
556: MATHEMATICAL STATISTICS I

ASYMPTOTIC APPROXIMATIONS AND THE DELTA METHOD

To approximate the distribution of elements in sequence of random variables {Xn} for large n, we
attempt to find sequences of constants {an} and {bn} such that

Zn = anXn + bn
d−→ Z

where Z has some distribution characterized by cdf FZ . Then, for large n, FZn(z) l FZ(z), so

FXn(x) = P [Xn ≤ x] = P [anXn + bn ≤ anx + bn] = FZn(anx + bn) l FZ(anx + bn).

EXAMPLE Suppose that X1, X2, . . . , Xn are i.i.d. such that Xi ∼ Exp(1), and let
Yn = max{X1, X2, . . . , Xn}. Then by a previous result, for y > 0,

FYn(y) = {FX(y)}n = {1− e−y}n −→ 0

and there is no limiting distribution. However, if we take an = 1 and bn = − log n, and set
Zn = anYn + bn, then as n −→∞,

FZn(z) = P[Zn ≤ z] = P[Yn ≤ z + log n] = {1− e−z−log n}n −→ exp{−e−z} = FZ(z),

∴ FYn(y) = P [Yn ≤ y] = P [Zn ≤ y − log n] l FZ(y − log n) = exp{−e−y+log n} = exp{−ne−y}

and by differentiating, for y > 0
fYn(y) l ne−y exp{−ne−y}.

This can be compared with the exact version, for y > 0

fYn(y) = ne−y(1− e−y)n.

The figure below compares the approximations for n = 50, 100, 500, 1000. Solid lines use the exact
formula, dotted lines use the approximation, histograms are 5000 simulated values.
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DEFINITION (Asymptotic Normality)
A sequence of random variables {Xn} is asymptotically normally distributed as n −→∞ if there
exist sequences of real constants {µn} and {σn} (with σn > 0) such that

Xn − µn

σn

d−→ Z ∼ N (0, 1).

The notation Xn .∼. N (µn, σ2
n) or Xn ∼ AN (µn, σ2

n) as n −→∞ is commonly used.

DEFINITION (Stochastic Order Notation)
For random variable Z, we write Z = Op(1) if for all ε > 0, there exists M < ∞ such that

P [|Z| ≥ M ] ≤ ε.

For sequence {Zn}, write Zn = Op(1) if for all n

P [|Zn| ≥ M ] ≤ ε.

and write Zn = Op(Sn) for sequence of random variables {Sn} if

|Zn|
|Sn| = Op(1).

Note that this includes the case where Sn is a sequence of reals, rather than random variables. Finally,
write Zn = op(1) if Zn

p−→ 0, and Zn = op(Sn) if

|Zn|
|Sn| = op(1).

Note that
Op(1)op(1) = op(1) Op(1) + op(1) = Op(1)

LEMMA
Suppose {Xn} are a sequence of random variables, and that for real sequence {an} with an −→∞ as
n −→∞,

(i) for real constant x0 and random variable V

an(Xn − x0)
d−→ V

(ii) real function g is differentiable at x0, with derivative ġ.

Then
an(g(Xn)− g(x0))

d−→ ġ(x0)V

Proof. Note first that for every ε > 0, there exists δ > 0 such that

|x− x0| ≤ δ =⇒ |g(x)− g(x0)− ġ(x0)(x− x0)| ≤ ε|x− x0|

Now, from (i) we have

an(Xn − x0) = Op(1) =⇒ Xn − x0 = Op(a−1
n ) = op(1)
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as an −→∞. Therefore, by definition, for every δ > 0,

P [|Xn − x0| ≤ δ] −→ 1

and therefore from above, for every ε > 0,

P [|g(Xn)− g(x0)− ġ(x0)(Xn − x0)| ≤ ε|Xn − x0|] −→ 1.

Hence
an(g(Xn)− g(x0)− ġ(x0)(Xn − x0)) = op(an(Xn − x0)) = op(1)

Therefore
an(g(Xn)− g(x0)) = ġ(x0){an(Xn − x0)}+ op(1)

and hence
an(g(Xn)− g(x0))

d−→ ġ(x0)V.

THEOREM (The Delta Method)
Consider sequence of random variables {Xn} such that

√
n(Xn − µ) d−→ X.

