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SOME INEQUALITIES

Expectation Inequalities

JENSEN’S INEQUALITY
Jensen’s Inequality gives a lower bound on expectations of convex functions. Recall that a function
g(x) is convex if, for 0 < A < 1,

gz + (1= N)y) < Ag(x) + (1 = N)g(y)
for all x and y. Alternatively, if the derivatives are well defined, function g(z) is convex if

d? @)
a2 Wty =97 (2) 2 0.

Conversely, g(z) is concave if —g(z) is convex.

Theorem (JENSEN’S INEQUALITY)
Suppose that X is a random variable with expectation x, and function g is convex and finite. Then

Ex [9(X)] = g(Ex [X])
with equality if and only if, for every line a + bz that is a tangent to g at p
Px[g(X)=a+bX]|=1.

that is, g(z) is linear.

Proof Let[(z) = a + bz be the equation of the tangent at x = p. Then, for each z, g(z) > a + bx as in
the figure. Thus

Ex[9(X)] = Ex[a +bX] = a+ bEx[X] = (1) = g(p) = g(Ex[X])

as required. Also, if g(z) is linear, then equality follows by properties of expectations. Suppose that

Ex [9(X)] = 9(Ex [X]) = g(n)
but g(x) is convex, but not linear. Let [(z) = a + bx be the tangent to g at ;.. Then by convexity
s@)=10)>0 o [(g) - 1) dFx(e) = [ 9(@) dFx(@) - [ 1) dFx(2) >0

and hence
Ex[g(X)] > Ex[I(X)].

But [(z) is linear, so Ex[I(X)] = a + bE x [ X]| = g(u), yielding the contradiction
Ex[g(X)] > g(Ex[X]).

and the result follows.



9(x)

‘I(x) =a+hbx

Figure 1: The function g(z) and its tangent at x = p.

e If g(x) is concave, then

2

e g(z) = x° is convex, thus

e g(z) = logz is concave, thus
Ex [log X] < log {Ex [X]}

Alternative approach to Jensen’s Inequality:
We may use the general definition of convexity to prove the result by using the fact that the distribution
Fx can be viewed as a limiting function derived from a sequence of discrete cdfs. We have that g(x) is

convex if, forn > 2 and constants A\;,j = 1,...,n,with0O < A\; <L, and A\ +---+ A, =1
n n
g [ D Nz | <> Ng(xy)
j=1 J=1
for all vectors (z1, ..., xy,); this follows by induction using the original definition. We may regard this

statement as stating
9 (Ea[X]) < Enlg(X)] M

where



where F), is the cdf of the discrete distribution on {z1,...,z,} with associated probability masses
{A1,..., \n}, thatis,

Fu(@) = 3 Aflly, o) (@):
j=1

Now, for any Fx, we can find infinite sequences {(z;, A;),j = 1,2, ...} such that for all z
lim F,(z)= Fx(z)

n——oo

— this is stated pointwise here, but convergence functionwise also holds. Also, as g is convex, it is also
continuous. Therefore we may pass limits through the integrals and note that

lim E,[X]=Ex[X]  lim E,[g(X)] = Ex[g(X)]

n—aoo n—ao0

which yields Jensen’s inequality by substitution into (1).

CAUCHY-SCHWARZ INEQUALITY

Theorem
For random variable X and functions ¢ () and g2(), we have that

{Ex[g1(X)g2(X)]}* < Ex[{g1(X)}’|Ex [{g2(X)}?] 2
with equality if and only if either Ex[{g1(X)}?] = 0 or Ex[{g2(X)}?] = 0, or
Px[g1(X) = cg2(X)] =1

for some ¢ # 0.

Proof Let X; = ¢g1(X) and X3 = g2(X), and let
Y) =aX1 +0Xo Yo =aX1 —bXs
and as Ey, [Y], Ey,[Y#] > 0, we have that
a®Ex[X{] + b*Ex[X3] + 2abEx [ X1 Xa] > 0
a’Ex[X?] + VEx[X3] — 2abEx [ X1 X5] > 0

Set a?> = Ex[X3] and b? = Ex[X?]. If either a or b is zero, the inequality clearly holds. We may thus
consider Ey[X?],Ex[X2] > 0: we have

2Ex [XT|Ex[X3] + 2{Ex [XT]Ex[X3]}*Ex[X1X2] > 0
2Ex [XT|Ex[X3] — 2{Ex [XT]Ex[X3]}'*Ex[X1X2] > 0
Rearranging, we obtain that
—{Ex[XT|Ex[X3]}'/? < Ex[X1X0] < {Ex[XF]Ex[X3]}'/?
that is {Ex[X1X2]}? < Ex[X?]Ex[X3] or, in the original form

{Ex[91(X)g2(X)]}* < Ex[{g1(X)}*JEx [{g2(X)}?].
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We examine the case of equality:

{Ex[g1(X)g2(X)]}* = Ex[{01(X)}*|Ex [{g2(X)}?] ®)

If Ex[{g;(X)}?] = 0for j = 1 or 2, then g;(X) is constant with probability one, say Px[g;(X) = ¢| = 1.
Clearly the left-hand side of (2) is non-negative, so we must have equality as the right-hand side is
zero. So suppose Ex[{g;(X)}?] > 0 for j = 1,2, but g1(X) = cg2(X) with probability one for some
¢ # 0. In this case we replace g1 (X) in the left- and right- hand sides of (2) to conclude that

{Exeg2(X)"]}* = Ex[{cg2(X)}|Ex [{g2(X)}*] = *Ex[{g2(X)}7]
and equality follows.

