i$$

where, for each i > 0

$$X_i = \begin{cases} a & \text{with probability } \frac{1}{2} \\ -a & \text{with probability } \frac{1}{2} \end{cases}$$

and for i = 0, $X_0 = x_0$, a known constant.

- (i) Find an approximation to the distribution of Y_n for large n.
- (ii) Show that, for any n,

$$P\left[|Y_n - x_0| \ge 2\sigma_n\right] \le \frac{1}{4}$$

for some σ_n to be defined.

		DISC	DISCRETE DISTRIBUTIONS				
	RANGE	PARAMETERS	MASS	CDF	$E_{f_X}[X]$	$Var_{f_{X}}\left[X ight]$	MGF
	×		f_X	F_X			M_X
Bernoulli(heta)	$\{0,1\}$	$\theta \in (0,1)$	$\theta^x (1-\theta)^{1-x}$		θ	heta(1- heta)	$1 - \theta + \theta e^t$
Binomial(n, heta)	$\{0,1,,n\}$	$n \in \mathbb{Z}^+, \theta \in (0,1)$	$\binom{n}{x} \theta^x (1-\theta)^{n-x}$		θu	$n\theta(1- heta)$	$(1 - \theta + \theta e^t)^n$
$Poisson(\lambda)$	$\{0,1,2,\}$	λ∈ℝ+	$\frac{e^{-\lambda \lambda x}}{x!}$		K	~	$\exp\left\{\lambda\left(e^{t}-1\right)\right\}$
Geometric(heta)	{1,2,}	$\theta \in (0,1)$	$(1-\theta)^{x-1}\theta$	$1-(1-\theta)^x$	$\frac{1}{\theta}$	$\frac{(1- heta)}{ heta^2}$	$\frac{\theta e^t}{1 - e^t (1 - \theta)}$
$NegBinomial(n, \theta)$	$\{n,n+1,\ldots\}$	$n \in \mathbb{Z}^+, \theta \in (0,1)$	$\binom{x-1}{n-1}\theta^n(1-\theta)^{x-n}$		$\frac{u}{\theta}$	$\frac{n(1-\theta)}{\theta^2}$	$\left(\frac{\theta e^t}{1 - e^t(1 - \theta)}\right)^n$
or	$\{0,1,2,\}$	$n \in \mathbb{Z}^+, \theta \in (0,1)$	$\binom{n+x-1}{x}\theta^n(1-\theta)^x$		$\frac{n(1-\theta)}{\theta}$	$\frac{n(1-\theta)}{\theta^2}$	$\left(\frac{\theta}{1-e^t(1-\theta)}\right)^n$

For CONTINUOUS distributions (see over), define the GAMMA FUNCTION

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \, dx$$

and the LOCATION/SCALE transformation $Y=\mu+\sigma X$ gives $f_Y(n)=f_Y\left(\frac{y-\mu}{n}\right)\frac{1}{n}$

$$\left(\frac{y-\mu}{\sigma}\right)\frac{1}{\sigma} \qquad F_Y(y) = F_X\left(\frac{y-\mu}{\sigma}\right) \qquad M_Y(t) = e^{\mu t} M_X(\sigma t) \qquad \mathsf{E}_{f_Y}\left[Y\right] = \mu + \sigma \mathsf{E}_{f_X}\left[X\right] \qquad \mathsf{Var}_{f_Y}(x) = e^{\mu t} M_X(\sigma t) \qquad \mathsf{E}_{f_Y}\left[Y\right] = \mu + \sigma \mathsf{E}_{f_X}\left[X\right] \qquad \mathsf{Var}_{f_Y}(x) = e^{\mu t} M_X(\sigma t) \qquad \mathsf{E}_{f_Y}\left[X\right] = \mu + \sigma \mathsf{E}_{f_X}\left[X\right] = e^{\mu t} M_X(\sigma t) = e^{\mu t} M_X(\sigma t) \qquad \mathsf{E}_{f_Y}\left[X\right] = e^{\mu t} M_X(\sigma t) =$$

			CONTINUOUS DISTRIBUTIONS	RIBUTIONS			
		PARAMS.	PDF	CDF	$E_{f_X}\left[X\right]$	$Var_{f_X}\left[X ight]$	MGF
	×		f_X	F_X			M_X
Uniform(lpha,eta) (standard model $lpha=0,eta=1)$	(lpha,eta)	$lpha < eta \in \mathbb{R}$	$\frac{1}{\beta - \alpha}$	$\frac{x-\alpha}{\beta-\alpha}$	$\frac{(\alpha+\beta)}{2}$	$\frac{(\beta - \alpha)^2}{12}$	$\frac{e^{\beta t} - e^{\alpha t}}{t(\beta - \alpha)}$
$Exponential(\lambda)$ (standard model $\lambda=1)$	+ 🖽	$\lambda \in \mathbb{R}^+$	$\lambda e^{-\lambda x}$	$1 - e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\left(\frac{\lambda}{\lambda-t}\right)$
Gamma(lpha,eta) (standard model $eta=1$)	+	$lpha,eta\in\mathbb{R}^+$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$		$\beta \alpha$	$\frac{\alpha}{\beta^2}$	$\left(rac{eta}{eta-t} ight)^{lpha}$
Weibull(lpha,eta) (standard model $eta=1$)	+	$\alpha, \beta \in \mathbb{R}^+$	$lphaeta x^{lpha-1}e^{-eta x^{lpha}}$	$1 - e^{-\beta x^{\alpha}}$	$\frac{\Gamma(1+1/\alpha)}{\beta^{1/\alpha}}$	$\frac{\Gamma\left(1+2/\alpha\right)-\Gamma\left(1+1/\alpha\right)^{2}}{\beta^{2/\alpha}}$	
$Normal(\mu,\sigma^2)$ (standard model $\mu=0,\sigma=1)$	丝	$\mu \in \mathbb{R}, \sigma \in \mathbb{R}^+$	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$		щ	σ^2	$e^{\{\mu t + \sigma^2 t^2/2\}}$
Student(u)	丝	$ u \in \mathbb{R}^+ $	$\frac{(\pi\nu)^{-\frac{1}{2}}\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)\left\{1+\frac{x^2}{\nu}\right\}^{(\nu+1)/2}}$		$0 (\text{if } \nu > 1)$	$\frac{\nu}{\nu-2}$ (if $\nu>2$)	
Pareto(heta, lpha)	+ 出	$ heta, lpha \in \mathbb{R}^+$	$\frac{\alpha\theta^{\alpha}}{(\theta+x)^{\alpha+1}}$	$1 - \left(\frac{\theta}{\theta + x}\right)^{\alpha}$	$\dfrac{ heta}{lpha-1}$ (if $lpha>1$)	$\frac{\alpha\theta^2}{(\alpha-1)(\alpha-2)}$ (if $\alpha>2$)	
Beta(lpha,eta)	(0,1)	$lpha,eta\in\mathbb{R}^+$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$		$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	