
556: MATHEMATICAL STATISTICS I

GENERAL RESULTS FOR THE SAMPLE MEAN AND VARIANCE STATISTICS

THEOREM
Suppose that X1, ..., Xn is a random sample from a distribution, with finite expectation µ and
variance σ2. Consider the sample mean and sample variance statistics X and s2 and denote

T1 = X =
1

n

n∑
i=1

Xi T2 = s2 =
1

n− 1

n∑
i=1

(
Xi −X

)2
.

Then

(a) ET1 [T1] = µ

(b) VarT1 [T1] =
σ2

n

(c) ET2 [T2] = σ2

Proof (a) and (b) follow from elementary properties of expectations and variances for independent
random variables. For (c), note that

n∑
i=1

(
Xi −X

)2
=

n∑
i=1

X2
i − nX

2
.

Hence

ET2 [T2] =
1

n− 1
EfX

[
n∑

i=1

X2
i − nX

2

]

=
1

n− 1

[
n∑

i=1

EXi [X
2
i ]− nEX

[
X

2
]]

=
1

n− 1

[
n(σ2 + µ2)− n

(
σ2

n
+ µ2

)]
(1)

= σ2

where line (1) follows from the fact that for any random variable X

σ2 = EX [X2]− EX [X]2 = EX [X2]− µ2

and the result of parts (a) and (b).
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SAMPLING FROM A NORMAL FAMILY

Recall the fundamental transformation results for Normal random variables:

(i) If X ∼ N (0, 1), then

X2 ∼ χ2
1 ≡ Gamma

(
1

2
,
1

2

)
(ii) If X1, . . . , Xr ∼ N (0, 1) are independent random variables, then

Y =

r∑
i=1

X2
i ∼ χ2

r ≡ Gamma
(
r

2
,
1

2

)

(iii) If Y1 ∼ χ2
r1 and Y2 ∼ χ2

r2 are independent random variables, then

Y = Y1 + Y2 ∼ χ2
r1+r2

THEOREM
Suppose that X1, ..., Xn is a random sample from a normal distribution, say Xi ∼ N (µ, σ2). Define the
sample mean and sample variance statistics X and s2 as the random variables

X =
1

n

n∑
i=1

Xi s2 =
1

n− 1

n∑
i=1

(
Xi −X

)2
.

Then

(a) X ∼ N (µ, σ2/n)

(b) X is independent of
{
Xi −X, i = 1, ..., n

}
, and X and s2 are independent random variables

(c) The random variable
(n− 1)s2

σ2
=

1

σ2

n∑
i=1

(
Xi −X

)2
has a chi-squared distribution with n− 1 degrees of freedom.

Proof (a) Proof straightforward using mgfs.

(b) The joint pdf X1, ..., Xn is the normal density

fX1,...,Xn(x1, ..., xn) =

(
1

2πσ2

)n/2

exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2
}

Consider the multivariate transformation to Y1, ..., Yn where

Y1 = X

Yi = Xi −X, i = 2, ..., n

}
⇐⇒


X1 = Y1 −

n∑
i=2

Yi

Xi = Yi + Y1, i = 2, ..., n
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Thus Y = AX, or equivalently X = A−1Y, where A is the n× n matrix with (i, j)th element

[A]ij =



1

n
i = 1, j = 1, 2, . . . , n

1− 1

n
i = j = 2, 3, . . . , n

− 1

n
otherwise

that is, we have a linear transformation. Note that

n∑
i=1

(xi − µ)2 =
n∑

i=1

(xi − x+ x− µ)2 =
n∑

i=1

[
(xi − x)2 + 2 (xi − x) (x− µ) + (x− µ)2

]

=
n∑

i=1

(xi − x)2 + n (x− µ)2

where x =
1

n

n∑
i=1

xi is the observed sample mean. Thus the joint pdf of X1, ..., Xn takes the form

fX1,..,Xn(x1, .., xn) =

(
1

2πσ2

)n/2

exp

{
− 1

2σ2

[
n∑

i=1

(xi − x)2 + n (x− µ)2
]}

.