Suppose that g(.) is a function such that first derivative ġ(.) is continuous in a neighbourhood of µ,
with ġ(µ) 6= 0. Then √

n(g(Xn)− g(µ)) d−→ ġ(µ)X.

In particular, if √
n(Xn − µ) d−→ X ∼ N (0, σ2).

then √
n(g(Xn)− g(µ)) d−→ ġ(µ)X ∼ N (0, {ġ(µ)}2σ2).

Proof. Using the Lemma above, with

• an =
√

n
• x0 = µ
• V = X .

we have that √
n(g(Xn)− g(µ)) = ġ(µ)

√
n(Xn − µ) d−→ ġ(µ)X

and if X ∼ N (0, σ2), it follows from the properties of the Normal distribution that

√
n(g(Xn)− g(µ)) d−→ N (0, {ġ(µ)}2σ2).

Note that this method does not give a useful result if ġ(µ) = 0.
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Note: This result extends to the multivariate case. Consider a sequence of vector random variables
{X˜n

} such that
√

n(X˜n
− µ

˜
) d−→ X˜ .

and g
˜

: Rk −→ Rd is a vector-valued function with first derivative matrix ġ
˜
(.) which is continuous in a

neighbourhood of µ
˜

, with ġ(µ
˜
) 6= 0

˜
. Note that g

˜
can be considered as a d× 1 vector of scalar functions.

g
˜
(x˜) = (g1(x˜), . . . , gd(x˜))T.

Note that ġ
˜
(x˜) is a (d× k) matrix with (i, j)th element

∂gi(x˜)
∂xj

Under these assumptions, in general

√
n(g

˜
(X˜n

)− g
˜
(µ
˜
)) d−→ ġ

˜
(µ
˜
)X˜ .

and in particular, if √
n(X˜n

− µ
˜
) d−→ X˜ ∼ N (0

˜
, Σ).

where Σ is a positive definite, symmetric k × k matrix, then

√
n(g

˜
(X˜n

)− g
˜
(µ
˜
)) d−→ ġ

˜
(µ
˜
)X ∼ N

(
0
˜
, ġ
˜
(µ)Σġ

˜
(µ)T

)
.

THEOREM (The Second Order Delta Method: Normal case)
Consider sequence of random variables {Xn} such that

√
n(Xn − µ) d−→ N (0, σ2).

Suppose that g(.) is a function such that first derivative ġ(.) is continuous in a neighbourhood of µ,
with ġ(µ) = 0, but second derivative exists at µ with g̈(µ) 6= 0. Then

n(g(Xn)− g(µ)) d−→ σ2 g̈(µ)
2

X

where X ∼ χ2
1.

Proof. Uses a second order Taylor approximation; informally

g(Xn) = g(µ) + ġ(µ)(Xn − µ) +
g̈(µ)

2
(Xn − µ)2 + op(1)

thus, as ġ(µ) = 0,

g(Xn)− g(µ) =
g̈(µ)

2
(Xn − µ)2 + op(1)

and thus

n(g(Xn)− g(µ)) =
g̈(µ)

2
{√n(Xn − µ)}2 d−→ σ2 g̈(µ)

2
Z2

where Z2 ∼ χ2
1.
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EXAMPLES

1. Under the conditions of the Central Limit Theorem, for random variables X1, . . . , Xn and their
sample mean random variable Xn

√
n(Xn − µ) d−→ X ∼ N (0, σ2).

Consider g(x) = x2, so that ġ(x) = 2x, and hence, if µ 6= 0,

√
n(Xn

2 − µ2) d−→ X ∼ N (0, 4µ2σ2)

and
Xn

2 ∼ AN (µ2, 4µ2σ2/n)

If µ = 0, we proceed by a different route to compute the approximate distribution of Xn
2; note

that, if µ = 0, √
nXn

d−→ X ∼ N (0, σ2)

so therefore
nXn

2 = (
√

nXn)2 d−→ X2 ∼ Gamma(1/2, 1/(2σ2))

by elementary transformation results. Hence, for large n,

Xn
2

.∼. Gamma(1/2, n/(2σ2))

2. Again under the conditions of the CLT, consider the distribution of 1/Xn. In this case, we have a
function g(x) = 1/x, so ġ(x) = −1/x2, and if µ 6= 0, the Delta method gives

√
n(1/Xn − 1/µ) d−→ X ∼ N (0, σ2/µ4)

or,
1

Xn

∼ AN (1/µ, n−1σ2/µ4).
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