For the converse, assume that (3) holds. If both sides equate to zero, then we must have at least one
term on the right-hand side equal to zero, so Ex[{g;(X)}?] = 0 for j = 1 or 2. If both sides equate to a
positive constant then both Ex [{g;(X)}?] > 0. By assumption, we may write

_ {Ex[01(X)g2(X)]}?
Ex[{g2(X)}?]

say. Let Z = g1(X) —cg2(X). For a contradiction, assume that Z is not zero with probability 1: we have

Ex[{g1(X)}?]

E[Z%] = E[{g1(X)}’] + E[{g2(X)}?] — 2¢E[g1(X)g2(X)]

which is strictly positive. However the right hand side can be written,

E[g1(X)g2(X)] )_( E[g1(X)ga(X)] )
{E[{g2(X)}2]}1/2 {E[{g2(X)}2]}1/2

B COY]+ (clBUamCOPI -

Now if we set
E[g1(X)g2(X)]

E[{g2(X)}?]

CcC =

the second term is zero, so we must then have

{E[g(X)g2(X)]}?
E[{g2(X)}?]

but this contradicts assumption (3). Hence Z must be zero with probability 1, that is

E[{g1(X)}?] >0

91(X) = cg2(X)
with probability 1.
HOLDER’S INEQUALITY
Lemma Leta,b> 0and p,q > 1 satisfy
p g t=1 (4)

Then
pta? + ¢ b7 > ab
with equality if and only if a? = b9.

Proof Fixb > 0. Let
gla;b) =p~taP + ¢ 1 b7 — ab.
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We require that g(a; b) > 0 for all a. Differentiating wrt a for fixed b yields ¢! (a;b) = a?~* — b, so that
g(a;b) is minimized (the second derivative is strictly positive at all a) when a?~! = b, and at this value
of a, the function takes the value

pltaP +q (@ —a(a® ) =ptaP g —af =0

as, by equation (4), 1/p+1/q¢ =1 = (p — 1)q = p. As the second derivative is strictly positive at all a,
the minimum is attained at the unique value of a where a?~! = b, where, raising both sides to power
q yields a? = b1.

Theorem (HOLDER’S INEQUALITY)
Suppose that X and Y are two random variables, and p, ¢ > 1 satisfy (4). Then

Exy[XY]| < Exy[XY]] < {Ex[I X {Ep, [V}

Proof (Absolutely continuous case: discrete case similar) For the first inequality,

Exy[|XY] = / 2yl fxy (2,y) de dy > / / wyfxy(e.y) de dy = Exy[XY]

and
Exy[XY]= // zyfxy(x,y) drdy > // —lrylfxy(®,y) dz dy = —Ex y[|XY]]

SO
“Exy[[XY[ <Exy[XY] <Exy[XY]] .. [Exy[XY] <Exy[XY]].

For the second inequality, set

B S .
“= 1/p b= 1/q°
{Ex[|X[7]} {Ep IY19]}
Then from the previous lemma
RS N XY|
Ex[|X[7] En Y19 ™ {Ex[IX|P]}'/7 {Ep, [IY]9} /9

and taking expectations yields, on the left hand side,

1 Ex (XL B (Y]]

-1 -1
= v T4 =p +q¢ =1
Ex[|X]7] E (1Y)

and on the right hand side
Exy[XY]]

{[Ex[|X|P]}1/P {Efy HY|q]}1/q

and the result follows.

Note: here we have equality if and only if
Py [[X[P = Y[ =1

for some non zero constant c.



Theorem (CAUCHY-SCHWARZ INEQUALITY REVISITED)
Suppose that X and Y are two random variables.

1/2 1/2
Exy[XY] < ExyIXY[) < {Ex[ X} {Ep, (Y}
Proof Setp = ¢ = 2 in the Holder Inequality.
Corollaries:

(a) Let uy and py denote the expectations of X and Y respectively. Then, by the Cauchy-Schwarz

inequality
Exy[(X = ux)(V = uy)]| < {Ex[(X — )21} P {E 4 [(V = piy)? ]}
so that
Ex,y[(X — pux)Y — py)] < Ex[(X — ux)?|Ep [(Y — py)?]
and hence

{Covxy[X, Y]} < Varx[X] Vary, [Y].

