556: MATHEMATICAL STATISTICS I

DEFINITIONS AND NOTATION FROM REAL ANALYSIS

Definition: Limits of sequences of reals

Sequence $\{a_n\}$ has limit a as $n \longrightarrow \infty$, written

$$\lim_{n \to \infty} a_n = a$$

if, for every $\epsilon > 0$, there exists an $N = N(\epsilon)$ such that $|a_n - a| < \epsilon$ for all n > N. We say that $\{a_n\}$ is a **convergent** sequence, and that $\{a_n\}$ **converges** to *a*.

Definition: Limits of functions

Let *f* be a real-valued function of real argument *x*.

• Limit as $x \to \infty$:

$$f(x) \longrightarrow a$$
 or $\lim_{x \longrightarrow \infty} f(x) = a$

as $x \to \infty$ if, every $\epsilon > 0$, $\exists M = M(\epsilon)$ such that $|f(x) - a| < \epsilon, \forall x > M$

• Limit as $x \longrightarrow x_0^{\pm}$:

$$f(x) \longrightarrow a$$
 or $\lim_{x \longrightarrow x_0^{\pm}} f(x) = a$

as $x \longrightarrow x_0^{\pm}$ (that is, $x \longrightarrow x_0^{-}$ means "from below" and $x \longrightarrow x_0^{+}$ means "from above") if, for all $\epsilon > 0$, $\exists \delta$ such that $|f(x) - a| < \epsilon$, $\forall x_0 < x < x_0 + \delta$ (or, respectively $x_0 - \delta < x < x_0$).

• Left/Right Limit as $x \longrightarrow x_0$:

 $f(x) \longrightarrow a$ or $\lim_{x \longrightarrow x_0} f(x) = a$

as $x \longrightarrow x_0$ if

$$\lim_{x \longrightarrow x_0^+} f(x) = \lim_{x \longrightarrow x_0^-} f(x) = a$$

Definition: Continuity

Function f(x) is continuous at x_0 if

$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = f(x_0)$$

and all limits exist.

Definition: Supremum and Infimum

A set of real values *S* is **bounded above (bounded below)** if there exists a real number *a* (*b*) such that, for all $x \in S$, $x \le a$ ($x \ge b$). The quantity *a* (*b*) is an **upper bound (lower bound)**. A real value a_L (b_U) is a **least upper bound (greatest lower bound)** if it is an upper bound (a lower bound) of *S*, and no other upper (lower) bound is smaller (larger) than a_L (b_U). We write

$$a_L = \sup S$$
 $b_U = \inf S$

for the a_L , the **supremum**, and b_U , the **infimum** of *S*.

If *S* comprises a sequence of elements $\{x_n\}$, then we can write

$$a_L = \sup_{x_n \in S} x_n \equiv \sup_n x_n$$
 $b_U = \inf_{x_n \in S} x_n \equiv \inf_n x_n.$

A sequence that is both bounded above and bounded below is termed **bounded**. Any bounded, monotone real sequence is **convergent**.

Definition: Limit Superior and Limit Inferior

Suppose that $\{x_n\}$ is a bounded real sequence. Define sequences $\{y_k\}$ and $\{z_k\}$ by

$$y_k = \inf_{n \ge k} x_n$$
 $z_k = \sup_{n \ge k} x_n$

Then $\{y_k\}$ is a **bounded non-decreasing** sequence and $\{z_k\}$ is a **bounded non-increasing** sequence, and

$$\lim_{k \to \infty} y_k = \sup_k y_k \quad \text{and} \quad \lim_{k \to \infty} z_k = \inf_k z_k$$

and we can consider the limits of these convergent sequences, known as the lim sup and lim inf:

- lim sup is the limiting least upper bound
- lim inf is the limiting greatest lower bound

Specifically, we define the **limit superior** (or **upper** limit, or **lim sup**) and the **limit inferior** (or **lower** limit, or **lim inf**) by

$$\limsup_{n \to \infty} x_n = \limsup_{k \to \infty} \sup_{n \ge k} x_n = \inf_k \sup_{n \ge k} x_n = \overline{\lim} x_n$$

$$\liminf_{n \to \infty} x_n = \liminf_{k \to \infty} \inf_{n \ge k} x_n = \sup_{k} \inf_{n \ge k} x_n = \underline{\lim} x_n$$

Then we have $\underline{\lim} x_n \le \overline{\lim} x_n$ and $\lim x_n = x$ if and only if $\underline{\lim} x_n = x = \overline{\lim} x_n$.

