{VERSION 6 0 "IBM INTEL NT" "6.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1 11 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 3 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Plot" -1 13 1 {CSTYLE "" -1 -1 " Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 1 0 0 0 0 1 0 1 0 2 2 0 1 } {PSTYLE "Normal" -1 256 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Plot" -1 257 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 256 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 89 "The Fourier/Inverse Fourier transform functionality in Ma ple is in the \"inttrans\" library" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "restart:with(inttrans);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7/%)a ddtableG%(fourierG%+fouriercosG%+fouriersinG%'hankelG%(hilbertG%+invfo urierG%+invhilbertG%+invlaplaceG%*invmellinG%(laplaceG%'mellinG%*savet ableG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "f[X]:=(1/pi)*(1/(1 +x^2));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"fG6#%\"XG*&\"\"\"F)*&% #piGF),&F)F)*$)%\"xG\"\"#F)F)F)!\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "C[X]:=fourier(f[X],x,t);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"CG6#%\"XG*(%#PiG\"\"\",&*&-%$expG6#,$%\"tG!\"\"F*- %*HeavisideG6#F1F*F**&-F.F5F*-F4F/F*F*F*%#piGF2" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 25 "C[X]:=(1/2)*exp(-abs(t));" }}{PARA 0 "> " 0 " " {MPLTEXT 1 0 0 "" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"CG6#%\"XG,$ *&#\"\"\"\"\"#F+-%$expG6#,$-%$absG6#%\"tG!\"\"F+F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "f[X]:=invfourier(1/(1+t^2),t,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"fG6#%\"XG,&*&#\"\"\"\"\"#F+*&-%$expG6#, $%\"xG!\"\"F+-%*HeavisideG6#F2F+F+F+*&F*F+*&-F/F6F+-F5F0F+F+F+" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 75 "The Heaviside Function is the elem entary step function, not defined at zero" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "Heaviside(-2);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"!" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "Heaviside(0);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%*un definedG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "Heaviside(1.6); " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"\"\"\"\"!" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 41 "plot(Heaviside(x),x=-3..3,color=\"green\");" }}{PARA 13 "" 1 "" {GLPLOT2D 636 636 636 {PLOTDATA 2 "6&-%'CURVESG6#7h n7$$!\"$\"\"!$F*F*7$$!3!******\\2<#pG!#iUC\"F/F+7$$!3-++DhkaI6F/F+7$$!3 s******\\XF`**!#=F+7$$!3u*******>#z2))FgnF+7$$!3S++]7RKvuFgnF+7$$!3s,+ ++P'eH'FgnF+7$$!3q)***\\7*3=+&FgnF+7$$!3[)***\\PFcpPFgnF+7$$!3;)****\\ 7VQ[#FgnF+7$$!32)***\\i6:.8FgnF+7$$!39$***\\(oKQm'!#>F+7$$!3Wb+++v`hH! #?F+7$$\"3![W7y]bB<\"Fdp$\"\"\"F*7$$\"3/X\\i:&[iI&FdpFhp7$$\"3GXuVB:9S %*FdpFhp7$$\"3c%*\\7`MSd8F`pFhp7$$\"3g%\\(oa?=%=#F`pFhp7$$\"3l%**\\ilg 4,$F`pFhp7$$\"3w%*\\Pfy^kYF`pFhp7$$\"3%[***\\i]2=jF`pFhp7$$\"3/&**\\(o %*=D'*F`pFhp7$$\"3]****\\(QIKH\"FgnFhp7$$\"3K******\\4+p=FgnFhp7$$\"38 ****\\7:xWCFgnFhp7$$\"3E,++vuY)o$FgnFhp7$$\"3!z******4FL(\\FgnFhp7$$\" 3A)****\\d6.B'FgnFhp7$$\"3s****\\(o3lW(FgnFhp7$$\"35*****\\A))oz)FgnFh p7$$\"3e******Hk-,5F/Fhp7$$\"36+++D-eI6F/Fhp7$$\"3u***\\(=_(zC\"F/Fhp7 $$\"3M+++b*=jP\"F/Fhp7$$\"3g***\\(3/3(\\\"F/Fhp7$$\"33++vB4JB;F/Fhp7$$ \"3u*****\\KCnu\"F/Fhp7$$\"3s***\\(=n#f(=F/Fhp7$$\"3P+++!)RO+?F/Fhp7$$ \"30++]_!