
556: MATHEMATICAL STATISTICS I
THE JOINT DISTRIBUTION OF THE SAMPLE QUANTILES

RESULT 1: If Y1, Y2, . . . , Yn+1 ∼ Exponential (1) are independent random variables, and S1, S2, . . . , Sn+1

are defined by

Sk =
k∑

j=1

Yj k = 1, 2, . . . , n + 1

then the random variables [
S1

Sn+1
,

S2

Sn+1
, . . . ,

Sn

Sn+1

]

given that Sn+1 = s, say, have the same distribution as the order statistics from a random sample of
size n from the Uniform distribution on (0, 1) .

Proof: Let the Yjs be defined as above. Then the joint density for the Yjs is given by

exp



−

n+1∑

j=1

yj



 y1, y2, . . . , yn+1 > 0.

Now
S1 = Y1

S2 = Y1 + Y2

S3 = Y1 + Y2 + Y3
...

...

Sn =
n∑

j=1
Yj

Sn+1 =
n+1∑
j=1

Yj





⇐⇒





Y1 = S1

Y2 = S2 − S1

Y3 = S3 − S2
...

...
Yn = Sn − Sn−1

Yn+1 = Sn+1 − Sn

and so the Jacobian of the transformation from (Y1, . . . , Yn+1) −→ (S1, . . . , Sn+1) is 1, and hence the
joint density for (S1, . . . , Sn+1) is given by

exp {−sn+1} 0 < s1 < s2 < . . . < sn+1 < ∞.

The marginal distribution for Sn+1 is Gamma (n + 1, 1) and thus the conditional distribution of (S1, . . . , Sn)
given Sn+1 = s is

exp {−s}
1

Γ (n + 1)
sn exp {−s}

=
n!
sn

0 < s1 < s2 < . . . < s < ∞.

Finally, conditional on Sn+1 = s, define the joint transformation

Vj =
Sj

s
⇐⇒ Sj = sVj j = 1, 2, . . . , n

which has Jacobian sn. Then, conditional on Sn+1 = s, (V1, . . . , Vn) have joint pdf equal to n! for
0 < v1 < v2 < . . . < vn < 1. Finally, if U1, . . . , Un are independent random variables each having a
Uniform distribution on (0, 1), then (U1, . . . , Un) have joint pdf equal to 1 on the unit hypercube in n
dimensions, and thus the corresponding order statistics U(1), . . . , U(n) also have joint pdf equal to

n! 0 < u1 < u2 < . . . < un < 1.
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RESULT 2: Let the Sk be defined as in Result 1. Then

√
k

(
Sk

k
− 1

)
d−→ N (0, 1) as k −→∞

Proof: We have that Sk is the sum of k independent and identically distributed Exponential(1) random
variables, Y1, . . . , Yk, so that E [Yj ] = Var [Yj ] = 1. Thus result follows via the Central Limit Theorem.

RESULT 3: Let the Sk be defined as in Result 1. Then, if k1n is a sequence of integers such that

k1n −→∞ while
k1n

n
−→ p1

for some p1 with 0 < p1 < 1, it follows that

√
n + 1

(
Sk1n

n + 1
− k1n

n + 1

)
d−→ N (0, p1) as n −→∞

Proof: We have

√
n + 1

(
Sk1n

n + 1
− k1n

n + 1

)
=

√
k1n

n + 1
×

√
k1n

(
Sk1n

k1n
− 1

)
d−→ √

p1 ×N (0, 1) ≡ N (0, p1)

as n −→∞ and k1n −→∞.

Corollary: Using the same approach, if

k1n

n
−→ p1 and

k2n

n
−→ p2

for 0 < p1 < p2 < 1, then if Dn =
k2n∑

j=k1n+1

Yj ,

√
n + 1

(
(Sk2n − Sk1n)

n + 1
− k2n − k1n

n + 1

)
=

√
k2n − k1n

n + 1

√
k2n − k1n

(
Dn

k2n − k1n
− 1

)

d−→ √
p2 − p1 ×N (0, 1) ≡ N (0, p2 − p1) .

Similarly
√

n + 1
(

1
n + 1

(Sn+1 − Sk2n)− n + 1− k2n

n + 1

)
d−→ N (0, 1− p2)

where the limiting variables in the three cases are independent, as

Sk1n =
k1n∑

j=1

Yj

(Sk2n − Sk1n) =
k2n∑

j=k1n+1

Yj

(Sn+1 − Sk2n) =
n+1∑

j=k2n+1

Yj

are independent.
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RESULT 4: Let

Z1 =
Sk1n

n + 1
Z2 =

(Sk2n − Sk1n)
n + 1

Z3 =
(Sn+1 − Sk2n)

n + 1
and suppose that

√
n

(
k1n

n
− p1

)
−→ 0 and

√
n

(
k2n

n
− p2

)
−→ 0

as n −→∞. Then
√

n + 1







Z1

Z2

Z3


−




p1

p2 − p1

1− p2





 d−→ N (0, Σ)

as n −→∞, where Σ = diag (p1, p2 − p1, 1− p2).