We can define the same concepts for real functions; we write

$$\limsup_{x \to \infty} f(x) = \lim_{y \to \infty} \left\{ \sup_{x \ge y} \{ f(x) \} \right\} \qquad \qquad \lim_{x \to \infty} \inf_{x \to \infty} f(x) = \lim_{y \to \infty} \left\{ \inf_{x \ge y} \{ f(x) \} \right\}$$

and the limit as $x \rightarrow \infty$ exists if and only if

$$\limsup_{x \to \infty} f(x) = \liminf_{x \to \infty} f(x) = \lim_{x \to \infty} f(x).$$

For example, the function $f(x) = \cos(x)$ does not converge to any limit as $x \rightarrow \infty$. But

$$\sup_{x \ge y} \{\cos(x)\} = 1 \qquad \Longrightarrow \qquad \limsup_{x \to \infty} f(x) = \lim_{y \to \infty} \left\{ \sup_{x \ge y} \{\cos(x)\} \right\} = \lim_{y \to \infty} \{1\} = 1$$

and similarly $\liminf_{x \to \infty} f(x) = -1$

Definition: Order Notation (little oh and big oh)

Consider $x \longrightarrow x_0$ where x_0 is possibly $\pm \infty$. Then we write

$$f(x) \sim g(x) \quad \text{if} \quad \frac{f(x)}{g(x)} \longrightarrow 1 \quad \text{as} \quad x \longrightarrow x_0$$
$$f(x) = O(g(x)) \quad \text{if} \quad \frac{f(x)}{g(x)} \longrightarrow 0 \quad \text{as} \quad x \longrightarrow x_0$$
$$f(x) = O(g(x)) \quad \text{if} \quad \frac{f(x)}{g(x)} \longrightarrow b \quad \text{as} \quad x \longrightarrow x_0, \text{ for some } b$$

with similar notation for real sequences. For example

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots = x + o(x)$$

as $x \rightarrow 0$, and

$$(x+1)^3 = x^3 + 3x^2 + 3x + 1 = x^3 + o(x^3) = o(x^4)$$

as $x \longrightarrow \infty$.

556: MATHEMATICAL STATISTICS I Some Useful Mathematical Results

• Series Summations:

GEOMETRIC

$$\frac{1}{1-z} = 1 + z + z^2 + \dots = \sum_{k=0}^{\infty} z^k \qquad |z| < 1$$
EXPONENTIAL

$$e^z = 1 + z + \frac{z^2}{2!} + \dots = \sum_{k=0}^{\infty} \frac{z^k}{k!} \qquad z \in \mathbb{R}$$

BINOMIAL
$$(n = 1, 2, \dots)$$
 $(1 + z)^n = 1 + nz + \frac{n(n-1)}{2!}z^2 + \dots + \alpha z^{n-1} + z^n = \sum_{k=0}^n \binom{n}{k} z^k$

BINOMIAL
$$(\alpha > 0)$$
 $(1 + z)^{\alpha} = 1 + \alpha z + \frac{\alpha(\alpha - 1)}{2!} z^2 + \dots = \sum_{k=0}^{\infty} {\alpha \choose k} z^k$

NEG. BINOMIAL
$$(\alpha > 0)$$
 $\frac{1}{(1-z)^{\alpha}} = 1 + \alpha z + \frac{\alpha (\alpha + 1)}{2!} z^2 + \dots = \sum_{k=0}^{\infty} {\binom{\alpha + k - 1}{k}} z^k \qquad |z| < 1$

LOGARITHMIC

$$-\log(1-z) = z + \frac{z^2}{2} + \frac{z^3}{3} + \dots = \sum_{k=1}^{\infty} \frac{z^k}{k} |z| < 1$$

$$\log(1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \dots = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{z^k}{k} |z| < 1$$

where, if $\Gamma(.)$ is the **gamma function**, in general

$$\binom{\theta}{x} = \frac{\Gamma(\theta+1)}{\Gamma(x+1)\Gamma(\theta-x+1)}.$$

• **Exponential Function:** For real *x* > 0

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = \lim_{n \to \infty} \left(1 - \frac{x}{n} \right)^{-n} = e^x \qquad \qquad \lim_{n \to \infty} \left(1 - \frac{x}{n} \right)^n = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^{-n} = e^{-x}$$

• **Taylor Series:** For real function *f* and real number *x*₀, under mild regularity assumptions

$$f(x) = \sum_{k=0}^{\infty} \frac{(x-x_0)^k}{k!} f^k(x_0) = \sum_{k=0}^r \frac{(x-x_0)^k}{k!} f^k(x_0) + O((x-x_0)^r)$$

where the approximation holds as $x \rightarrow x_0$, and

$$f^{k}(x_{0}) = \frac{d^{k}}{dx^{k}} \{f(x)\}_{x=x_{0}}$$

if this derivative exists.