MATH 556 - ASSIGNMENT 4: SOLUTIONS

1 (a) Directly from the notes: by Lyapunov's inequality

$$\mathbb{E}[|X_n - X|^s]^{1/s} \le \mathbb{E}[|X_n - X|^r]^{1/r}$$

so that

$$\mathbb{E}[|X_n - X|^s] \le \mathbb{E}[|X_n - X|^r]^{s/r} \longrightarrow 0$$

 $\mathbb{E}[|X_n - X|^s] \longrightarrow 0$

as $n \longrightarrow \infty$, as s < r. Thus

and $X_n \xrightarrow{s^{th}} X$.

For the given sequence, if $r > s \ge 1$,

$$\mathbb{E}[|X_n|^s] = \frac{n^s}{n^{(r+s)/2}} = n^{(s-r)/2} \longrightarrow 0$$

whilst

$$\mathbb{E}[|X_n|^r] = \frac{n^r}{n^{(r+s)/2}} = n^{(r-s)/2} \longrightarrow \infty$$

as $n \longrightarrow \infty$.

(b) Directly from the notes: suppose $X_n \xrightarrow{r=1} X$, and let $\epsilon > 0$. Then, using an argument similar to Chebychev's Lemma,

$$\mathbb{E}[|X_n - X|] \ge \mathbb{E}[|X_n - X| \mathbb{I}_{\{(\epsilon, \infty)\}}(|X_n - X|)] \ge \epsilon P[|X_n - X| > \epsilon].$$

as $|X_n - X| > \epsilon$ on $\{(\epsilon, \infty)\}$. Taking limits as $n \longrightarrow \infty$,

$$X_n \xrightarrow{r=1} X \implies \mathbb{E}[|X_n - X|^r] \longrightarrow 0$$

so therefore, also, as $n \longrightarrow \infty$

$$P[|X_n - X| > \epsilon] \longrightarrow 0 \qquad \therefore \qquad X_n \stackrel{p}{\longrightarrow} X.$$

For the given sequence, we have for $\epsilon > 0$,

 $P[|X_n| > \epsilon] = 1/n^2 \longrightarrow 0 \qquad \therefore \qquad X_n \stackrel{p}{\longrightarrow} 0$

However

$$\mathbb{E}[|X_n|] = n^{\alpha}/n^2 = n^{\alpha-2} \longrightarrow \begin{cases} 0 & \alpha < 2\\ 1 & \alpha = 2\\ \infty & \alpha > 2 \end{cases}$$

Hence if $\alpha \ge 2$, $X_n \xrightarrow{p} 0$, but $\{X_n\}$ does not converge in mean to zero.

4 MARKS

2 Marks

4 MARKS

2 Marks

2 Let $V_n = \log T_n$. Then

$$V_n = \frac{1}{n} \sum_{i=1}^n \log X_i$$

Now, if $U \sim Uniform(0,1)$, then $X = -\log U \sim Exponential(1)$ with $\mathbb{E}_{f_X}[X] = \operatorname{Var}_{f_X}[X] = 1$ so that, by properties of expectations,

$$\mathbb{E}_{f_{V_n}}[V_n] = -1 \qquad \qquad \operatorname{Var}_{f_{V_n}}[V_n] = \frac{1}{n}$$

Hence, by the Central Limit Theorem,

$$\sqrt{n}(V_n+1) \xrightarrow{d} Z \sim \mathcal{N}(0,1)$$

Now let $g(x) = e^x$, so that $\dot{g}(x) = e^x$. By the Delta Mathod

$$\sqrt{n}(e^{V_n} - e^{-1}) \xrightarrow{d} Z \sim \mathcal{N}(0, e^{-2})$$

but as $e^{V_n} = T_n$, we have

$$\sqrt{n}(T_n - e^{-1}) \xrightarrow{d} Z \sim \mathcal{N}(0, e^{-2})$$

so that, approximately for large n

$$T_n \stackrel{.}{\sim} \mathcal{N}(e^{-1}, e^{-2}/n)$$

4 MARKS

Figure 1: Histogram of T_n with approximation (red)

4 MARKS