(b) Lyapunov’s Inequality: Define Y = 1 with probability one. Then, for 1 < p < oo
Ex (X)) < {Ex[XP]}”.

Let1 <7 < p. Then

Ex(|X["] < {Ex[|X[]}"/?
and letting s = pr > r yields

Ex([X]] < {Ex[IXI")}"

so that
{Ex[ X" < {Ex[IX]]}V/*

forl <r < s < oo.

Theorem (MINKOWSKI'S INEQUALITY)
Suppose that X and Y are two random variables, and 1 < p < co. Then

{Exy[|X + YPPIIVYP < {Ex[IX|P]}'7 + {Ep [VIP)}7
Proof Write

Exy[X +Y[] = Exy[X+Y[|X+Y["™]

< Exy[X|IX +YPT+ Exy VX +Y P

by the triangle inequality |z + y| < |z| + |y|. Using Holder’s Inequality on the terms on the right hand
side, for g selected to satisfy 1/p+1/¢ =1,

1/q 1/q
Exy [I1X + Y] < {ExXPI? { By (X + Y10} (B, (VP17 { B X + Y100}

and dividing through by {Ex y[|X + Y[4(P~Y] }l/q yields
Exy[| X+ Y]

{Exy[IX + a1} /0

and the result follows as ¢(p — 1) =p,and 1 —1/¢ = 1/p.

< {Ex[XPI}P + {Ep (Y1}
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Concentration and Tail Probability Inequalities

Lemma (CHEBYCHEV’S LEMMA) If X is a random variable, then for non-negative function h, and

c>0,
Ex [h(X)]

C

Px [h(X) > C] <

Proof (continuous case) : Suppose that X has density function fx which is positive for z € X. Let
A={x eX:h(z)>c} C X.Then,as h(xz) > con A,

Ex [h(X)] = / W) fx (@) de = / W) fx () de + / W) fx (@) da

A A’
> /h(x)fx(:p)da:
A
> /cfX(:c)da::cPX[XeA]:ch[h(X)ZC]

A

and the result follows.

e SPECIAL CASEI-THE MARKOV INEQUALITY
If h(z) = |z|" for r > 0, so
Py [|X|">d < w
c
Alternately stated (by Casella and Berger) as follows: If P[Y > 0] = 1 and P[Y = 0] < 1, then for
any r >0
Ex [Y]
T

PylY >r] <

with equality if and only if
Py[Y =7]=p=1-Py[Y =0

forsome 0 < p < 1.

e SPECIAL CASEII - THE CHEBYCHEV INEQUALITY
Suppose that X is a random variable with expectation y and variance o2. Then h(x) = (z — )
and ¢ = k202, for k > 0,

2

Px |(X —p)? > K20?| < 1/Kk?

or equivalentl
! g Py [|X — p| > ko] < 1/k2.

Setting € = ko gives
Px [|X — pul > ¢ <o?/é

or equivalently
Px[|X —pu|l <€ >1-0%/



Theorem (TAIL BOUNDS FOR THE NORMAL DENSITY)
If Z ~ N(0,1), then for¢ > 0

\/Et e < P17 1) < \/51“2/ 2
1+ t2 7t

Proof By symmetry, Pz[|Z| > t] =2Pz[Z > t], so

/2 poo /2 poo /2 —42/2
PZ[Z > t] — i / 6_1;2/2 dz < i / fe_IZ/Q de — i e ‘
27'[' t 27T t t 27T t

Similarly, for ¢ > 0,

00722 OO(L‘ 722 172200 001 722 17t22 ]. o0 722
/ em/dx:/ S Ry = |—=e "/ —/ —Qex/dﬂzzfe /—2/ e/ da
t ;T T . : T t = J;

after writing 1 = z/x, then integrating by parts, and then noting that, on (t,00), z > t <= 1/2? < 1/¢?,
and that the integrand is non-negative. Therefore, combining terms

1 e 2 1 2
(1+2>/ e T2 dy > 2 et /2
)] t

and cross-multiplying by the positive term t2/(1 + t?) yields

/OO 2 gy > b )2 P [\Z\>t]>\/5 b -t
e X ——= € ' ——F € .
’ =142 - Z “Var1+e2

To see the quality of the approximation, the table below shows the values of the bounding values for ¢
ranging from 1 to 5. Clearly the bounds improve as ¢ gets larger.

t 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Lower | 2.420e-01 1.196e-01 4.319e-02 1.209e-02 2.659e-03 4.610e-04 6.298e-05 6.770e-06 5.718e-07
True 3.173e-01 1.336e-01 4.550e-02 1.242e-02 2.700e-03 4.653e-04 6.334e-05 6.795e-06 5.733e-07
Upper | 4.839e-01 1.727e-01 5.399e-02 1.402e-02 2.955e-03 4.987e-04 6.692e-05 7.104e-06 5.947e-07




