{VERSION 4 0 "IBM INTEL NT" "4.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 256 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 257 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1 12 1 {CSTYLE "" -1 -1 "Ti mes" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 3 0 0 0 0 1 0 1 0 2 2 0 1 } {PSTYLE "Maple Plot" -1 13 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Normal" -1 256 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Normal" -1 257 1 {CSTYLE "" -1 -1 "T imes" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 1 0 0 0 0 1 0 1 0 2 2 0 1 } } {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 " " {TEXT -1 0 "" }}}{EXCHG {PARA 256 "" 0 "" {TEXT 256 50 "PROBABILITY \+ MASS FUNCTION CALCULATIONS USING MAPLE" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 81 "n:=20:\nfor x from 0 by 1 while x < n+1 do\n f_X[x] := binomial(n,x)*(1/2)^n;\n od:" }{TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 34 " Numerical values of Probabilities" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 35 "seq(binomial(n,x)*(1/2)^n,x=0..20);" }}{PARA 12 "" 1 "" {XPPMATH 20 "67#\"\"\"\"(w&[5#\"\"&\"'W@E#\"#&*\"')GC&#\"$&GF(#\"%X [F%#\"$p*\"&Ob'#F/\"'s58#F/F2#\"&&)H'F+#\"&&*4#F4#\"&*=YF(F8F6F5F3F0F. F,F)F&F#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 49 "with(plots):pointplot([seq([x,f_X[x ]],x=0..n)] );" }}{PARA 13 "" 1 "" {GLPLOT2D 280 218 218 {PLOTDATA 2 " 6#-%'POINTSG677$$\"\"!F($\"+kJuO&*!#;7$$\"\"\"F($\"+L'[t!>!#97$$\"\"#F ($\"+,7)>\"=!#87$$\"\"$F($\"+@()=(3\"!#77$$\"\"%F($\"+j?b?YF=7$$\"\"&F ($\"+gmdy9!#67$$\"\"'F($\"+];W'p$FH7$$\"\"(F($\"+,L)GR(FH7$$\"\")F($\" +ONM,7!#57$$\"\"*F($\"+#Q\"z,;FX7$$\"#5F($\"+?0(>w\"FX7$$\"#6F(Ffn7$$ \"#7F(FV7$$\"#8F(FQ7$$\"#9F(FL7$$\"#:F(FF7$$\"#;F(FA7$$\"#F(F/7$$\"#?F(F)" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" }}}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 53 " pointplot([seq([x,binomial(n,x)*(1/2)^n],x=0..20)] );" }}{PARA 13 "" 1 "" {GLPLOT2D 277 189 189 {PLOTDATA 2 "6#-%'POINTSG677$$\"\"!F($\"+kJ uO&*!#;7$$\"\"\"F($\"+L'[t!>!#97$$\"\"#F($\"+,7)>\"=!#87$$\"\"$F($\"+@ ()=(3\"!#77$$\"\"%F($\"+j?b?YF=7$$\"\"&F($\"+gmdy9!#67$$\"\"'F($\"+];W 'p$FH7$$\"\"(F($\"+,L)GR(FH7$$\"\")F($\"+ONM,7!#57$$\"\"*F($\"+#Q\"z,; FX7$$\"#5F($\"+?0(>w\"FX7$$\"#6F(Ffn7$$\"#7F(FV7$$\"#8F(FQ7$$\"#9F(FL7 $$\"#:F(FF7$$\"#;F(FA7$$\"#F(F/7$$\"#?F(F)" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" }}}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 257 "" 0 "" {TEXT 257 23 "CUMULATIVE PROBABIL ITY" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "F_X[0]:=f_X[0]:" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 70 "for x from 1 by 1 while x < \+ n+1 do\n F_X[x] := F_X[x-1] + f_X[x];\nod:" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 49 "with(plots):pointplot([seq([x,F_X[x]],x=0 ..n)] );" }}{PARA 13 "" 1 "" {GLPLOT2D 327 256 256 {PLOTDATA 2 "6#-%'P OINTSG677$$\"\"!F($\"+kJuO&*!#;7$$\"\"\"F($\"+kgr-?!#97$$\"\"#F($\"+3G D7?!#87$$\"\"$F($\"+,ST)G\"!#77$$\"\"%F($\"+kg'*3fF=7$$\"\"&F($\"+nKZp ?!#67$$\"\"'F($\"+<\\\"fw&FH7$$\"\"(F($\"+A)zeJ\"!#57$$\"\")F($\"+eLA< DFS7$$\"\"*F($\"+SZ,>TFS7$$\"#5F($\"+g_)4)eFS7$$\"#6F($\"+Umx#[(FS7$$ \"#7F($\"+y,7%o)FS7$$\"#8F($\"+3&3MU*FS7$$\"#9F($\"+tE0$z*FS7$$\"#:F($ \"+R.\"4%**FS7$$\"#;F($\"+ge6()**FS7$$\"#F($\"+j/******FS7$$\"#?F(F-" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 43.000000 0 0 "Curve 1" }}}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 12 "help(plots);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{MARK "10 0 0" 0 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 } {PAGENUMBERS 0 1 2 33 1 1 }