
556: MATHEMATICAL STATISTICS I

STOCHASTIC CONVERGENCE

7 Convergence Concepts

The following definitions are stated in terms of scalar random variables, but extend naturally to vector
random variables defined on the same probability space with measure P . For example, some results
are stated in terms of the Euclidean distance in one dimension |Xn − X| =

√
(Xn −X)2, or for se-

quences of k-dimensional random variables Xn˜
= (Xn1, . . . , Xnk)T,

‖Xn˜
−X˜ ‖ =




k∑

j=1

(Xnj −Xj)2




1/2

.

7.1 Convergence in Distribution

Consider a sequence of random variables X1, X2, . . . and a corresponding sequence of cdfs, FX1 , FX2 , . . .
so that for n = 1, 2, .. FXn(x) =P[Xn ≤ x] . Suppose that there exists a cdf, FX , such that for all x at
which FX is continuous,

lim
n−→∞FXn(x) = FX(x).

Then X1, . . . , Xn converges in distribution to random variable X with cdf FX , denoted

Xn
d−→ X

and FX is the limiting distribution. Convergence of a sequence of mgfs or cfs also indicates conver-
gence in distribution, that is, if for all t at which MX(t) is defined, if as n −→∞, we have

MXi(t) −→ MX(t) ⇐⇒ Xn
d−→ X.

Definition : DEGENERATE DISTRIBUTIONS
The sequence of random variables X1, . . . , Xn converges in distribution to constant c if the limiting
distribution of X1, . . . , Xn is degenerate at c, that is,

Xn
d−→ X and P [X = c] = 1

so that

FX(x) =
{

0 x < c
1 x ≥ c

Interpretation: A special case of convergence in distribution occurs when the limiting distribution is
discrete, with the probability mass function only being non-zero at a single value, that is, if the limiting
random variable is X , then P [X = c] = 1 and zero otherwise. We say that the sequence of random
variables X1, . . . , Xn converges in distribution to c if and only if, for all ε > 0,

lim
n−→∞P [|Xn − c| < ε] = 1

This definition indicates that convergence in distribution to a constant c occurs if and only if the prob-
ability becomes increasingly concentrated around c as n −→∞.
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Note: Points of Discontinuity
To show that we should ignore points of discontinuity of FX in the definition of convergence in distri-
bution, consider the following example: let

Fε(x) =

{
0 x < ε

1 x ≥ ε

be the cdf of a degenerate distribution with probability mass 1 at x = ε. Now consider a sequence {εn}
of real values converging to ε from below. Then, as εn < ε, we have

Fεn(x) =

{
0 x < εn

1 x ≥ εn

which converges to Fε(x) at all real values of x. However, if instead {εn} converges to ε from above,
then

Fεn(ε) = 0

for each finite n, as εn > ε, so
lim

n−→∞Fεn(ε) = 0.

Hence, as n −→∞,
Fεn(ε) −→ 0 6= 1 = Fε(ε).

Thus the limiting function in this case is

Fε(x) =

{
0 x ≤ ε

1 x > ε

which is not a cdf as it is not right-continuous. However, if {Xn} and X are random variables with
distributions {Fεn} and Fε, then

P [Xn = εn] = 1

converges to
P [X = ε] = 1

however we take the limit, so Fε does describe the limiting distribution of the sequence {Fεn}. Thus,
because of right-continuity, we ignore points of discontinuity in the limiting function.

7.2 Convergence in Probability

Definition : CONVERGENCE IN PROBABILITY TO A CONSTANT
The sequence of random variables X1, . . . , Xn converges in probability to constant c, denoted

Xn
p−→ c

if
lim

n−→∞P [|Xn − c| < ε] = 1

or, equivalently,
lim

n−→∞P [|Xn − c| ≥ ε] = 0

that is, if the limiting distribution of X1, . . . , Xn is degenerate at c.

Interpretation : Convergence in probability to a constant is precisely equivalent to convergence in
distribution to a constant.
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THEOREM (WEAK LAW OF LARGE NUMBERS)
Suppose that X1, . . . , Xn is a sequence of i.i.d. random variables with expectation µ and finite
variance σ2. Let Yn be defined by

Yn =
1
n

n∑

i=1

Xi

then, for all ε > 0,
lim

n−→∞P [|Yn − µ| < ε] = 1,

that is, Yn
p−→ µ, and thus the mean of X1, . . . , Xn converges in probability to µ.