Proof: We have, as n −→∞,

√
n + 1

(
Sk1n

n + 1
− p1

)
−√n + 1

(
Sk1n

n + 1
− k1n

n + 1

)
=
√

n + 1
(

k1n

n + 1
− p1

)
−→ 0

∴
√

n + 1
(

Sk1n

n + 1
− p1

)
and

√
n + 1

(
Sk1n

n + 1
− k1n

n + 1

)

have the same asymptotic distribution, and thus the result follows from Result 3. The proof is similar
for the other two terms. Independence (that is, the diagonal nature of Σ) follows from the indepen-
dence of Sk1n , (Sk2n − Sk1n), and (Sn+1 − Sk2n).

RESULT 5: If U(1), . . . , U(n) are the order statistics from a random sample of size n from a Uniform (0, 1)
distribution, and if n −→∞, k1n −→∞ and k2n −→∞ in such a way that

√
n

(
k1n

n
− p1

)
−→ 0 and

√
n

(
k2n

n
− p2

)
−→ 0

for 0 < p1 < p2 < 1, then

√
n

((
U(k1n)

U(k2n)

)
−

(
p1

p2

))
d−→ N

(
0,

[
p1 (1− p1) p1 (1− p2)
p1 (1− p2) p2 (1− p2)

])
.

Proof: Define

g (x1, x2, x3) =
1

x1 + x2 + x3

[
x1

x1 + x2

]
ġ (x1, x2, x3) =

1
(x1 + x2 + x3)

2

[
x2 + x3 −x1 −x1

x3 x3 − (x1 + x2)

]
.

∴ g

(
Sk1n

n + 1
,
Sk2n − Sk1n

n + 1
,
Sn+1 − Sk2n

n + 1

)
=

1
Sn+1

[
Sk1n

Sk2n

]

which has the same distribution as
(
U(k1n), U(k2n)

)T, by Result 1. By the Delta Method

√
n

((
U(k1n)

U(k2n)

)
−

(
p1

p2

))
d−→ N

(
0, ġ (µ)Σġ (µ)T

)

where Σ is as defined in the Result 4, where here µ = (p1, p2 − p1, 1− p2)
T . It can be easily verified that

ġ (µ)Σġ (µ)T =
[

p1 (1− p1) p1 (1− p2)
p1 (1− p2) p2 (1− p2)

]
.
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RESULT 6: If X(1), . . . , X(n) are the order statistics from a random sample of size n from a distribu-
tion with continuous distribution function FX and density fX which is continuous and non-zero in a
neighbourhood of quantiles xp1 and xp2 corresponding to probabilities p1 < p2, then if k1n = dnp1e
and k2n = dnp2e

√
n

((
X(k1n)

X(k2n)

)
−

(
xp1

xp2

))
d−→ N




0,




p1 (1− p1)
{fX (xp1)}2

p1 (1− p2)
fX (xp1) fX (xp2)

p1 (1− p2)
fX (xp1) fX (xp2)

p2 (1− p2)
{fX (xp2)}2







Proof: We use the Delta Method on the result from Result 5, with the transformation

g (y1, y2) =
[

F−1
X (y1)

F−1
X (y2)

]

so that

ġ (y1, y2) =




1
fX

(
F−1

X (y1)
) 0

0
1

fX

(
F−1

X (y2)
)




with y1 = p1 and y2 = p2.

By properties of the multivariate normal distribution, we have that the marginal distribution of X(k1n)

can be approximated for large n by using the relationship

√
n(X(k1n) − xp1)

d−→ N
(

0,
p1 (1− p1)
{fX (xp1)}2

)

For example, if p1 = 1/2, xp1 is the median xFX
(0.5) of the distribution, and X(k1n) is the sample

median X̃n(0.5), and we have that

√
n(X̃n(0.5)− xFX

(0.5)) d−→ N
(

0,
1

4 {fX(x(0.5))}2

)

If FX is the N (µ, σ2) distribution, then xFX
(0.5) = µ and

fX(x(0.5)) = fX(µ) =
(

1
2πσ2

)1/2

so this result says that

√
n(X̃n(0.5)− µ) d−→ N

(
0,

πσ2

2

)
.∼. N

(
0, 1.57σ2

)

which contrasts with the exact result for the sample mean
√

n(Xn − µ) ∼ N (
0, σ2

)
.
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