
556: MATHEMATICAL STATISTICS I

MULTIVARIATE EXPECTATIONS: COVARIANCE AND CORRELATION

For vector random variable X˜ = (X1, . . . , Xk)T, and vector function g
˜
(.), we have that

EfX˜
[ g
˜
(X˜ ) ] =

∫
· · ·

∫
g
˜
(x˜) dFX˜

(x˜)

We can consider multivariate moments (or cross-moments) by choosing a particular scalar g: for
integers r1, r2, . . . , rk ≥ 0,

EfX˜
[ g
˜
(X˜ ) ] = EfX˜

[
Xr1

1 Xr2
2 . . . Xrk

k

]
.

The multivariate version of generating functions can be used to compute such moments; recall that

MX˜
(t
˜
) = EfX˜


exp





k∑

j=1

tjXj








If r = r1 + r2 + · · ·+ rk, where each rj is a non-negative integer, we have that

∂r

∂tr1
1 ∂tr2

2 · · · ∂trk
k

{
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˜
)
}

t
˜
=0

= EfX˜
[
Xr1
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k

]
.

For example, if k = 2, we have that

∂2

∂t1∂t2
{MX1,X2(t1, t2)}t1=0,t2=0 = EfX1,X2

[X1X2] .

If the components of X˜ are independent random variables, then

EfX˜
[
Xr1

1 Xr2
2 . . . Xrk

k

]
=

k∏

j=1

EfXj
[Xrj

j ]

COVARIANCE AND CORRELATION

• The covariance of two random variables X1 and X2 is denoted CovfX1,X2
[X1, X2], and is defined

by
CovfX1,X2

[X1, X2] = EfX1,X2
[(X1 − µ1)(X2 − µ2)] = EfX1,X2

[X1X2]− µ1µ2

where µi = EfXi
[Xi] is the marginal expectation of Xi, for i = 1, 2.

• The correlation of X1 and X2 is denoted CorrfX1,X2
[X1, X2], and is defined by

CorrfX1,X2
[X1, X2] =

CovfX1,X2
[X1, X2]√

VarfX1
[X1]VarfX2

[X2]

For random variables X1 and X2, with (marginal) expectations µ1 and µ2 respectively, and (marginal)
variances σ2

1 and σ2
2 respectively, if random variables Z1 and Z2 are defined

Z1 =
X1 − µ1

σ1
Z2 =

X2 − µ2

σ2

that is, Z1 and Z2 are standardized variables. Then

CorrfX1,X2
[X1, X2] = CovfZ1,Z2

[Z1, Z2].
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NOTES:

(i) If
CovfX1,X2

[X1, X2] = CorrfX1,X2
[X1, X2] = 0

then variables X1 and X2 are uncorrelated. Note that if random variables X1 and X2 are inde-
pendent, then

CovfX1,X2
[X1, X2] = EfX1,X2

[X1X2]−EfX1
[X1]EfX2

[X2] = EfX1
[X1]EfX2

[X2]−EfX1
[X1]EfX2

[X2] = 0

and so X1 and X2 are also uncorrelated (note that the converse does not hold).

(ii) Extension to k variables: covariances can only be calculated for pairs of random variables, but if
k variables have a joint probability structure it is possible to construct a k × k matrix, CX say, of
covariance values, whose (i, j)th element is

CovfXi,Xj
[Xi, Xj ]

for i, j = 1, .., k, that captures the complete covariance structure in the joint distribution. If i 6= j,
then

CovfXj,Xi
[Xj , Xi] = CovfXi,Xj

[Xi, Xj ]

so CX is symmetric, and if i = j,

CovfXi,Xi
[Xi, Xi] ≡ VarfXi

[Xi]

The matrix CX is referred to as the variance-covariance matrix, and we can write

CX = VarfX˜
[X˜ ].

(iii) If X˜ is a k×1 vector random variable with variance-covariance matrix CX, let A be a d×k matrix.
Then Y

˜
= AX˜ is a d× 1 vector random variable, and

CY = VarfY
˜
[Y
˜
] = VarfX˜

[AX˜ ] = AVarfX˜
[X˜ ]AT = ACXAT

is the d× d variance-covariance matrix for Y
˜

.

(iv) As a special case of (iii), if random variable X is defined by X = a1X1 + a2X2 + . . . + akXk, for
random variables X1, ..., Xk and constants a1, ..., ak, then

EfX
[X] =

k∑

i=1

aiEfXi
[Xi]

VarfX
[X] =

k∑

i=1

a2
i VarfXi

[Xi] + 2
k∑

i=1

i−1∑

j=1

aiajCovfXi,Xj
[Xi, Xj ]

(v) Combining the results above when k = 2, and defining standardized variables Z1 and Z2 as
above, we have

0 ≤ VarfZ1,Z2
[Z1 ± Z2] = VarfZ1

[Z1] + VarfZ2
[Z2]± 2CovfZ1,Z2

[Z1, Z2]

= 1 + 1± 2CorrfX1,X2
[X1, X2] = 2(1± CorrfX1,X2

[X1, X2])

and hence
−1 ≤ CorrfX1,X2

[X1, X2] ≤ 1.
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