Proof. Using the properties of expectation, it can be shown that Yn has expectation µ and variance
σ2/n, and hence by the Chebychev Inequality,

P [|Yn − µ| ≥ ε] ≤ σ2

nε2
−→ 0 as n −→∞

for all ε > 0. Hence
P [|Yn − µ| < ε] −→ 1 as n −→∞

and Yn
p−→ µ.

Definition : CONVERGENCE IN PROBABILITY TO A RANDOM VARIABLE
The sequence of random variables X1, . . . , Xn converges in probability to random variable X ,
denoted Xn

p−→ X , if, for all ε > 0,

lim
n−→∞P [|Xn −X| < ε] = 1 or equivalently lim

n−→∞P [|Xn −X| ≥ ε] = 0

To understand this definition, let ε > 0, and consider

An(ε) ≡ {ω : |Xn(ω)−X(ω)| ≥ ε}

Then we have Xn
p−→ X if

lim
n−→∞P (An(ε)) = 0

that is, if there exists an n such that for all m ≥ n,

P (Am(ε)) < ε.

7.3 Convergence Almost Surely

The sequence of random variables X1, . . . , Xn converges almost surely to random variable X , denoted
Xn

a.s.−→ X if for every ε > 0
P

[
lim

n−→∞ |Xn −X| < ε
]

= 1,

that is, if A ≡ {ω : Xn(ω) −→ X(ω)}, then P (A) = 1. Equivalently, Xn
a.s.−→ X if for every ε > 0

P
[

lim
n−→∞ |Xn −X| > ε

]
= 0.

This can also be written
lim

n−→∞Xn(ω) = X(ω)

for every ω ∈ Ω, except possibly those lying in a set of probability zero under P .
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Alternative characterization:

• Let ε > 0, and the sets An(ε) and Bm(ε) be defined for n,m ≥ 0 by

An(ε) ≡ {ω : |Xn(ω)−X(ω)| > ε} Bm(ε) ≡
∞⋃

n=m

An(ε).

Then Xn
a.s.−→ X if and only if

P (Bm(ε)) −→ 0 as m −→∞.

Interpretation:

– The event An(ε) corresponds to the set of ω for which Xn(ω) is more than ε away from X .

– The event Bm(ε) corresponds to the set of ω for which Xn(ω) is more than ε away from X ,
for at least one n ≥ m.

– The event Bm(ε) occurs if there exists an n ≥ m such that |Xn −X| > ε.

– Xn
a.s.−→ X if and only if and only if P (Bm(ε)) −→ 0.

• Xn
a.s.−→ X if and only if

P [ |Xn −X| > ε infinitely often ] = 0

that is, Xn
a.s.−→ X if and only if there are only finitely many Xn for which

|Xn(ω)−X(ω)| > ε

if ω lies in a set of probability greater than zero.

• Note that Xn
a.s.−→ X if and only if

lim
m−→∞P (Bm(ε)) = lim

m−→∞P

( ∞⋃
n=m

An(ε)

)
= 0

in contrast with the definition of convergence in probability, where Xn
p−→ X if

lim
m−→∞P (Am(ε)) = 0.

Clearly

Am(ε) ⊆
∞⋃

n=m

An(ε)

and hence almost sure convergence is a stronger form.

Alternative terminology:

• Xn −→ X almost everywhere, Xn
a.e.−→ X

• Xn −→ X with probability 1, Xn
w.p.1−→ X

Interpretation: A random variable is a real-valued function from (a sigma-algebra defined on) sample
space Ω to R . The sequence of random variables X1, . . . , Xn corresponds to a sequence of functions
defined on elements of Ω. Almost sure convergence requires that the sequence of real numbers Xn(ω)
converges to X(ω) (as a real sequence) for all ω ∈ Ω, as n −→ ∞, except perhaps when ω is in a set
having probability zero under the probability distribution of X .
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THEOREM (STRONG LAW OF LARGE NUMBERS)
Suppose that X1, . . . , Xn is a sequence of i.i.d. random variables with expectation µ and (finite)
variance σ2. Let Yn be defined by

Yn =
1
n

n∑

i=1

Xi

then, for all ε > 0,
P

[
lim

n−→∞ |Yn − µ| < ε
]

= 1,

that is, Yn
a.s.−→ µ, and thus the mean of X1, . . . , Xn converges almost surely to µ.

7.4 Convergence In rth Mean

The sequence of random variables X1, . . . , Xn converges in rth mean to random variable X , denoted
Xn

r−→ X if
lim

n−→∞E [|Xn −X|r] = 0.

For example, if
lim

n−→∞E
[
(Xn −X)2

]
= 0

then we write
Xn

r=2−→ X.

In this case, we say that {Xn} converges to X in mean-square or in quadratic mean.