>w7#F/Fhp7$$\"3O++v)Q?QD#F/Fhp7$$\"3G+++5jypBF/Fhp7$$\"3<++]U jp-DF/Fhp7$$\"3++++gEd@EF/Fhp7$$\"39++v3'>$[FF/Fhp7$$\"37++D6EjpGF/Fhp 7$$\"\"$F*Fhp-%'COLOURG6&%$RGBGF+$\"*++++\"!\")F+-%+AXESLABELSG6$%\"xG Q!6\"-%%VIEWG6$;F(F[w%(DEFAULTG" 1 2 0 1 10 0 2 6 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" }}}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "plot(f[X],x=-3..3);" }}{PARA 13 "" 1 "" {GLPLOT2D 636 636 636 {PLOTDATA 2 "6%-%'CURVESG6$7Z7$$!\"$\"\"!$\"3C(>$R=MN*[#!# >7$$!3!******\\2<#pG!#<$\"3<,XW[n;PGF-7$$!3#)***\\7bBav#F1$\"3Gs#)o%=/ \"zJF-7$$!36++]K3XFEF1$\"3q/'p^$=78OF-7$$!3%)****\\F)H')\\#F1$\"3?;t%f Jx)4TF-7$$!3#****\\i3@/P#F1$\"3%R:1ebo?n%F-7$$!3;++Dr^b^AF1$\"3mkFX0>x h_F-7$$!3$****\\7Sw%G@F1$\"37oeK5Y#4&fF-7$$!3*****\\7;)=,?F1$\"3WnoQH* G(enF-7$$!3/++DO\"3V(=F1$\"3k)Gt\\@bIn(F-7$$!3#******\\V'zVi UC\"F1$\"3$p\"\\\"Q:n2W\"Feo7$$!3-++DhkaI6F1$\"39dAW(*QG9;Feo7$$!3s*** ***\\XF`**Feo$\"3;Xu'G)>,[=Feo7$$!3u*******>#z2))Feo$\"3One;_\"*Hs?Feo 7$$!3S++]7RKvuFeo$\"331n_R!owO#Feo7$$!3s,+++P'eH'Feo$\"3K\"o,ErgSm#Feo 7$$!3q)***\\7*3=+&Feo$\"3A$)3tnZ5KIFeo7$$!3g)****\\#eo&Q%Feo$\"3:`],J[ zCKFeo7$$!3[)***\\PFcpPFeo$\"3*GVZaLI(HMFeo7$$!3K)**\\7$HqEJFeo$\"3_6J @__XdOFeo7$$!3;)****\\7VQ[#Feo$\"3Ia+4%\\+.!RFeo7$$!35)**\\P9(\\$*=Feo $\"3ozgLU`[PTFeo7$$!32)***\\i6:.8Feo$\"3y%fm='Q4*Q%Feo7$$!39$***\\(oKQ m'F-$\"3'fw,u[nwn%Feo7$$!3Wb+++v`hH!#?$\"39%GJw@9_)\\Feo7$$\"3%[***\\i ]2=jF-$\"3agD.s)oQp%Feo7$$\"3]****\\(QIKH\"Feo$\"3yh)ePM]MR%Feo7$$\"3K ******\\4+p=Feo$\"3'4%o]IIjZTFeo7$$\"38****\\7:xWCFeo$\"3+@7n1%pb\"RFe o7$$\"3?++v$\\>m1$Feo$\"3Ib\"f/l'\\zOFeo7$$\"3E,++vuY)o$Feo$\"3q-[@1pl dMFeo7$$\"3!z******4FL(\\Feo$\"3h8lyhIvSIFeo7$$\"3A)****\\d6.B'Feo$\"3 k8bQg:e\"o#Feo7$$\"3s****\\(o3lW(Feo$\"3o42Gn.]uBFeo7$$\"35*****\\A))o z)Feo$\"3%\\)eP9+cu?Feo7$$\"3e******Hk-,5F1$\"3U*33?;5v$=Feo7$$\"36+++ D-eI6F1$\"3]QW3%RHUh\"Feo7$$\"3u***\\(=_(zC\"F1$\"3mfZZquUN9Feo7$$\"3M +++b*=jP\"F1$\"3o]6#zlJDE\"Feo7$$\"3g***\\(3/3(\\\"F1$\"3*))*)*f/G\"*= 6Feo7$$\"33++vB4JB;F1$\"33dqVaxAi)*F-7$$\"3u*****\\KCnu\"F1$\"3U1kj'=0 sr)F-7$$\"3s***\\(=n#f(=F1$\"3]i4j(yX1m(F-7$$\"3P+++!)RO+?F1$\"3#R'>>V ;IknF-7$$\"30++]_!>w7#F1$\"37E8$e\")Gg&fF-7$$\"3O++v)Q?QD#F1$\"3=_K4Pj ')\\_F-7$$\"3G+++5jypBF1$\"3SvmW:_.vYF-7$$\"3<++]Ujp-DF1$\"3!zZiPP)>$4 %F-7$$\"3++++gEd@EF1$\"3?u%4I$HUMOF-7$$\"39++v3'>$[FF1$\"3H%\\Xmwo " 0 "" {MPLTEXT 1 0 6 "C[X]:=" }{TEXT -1 0 "" } {MPLTEXT 1 0 12 "exp(-t^2/2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\" CG6#%\"XG-%$expG6#,$*&\"\"#!\"\"%\"tGF-F." }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 21 "invfourier(C[X],t,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*&#\"\"\"\"\"#F&*(-%$expG6#,$*&F'!\"\"%\"xGF'F.F&F'F%%#PiG#F.F 'F&F&" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 16 "Exponential case" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "f[X]:=exp(-x);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "fourier(f[X ],x,t);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"fG6#%\"XG-%$expG6#,$% \"xG!