Now

x1 − x = −
n∑

i=2

(xi − x) = −
n∑

i=2

yi

and so
n∑

i=1

(xi − x)2 = (x1 − x)2 +
n∑

i=2

(xi − x)2 =

(
−

n∑
i=2

yi

)2

+
n∑

i=2

y2i

The Jacobian of the transformation is n, so the joint density of Y1, ..., Yn is given by the multivariate
transformation theorem as

fY1,..,Yn(y1, .., yn) = n

(
1

2πσ2

)n/2

exp

− 1

2σ2

(− n∑
i=2

yi

)2

+
n∑

i=2

y2i + n (y1 − µ)2


= n

(
1

2πσ2

)n/2

exp

− 1

2σ2

(− n∑
i=2

yi

)2

+

n∑
i=2

y2i

× exp
{
− n

2σ2
(y1 − µ)2

}
= fY2,..,Yn(y2, .., yn)fY1(y1)

and therefore Y1 is independent of Y2, ..., Yn. Hence X is independent of the random variables{
Yi = Xi −X, i = 2, ..., n

}
. Finally, X is also independent of X1 −X as

X1 −X = −
n∑

i=2

(
Xi −X

)
and of s2, which is a function only of

{
Xi −X, i = 1, ..., n

}
. As X is independent of these variables,

X and s2 are also independent.
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(c) The random variables that appear as sums of squares terms in the joint pdf are
n∑

i=1
(Xi − µ)2

σ2
=

n∑
i=1

(
Xi −X

)2
σ2

+
n
(
X − µ

)2
σ2

or V1 = V2 + V3, say. Now, Xi ∼ N (µ, σ2), so therefore

(Xi − µ)2

σ2
∼ N (0, 1) =⇒ (Xi − µ)2

σ2
∼ χ2

1 ≡ Gamma
(
1

2
,
1

2

)
=⇒ V1 =

n∑
i=1

(Xi − µ)2

σ2
∼ χ2

n

as theXis are independent, and the sum of n independent Gamma(1/2, 1/2) variables has a Gamma(n/2, 1/2)
distribution. Similarly, as X ∼ N (µ, σ2/n), V3 ∼ χ2

1 By part (b), V2 and V3 are independent, and so the
mgfs of V1, V2 and V3 are related by

MV1(t) =MV2(t)MV3(t) =⇒MV2(t) =
MV1(t)

MV3(t)

As V1 and V3 are Gamma random variables, MV1 and MV3 are given by

MV1(t) =

(
1/2

1/2− t

)n/2

and MV3(t) =

(
1/2

1/2− t

)1/2

.

So therefore

MV2(t) =

(
1/2

1/2− t

)(n−1)/2

which is also the mgf of a Gamma random variable, and hence

V2 =
(n− 1)s2

σ2
∼ χ2

n−1

and the result follows.

Alternative inductive proof of (c): Let Xk and s2k, k = 1, 2, . . . , n denote the sample mean and sample
variance random variables derived from the first k variables. Now, for k ≥ 2, it can be shown after
some manipulation that

(k − 1)s2k = (k − 2)s2k−1 +

(
k − 1

k

)
(Xk −Xk−1)

2 (2)

For k = 2

(2− 1)s22 =
1

2
(X2 −X1)

2 =

(
X2 −X1√

2

)2

= Z2

say, where Z ∼ N (0, 1). Thus s22 ∼ χ2
1. Now for the inductive hypothesis, presume that

(k − 1)s2k ∼ χ2
k−1

so that, using the identity in (2),

ks2k+1 = (k − 1)s2k +

(
k

k + 1

)
(Xk+1 −Xk)

2

The two terms on the right hand side are independent (using the result in (b)); the first term is χ2
k−1

distributed, the second term is χ2
1 distributed, so ks2k+1 is χ2

k distributed and the inductive argument is
completed.
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