THEOREM
For r1 > r2 ≥ 1,

Xn
r=r1−→ X =⇒ Xn

r=r2−→ X

Proof. By Lyapunov’s inequality

E[ |Xn −X|r2 ]1/r2 ≤ E[ |Xn −X|r1 ]1/r1

so that
E[ |Xn −X|r2 ] ≤ E[ |Xn −X|r1 ]r2/r1 −→ 0

as n −→∞, as r2 < r1. Thus
E[ |Xn −X|r2 ] −→ 0

and Xn
r=r2−→ X . The converse does not hold in general.

THEOREM (RELATING THE MODES OF CONVERGENCE)
For sequence of random variables X1, . . . , Xn, following relationships hold

Xn
a.s.−→ X

or

Xn
r−→ X





=⇒ Xn
p−→ X =⇒ Xn

d−→ X

so almost sure convergence and convergence in rth mean for some r both imply convergence in
probability, which in turn implies convergence in distribution to random variable X .

No other relationships hold in general.
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Proof. THIS PROOF NOT EXAMINABLE.

(a) Xn
a.s.−→ X =⇒ Xn

p−→ X . Suppose Xn
a.s.−→ X , and let ε > 0. Then

P [ |Xn −X| < ε ] ≥ P [ |Xm −X| < ε, ∀m ≥ n ] (1)

as, considering the original sample space,

{ω : |Xm(ω)−X(ω)| < ε, ∀m ≥ n} ⊆ {ω : |Xn(ω)−X(ω)| < ε}
But, as Xn

a.s.−→ X , P [ |Xm − X| < ε, ∀m ≥ n ] −→ 1, as n −→ ∞. So, after taking limits in
equation (1), we have

lim
n−→∞P [ |Xn −X| < ε ] ≥ lim

n−→∞P [ |Xm −X| < ε, ∀m ≥ n ] = 1

and so
lim

n−→∞P [ |Xn −X| < ε ] = 1 ∴ Xn
p−→ X.

(b) Xn
r−→ X =⇒ Xn

p−→ X . Suppose Xn
r−→ X , and let ε > 0. Then, using an argument similar to

Chebychev’s Lemma,

E[ |Xn −X|r ] ≥ E[ |Xn −X|rI{|Xn−X|>ε} ] ≥ εrP [|Xn −X| > ε].

Taking limits as n −→ ∞, as Xn
r−→ X , E[ |Xn − X|r ] −→ 0 as n −→ ∞, so therefore, also, as

n −→∞
P [|Xn −X| > ε] −→ 0 ∴ Xn

p−→ X.

(c) Xn
p−→ X =⇒ Xn

d−→ X . Suppose Xn
p−→ X , and let ε > 0. Denote, in the usual way,

FXn(x) = P [Xn ≤ x] and FX(x) = P [X ≤ x].

Then, by the theorem of total probability, we have two inequalities

FXn(x) = P [Xn ≤ x] = P [Xn ≤ x,X ≤ x+ε]+P [Xn ≤ x,X > x+ε] ≤ FX(x+ε)+P [|Xn−X| > ε]

FX(x−ε) = P [X ≤ x−ε] = P [X ≤ x−ε,Xn ≤ x]+P [X ≤ x−ε,Xn > x] ≤ FXn(x)+P [|Xn−X| > ε].

as A ⊆ B =⇒ P (A) ≤ P (B) yields

P [ Xn ≤ x,X ≤ x + ε ] ≤ FX(x + ε) and P [ X ≤ x− ε, Xn ≤ x ] ≤ FXn(x).

Thus
FX(x− ε)− P [ |Xn −X| > ε] ≤ FXn(x) ≤ FX(x + ε) + P [ |Xn −X| > ε]

and taking limits as n −→∞ (with care; we cannot yet write

lim
n−→∞FXn(x)

as we do not know that this limit exists) recalling that Xn
p−→ X ,

FX(x− ε) ≤ lim inf
n−→∞ FXn(x) ≤ lim sup

n−→∞
FXn(x) ≤ FX(x + ε)

Then if FX is continuous at x, FX(x − ε) −→ FX(x) and FX(x + ε) −→ FX(x) as ε −→ 0, and
hence

FX(x) ≤ lim inf
n−→∞ FXn(x) ≤ lim sup

n−→∞
FXn(x) ≤ FX(x)

and thus FXn(x) −→ FX(x) as n −→∞.
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THEOREM (Partial Converses: NOT EXAMINABLE)

(i) If
∞∑

n=1

P [ |Xn −X| > ε ] < ∞

for every ε > 0, then Xn
a.s.−→ X .