\"\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%(fourierG6%-%$expG6#,$% \"xG!\"\"F*%\"tG" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 " " 0 "" {TEXT -1 60 "Need to introduce constraints using the Heaviside \+ function !" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 27 "f[X]:=exp(-x)*Heaviside(x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"fG6#%\"XG*&-%$expG6#,$%\"xG!\"\"\"\"\"-%*Heaviside G6#F-F/" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "fourier(f[X],x,t );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&\"\"\"F$,&F$F$*&%\"tGF$^#F$F$F $!\"\"" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 10 "Gamma case" }}{PARA 0 " " 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 72 " f[X]:=((beta^alpha)/Gamma(alpha))*x^(alpha-1)*exp(-beta*x)*Heaviside(x );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"fG6#%\"XG*,)%%betaG%&alphaG \"\"\"-%&GammaG6#F+!\"\")%\"xG,&F+F,F,F0F,-%$expG6#,$*&F*F,F2F,F0F,-%* HeavisideG6#F2F," }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 35 "alpha:= 2:beta:=2:fourier(f[X],x,t);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*(\" \"%\"\"\"-%&GammaG6#\"\"#!\"\",&F*F&*&%\"tGF&^#F&F&F&!\"#F&" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 39 "For a degenerate discrete distribu tion:" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "C[X]:=exp(I*t);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>& %\"CG6#%\"XG-%$expG6#*&%\"tG\"\"\"^#F-F-" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "f[X]:=invfourier(C[X],t,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"fG6#%\"XG-%&DiracG6#,&%\"xG\"\"\"F-F-" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 257 "" 1 "" {TEXT -1 27 "For a d iscrete distribution" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "C[X]:=(1/3)*exp(I*t)+(2/3)*exp(-2*I*t);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"CG6#%\"XG,&*&#\"\"\"\"\"$F+-%$e xpG6#*&%\"tGF+^#F+F+F+F+*&#\"\"#F,F+-F.6#*&^#!\"#F+F1F+F+F+" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "f[X]:=invfourier(C[X],t,x); " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"fG6#%\"XG,&*&#\"\"#\"\"$\"\" \"-%&DiracG6#,&%\"xGF-F+!\"\"F-F-*&#F-F,F--F/6#,&F2F-F-F-F-F-" }}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 34 "La place/Inverse Laplace transforms" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "M[X]:=exp(t^2/2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"MG6#%\"XG-%$expG6#,$*&\"\"#!\"\"%\"tGF- \"\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "invlaplace(M[X],t ,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%+invlaplaceG6%-%$expG6#,$*& \"\"#!\"\"%\"tGF+\"\"\"F-%\"xG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 33 "f[X]:=(1/sqrt(2*pi))*exp(-x^2/2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"fG6#%\"XG,$*&#\"\"\"\"\"#F+*(F,F*%#piG#!\"\"F,-%$e xpG6#,$*&F,F0%\"xGF,F0F+F+F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "laplace(f[X],x,t);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*&#\"\" \"\"\"#F&**%#piG#!\"\"F'%#PiGF%-%$expG6#,$*&F'F+%\"tGF'F&F&-%%erfcG6#, $*(F'F+F2F&F'F%F&F&F&F&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 " " }}}}{MARK "24 0 0" 0 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 } {PAGENUMBERS 0 1 2 33 1 1 }