556: MATHEMATICAL STATISTICS 1
GENERAL RESULTS FOR THE SAMPLE MEAN AND VARIANCE STATISTICS

THEOREM
Suppose that X7, ..., X, is a random sample from a distribution, say with finite expectation y and
variance o2. Consider the sample mean and sample variance statistics X and s* and denote
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Proof (a) and (b) follow from elementary properties of expectations and variances for independent
random variables. For (c), note that
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where line (1) follows from the fact that for any random variable X
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and the result of parts (a) and (b).



SAMPLING FROM A NORMAL FAMILY

Recall the fundamental transformation results for Normal random variables:
(i) If X ~ N(0,1), then

X2~ x? = Gamma <;, ;)

(i) If Xy,..., X, ~N(0,1) are independent random variables, then
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(iii) If Y1 ~ x2, and Y3 ~ x2, are independent random variables, then

Y=Vt Vemd,,

THEOREM
Suppose that X7, ..., X, is a random sample from a normal distribution, say X; ~ N (u, 02). Define the
sample mean and sample variance statistics X and s? as the random variables
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Then
(@) X ~N(u,0%/n)
(b) X is independent of {X; — X,i=1,...,n}, and X and s? are independent random variables
(c¢) The random variable
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has a chi-squared distribution with n — 1 degrees of freedom.

Proof (a) Proof straightforward using mgfs.

(b) The joint pdf X7, ..., X, is the normal density
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Consider the multivariate transformation to Y7, ..., Y;, where
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Thus Y = AX, or equivalently X = A~1Y, where A is the n x n matrix with (4, j)th element
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that is, we have a linear transformation. Note that
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wherez = — E x; is the observed sample mean. Thus the joint pdf of X1, ..., X, takes the form
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The Jacobian of the transformation is n, so the joint density of Y7, ..., Y}, is given by the multivariate
transformation theorem as
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and therefore Y; is independent of Y5,...,Y;. Hence X is independent of the random variables
{Y;=X,-X,i=2,..,n}. Finally, X is also independent of X; — X as

XX =3 (% - X)
1=2

and of s?, which is a function only of {X; — X, i =1,...,n}. As X is independent of these variables,
X and s? are also independent.

W



(c) The random variables that appear as sums of squares terms that joint pdf are
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or Vi = Vi + V3, say. Now, X; ~ N (i, 0?), so therefore
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as the X;s are independent, and the sum of n independent Ga(1/2,1/2) variables has a Ga(n/2,1/2)
distribution. Similarly, as X ~ N(u,0?/n), V3 ~ x3 By part (b), V5 and V3 are independent, and so the
mgfs of V1, V5 and V3 are related by
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As Vi and V3 are Gamma random variables, My, and My, are given by
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So therefore
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which is also the mgf of a Gamma random variable, and hence
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and the result follows.

Alternative inductive proof of (c): Let X and s?, k = 1,2, ..., n denote the sample mean and sample
variance random variables derived from the first k variables. Now, for £ > 2, it can be shown after
some manipulation that
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say, where Z ~ N (0, 1). Thus s3 ~ x?. Now for the inductive hypothesis, presume that
(k —1)s ~ Xi—1

so that, using the identity in (2),
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The two terms on the right hand side are independent (using the result in (b)); the first term is Xifl
distributed, the second term is x7 distributed, so ks7_, , is x7 distributed and the inductive argument is
completed.