(ii) If, for some positive integer r,
∞∑

n=1

E[ |Xn −X|r ] < ∞

then Xn
a.s.−→ X .

Proof. (i) Let ε > 0. Then for n ≥ 1,

P [ |Xn −X| > ε, for some m ≥ n ] ≡ P

[ ∞⋃
m=n

{|Xm −X| > ε}
]
≤

∞∑
m=n

P [ |Xm −X| > ε ]

as, by elementary probability theory, P (A ∪ B) ≤ P (A) + P (B). But, as it is the tail sum of a
convergent series (by assumption), it follows that

lim
n−→∞

∞∑
m=n

P [ |Xm −X| > ε ] = 0.

Hence
lim

n−→∞P [ |Xn −X| > ε, for some m ≥ n ] = 0

and Xn
a.s.−→ X .

(ii) Identical to part (i), and using part (b) of the previous theorem that Xn
r−→ X =⇒ Xn

p−→ X .

THEOREM (Slutsky’s Theorem)
Suppose that

Xn
d−→ X and Yn

p−→ c

Then

(i) Xn + Yn
d−→ X + c

(ii) XnYn
d−→ cX

(iii) Xn/Yn
d−→ X/c provided c 6= 0.
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7.5 The Central Limit Theorem

THEOREM (THE LINDEBERG-LÉVY CENTRAL LIMIT THEOREM)
Suppose X1, . . . , Xn are i.i.d. random variables with mgf MX , with expectation µ and variance σ2,
both finite. Let the random variable Zn be defined by

Zn =

n∑
i=1

Xi − nµ

√
nσ2

=
√

n(Xn − µ)
σ

where

Xn =
1
n

n∑

i=1

Xi,

and denote by MZn the mgf of Zn. Then, as n −→∞,

MZn(t) −→ exp{t2/2}

irrespective of the form of MX . Thus, as n −→∞, Zn
d−→ Z ∼ N (0, 1).

Proof. First, let Yi = (Xi − µ)/σ for i = 1, . . . , n. Then Y1, . . . , Yn are i.i.d. with mgf MY say, and
EfY

[Yi] = 0, VarfY
[Yi] = 1 for each i. Using a Taylor series expansion, we have that for t in a neigh-

bourhood of zero,

MY (t) = 1 + tEfY
[Y ] +

t2

2!
EfY

[Y 2] +
t3

3!
EfY

[Y 3] + . . . = 1 +
t2

2
+ O(t3)

using the O(t3) notation to capture all terms involving t3 and higher powers. Re-writing Zn as

Zn =
1√
n

n∑

i=1

Yi

as Y1, . . . , Yn are independent, we have by a standard mgf result that

MZn(t) =
n∏

i=1

{
MY

(
t√
n

)}
=

{
1 +

t2

2n
+ O(n−3/2)

}n

=
{

1 +
t2

2n
+ o(n−1)

}n

.

so that, by the definition of the exponential function, as n −→∞

MZn(t) −→ exp{t2/2} ∴ Zn
d−→ Z ∼ N (0, 1)

where no further assumptions on MX are required.

Alternative statement: The theorem can also be stated in terms of

Zn =

n∑

i=1

Xi − nµ

√
n

=
√

n(Xn − µ)

so that
Zn

d−→ Z ∼ N (0, σ2).

and σ2 is termed the asymptotic variance of Zn.
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Notes :

(i) The theorem requires the existence of the mgf MX .

(ii) The theorem holds for the i.i.d. case, but there are similar theorems for non identically dis-
tributed, and dependent random variables.

(iii) The theorem allows the construction of asymptotic normal approximations. For example, for
large but finite n, by using the properties of the Normal distribution,

Xn ∼ AN (µ, σ2/n)

Sn =
n∑

i=1

Xi ∼ AN (nµ, nσ2).

where AN (µ, σ2) denotes an asymptotic normal distribution. The notation

Xn .∼. N (µ, σ2/n)

is sometimes used.

(iv) The multivariate version of this theorem can be stated as follows: Suppose X˜1
, . . . , X˜n

are i.i.d.
k-dimensional random variables with mgf MX˜

, with

EfX˜
[X˜i

] = µ
˜

VarfX˜
[X˜i

] = Σ

where Σ is a positive definite, symmetric k× k matrix defining the variance-covariance matrix of
the X˜i

. Let the random variable Z˜n
be defined by

Z˜n
=
√

n(X˜n
− µ

˜
)

where

X˜n
=

1
n

n∑

i=1

X˜i
.

Then
Z˜n

d−→ Z˜ ∼ N (0
˜
, Σ)

as n −→∞.
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