
556: MATHEMATICAL STATISTICS I

ORDER STATISTICS AND SAMPLE QUANTILES

For n random variables X1, ...., Xn, the order statistics, Y1, ...., Yn, are defined by

Yi = X(i) − “the ith smallest value in X1, ...., Xn”

for i = 1, ..., n. For example

Y1 = X(1) = min {X1, ..., Xn} Yn = X(n) = max {X1, ..., Xn} .

Now let 0 ≤ p ≤ 1. Recall that the pth quantile of a distribution F is denoted by xF (p) is defined by

xF (p) = inf{x : F (x) ≥ p}

where inf is the infimum, or greatest lower bound, that is, xF (p) is the smallest x value such that
F (x) ≥ p. The median is xF (0.5). The pth sample quantile is defined in terms of the order statistics,
but there are many possible variants. In general, the pth sample quantile derived from a sample of size
n can be defined

X̃n(p) = (1− γ(n))X(k) + γ(n)X(k+1)

for some γ(n) where 0 ≤ γ(n) ≤ 1 is some function of n to be specified, and k is the integer such that
k/n ≤ p < (k + 1)/n. One simple definition uses the kth order statistic X(k),

X̃n(p) = X(k)

where k = [np] is the nearest integer to np. The sample median is most commonly defined by

X̃ =

{
X((n+1)/2) n odd

(X(n/2) +X(n/2+1))/2 n even

THEOREM (Distributions of minimum and maximum order statistics)
For random sample X1, ..., Xn from population with pmf/pdf fX and cdf FX ,

(a) Y1 = X(1) has cdf FY1(y) = 1− {1− FX(y)}n;

(b) Yn = X(n) has cdf FYn(y) = {FX(y)}n

Proof. (a) For the marginal cdf for Y1,

FY1(y1) = PY1 [Y1 ≤ y1] = 1− PY1 [Y1 > y1] = 1− PX [min {X1, ..., Xn} > y1] = 1− PX

[
n∩

i=1
(Xi > yi)

]
= 1−

n∏
i=1

PXi [Xi > y1] = 1−
n∏

i=1

{1− FX(y1)} = 1− {1− FX(y1)}n

(b) For Yn,

FYn(yn) = PYn [Yn ≤ yn] = PX[max {X1, ..., Xn} ≤ yn] = PX

[
n∩

i=1
(Xi ≤ yi)

]
=

n∏
i=1

PXi [Xi ≤ yn] =
n∏

i=1

{FX(yn)} = {FX(yn)}n

The pmf/pdf can be computed from the cdf.
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THEOREM (Marginal pmf/pdf)
For random sample X1, ..., Xn from population with pmf/pdf fX and cdf FX ,

(a) In the discrete case, suppose that X ≡ {x1, x2, . . .}, where x1 < x2 < · · · , and suppose that

fX(xi) = pi Pi =

i∑
k=1

pk

i = 1, 2, . . .. Then the marginal cdf of Yj = X(j) is defined by

FYj (xi) =
n∑

k=j

(
n

k

)
P k
i (1− Pi)

n−k xi ∈ X

with the usual cdf behaviour at other values of x. The marginal pmf of Yj = X(j) is

fYj (xi) =
n∑

k=j

(
n

k

)[
P k
i (1− Pi)

n−k − P k
i−1(1− Pi−1)

n−k
]

xi ∈ X

(b) In the continuous case, the marginal cdf of Yj = X(j) is

FYj (x) =
n∑

k=j

(
n

k

)
{FX(x)}k{1− FX(x)}n−k

and the marginal pdf is

fYj (x) =
n!

(j − 1)!(n− j)!
{FX(x)}j−1 {1− FX(x)}n−j fX(x)

Proof. (sketch, continuous case) If the jth order statistic is at x, then we have

(i) a single observation at x, which contributes fX(x);
(ii) j − 1 observations which have values less than x, which contributes {FX(x)}j−1;

(iii) n− j observations which have values greater than x, which contributes {1− FX(x)}n−j ;

Thus the required mass/density is proportional to

{FX(x)}j−1fX(x){1− FX(x)}n−j .

The normalizing constant is the number of ways of labelling the original x values to obtain this config-
uration of order statistics: this is

n×
(
n− 1

j − 1

)
=

n!

(j − 1)!(n− j)!

we may choose the single datum in step (i) in n ways, and then the j − 1 data in step (ii) in
(
n−1
j−1

)
ways.

THEOREM (Joint pdf: continuous case)
For random sample X1, ..., Xn from population with pdf fX , the joint pdf of order statistics Y1, ...., Yn

fY1,...,Yn(y1, ..., yn) = n!fX(y1)...fX(yn) y1 < ... < yn

Proof. There are n! configurations of the xs that yield identical order statistics, and the result follows
by the theorem of total probability.
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