
MATH 556 - ASSIGNMENT 3: SOLUTIONS

1 (a) Suppose first that
EfX

[g(X)] ≥ EfY
[g(Y )]

for any non-decreasing real function g. Proof given for continuous random variables, but
proof in the discrete case follows after minor adjustment. Let gt(x) = I[t,∞)(x) ; this is a
non-decreasing function for all real t, so

EfX
[gt(X)] ≥ EfY

[gt(Y )]

But
EfX

[gt(X)] =
∫ ∞

−∞
I[t,∞)(x)fX(x) dx =

∫ ∞

t
fX(x) dx = P [X > t]

and hence for all t,

P [X > t] ≥ P [Y > t] ⇐⇒ FX(t) ≤ FY (t)

by linearity of expectation.

Conversely, suppose X is stochastically greater than Y , so that for all t,

FX(t) ≤ FY (t) ⇐⇒ P [X ≥ Y ] = 1

Hence, for any non-decreasing g

P [g(X) ≥ g(Y )] ≥ P [X ≥ Y ] = 1

and thus if Z = g(X)− g(Y ) then

P [Z ≥ 0] = P [g(X)− g(Y ) ≥ 0] = 1.

Hence, as Z is a non-negative random variable,

E[Z] = E[g(X)− g(Y )] ≥ 0 =⇒ EfX
[g(X)] ≥ EfY

[g(Y )]

6 MARKS

(b) Three different ways to prove this:
• Suppose first that Z(n) ∼ Gamma(n, λ), for positive integer n. Then, integrating by

parts,

P [Z(n) > 1] =
∫ ∞

1

λn

Γ(n)
zn−1e−λx dz

=
[
−λn−1

Γ(n)
zn−1e−λz

]∞

1

+
∫ ∞

1

λn−1

Γ(n− 1)
zn−2e−λz dz

=
λn−1

Γ(n)
e−λ +

∫ ∞

1

λn−1

Γ(n− 1)
zn−2e−λz dz

=
λn−1

Γ(n)
e−λ +

[
−λn−2

Γ(n)
zn−2e−λz

]∞

1

+
∫ ∞

1

λn−2

Γ(n− 1)
zn−3e−λz dz

=
λn−1

Γ(n)
e−λ +

λn−2

Γ(n− 1)
e−λ +

∫ ∞

1

λn−2

Γ(n− 1)
zn−3e−λz dz
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Iterating this procedure, we ultimately obtain

P [Z(n) > 1] =
n−1∑

j=1

λn−j

Γ(n− j + 1)
e−λ +

∫ ∞

1

λ

Γ(2)
e−λz dz

=
n−1∑

j=1

λn−j

Γ(n− j + 1)
e−λ +

[
− 1

Γ(2)
e−λz

]∞

1

=
n−1∑

j=1

λn−j

Γ(n− j + 1)
e−λ + e−λ

=
n∑

j=1

λn−j

Γ(n− j + 1)
e−λ ≡

n−1∑

x=0

λx

Γ(x + 1)
e−λ

But Γ(x + 1) = x! if x is a positive integer, so

P [Z(n) > 1] =
n−1∑

x=0

λx

x!
e−λ = P [V ≤ n− 1] = FV (n− 1)

where V ∼ Poisson(λ). This is a fundamental representation of the cdf of the Poisson
distribution.

Thus we must have, in the original problem, for real t,

FX(t) = P [X ≤ t] = P [Z(t + 1) > 1]

where Z(t + 1) ∼ Gamma(t + 1, λ). Thus,

FX(t) = P [X ≤ t] =
t∑

x=0

e−λλx

Γ(x + 1)

≡
∫ ∞

1

λt+1

Γ(t + 1)
zte−λx dz

=
∫ ∞

λ/µ

λt+1

Γ(t + 1)

(µy

λ

)t
e−µy

(µ

λ

)
dy setting y =

λ

µ
z

=
∫ ∞

λ/µ

µt+1

Γ(t + 1)
yte−µy dy

≤
∫ ∞

1

µt+1

Γ(t + 1)
yte−µy dy as

λ

µ
≥ 1

= P [Y ≤ t]

= FY (t)

and the result follows.

This result uses the connection between the Poisson and Gamma distributions through
the Poisson Process.
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• By properties of the Poisson distribution, we may write

X
d= X1 + X2

where X1 ∼ Poisson(µ) and X2 ∼ Poisson(λ − µ) are independent random variables,

that is X and X1 +X2 have the same distribution. But, by construction, X1
d= Y , so also

X
d= Y + X2

and thus for real t, as P [X2 ≥ 0] = 1,

FX(t) = P [X ≤ t] ≡ P [Y + X2 ≤ t] ≤ P [Y ≤ t] = FY (t)

• Suppose X ∼ Poisson(λ), and suppose Y |X = x ∼ Binomial(x, θ), for some 0 < θ < 1,
and x ∈ {0, 1, . . .}. Then clearly P [X ≥ Y ] = 1, but also, for y ∈ {0, 1, . . .},

fY (y) =
y∑

x=0

fY |X(y|x)fX(x) =
∞∑

x=y

(
x

y

)
θy(1− θ)x−y λx

x!
e−λ

= (θλ)y e−λ

y!

∞∑
x=y

((1− θ)λ)x−y

(x− y)!

= (θλ)y e−λ

y!

∞∑

x=0

((1− θ)λ)x

(x)!

= (θλ)y e−λ

y!
e(1−λ)θ = (θλ)y e−θλ

y!

so Y ∼ Poisson(θλ). Setting θ = µ/λ gives the result.

4 MARKS

2 (a) Clearly H(f1, f2) ≥ 0 as the integrand is positive. Also,

2H(f1, f2) =
∫ ∞

−∞

(√
f1(x)−

√
f2(x)

)2
dx

=
∫ ∞

−∞
f1(x) dx− 2

∫ ∞

−∞

√
f1(x)f2(x) dx +

∫ ∞

−∞
f2(x) dx ≤ 2

as the first and third terms are 1, and the middle integral is non-negative.
2 MARKS

(b) First note H(f1, f2) = H(f2, f1). Secondly, from (a)

2H(f1, f2) =
∫ ∞

−∞

(√
f1(x)−

√
f2(x)

)2
dx

= 2− 2
∫ ∞

−∞

√
f1(x)f2(x) dx

= 2− 2
∫ ∞

−∞

√
f2(x)
f1(x)

f1(x) dx
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Now, as given in the proof of the Kullback-Leibler non-negativity result, log(x + 1) ≤ x, so

log
f2(x)
f1(x)

= 2 log

(
1 +

(√
f2(x)
f1(x)

− 1

))
≤ 2

(√
f2(x)
f1(x)

− 1

)

so ∫ ∞

−∞
log

f2(x)
f1(x)

f1(x) dx ≤
∫ ∞

−∞
2

(√
f2(x)
f1(x)

− 1

)
f1(x) dx

so that

K(f1, f2) = −
∫ ∞

−∞
log

f2(x)
f1(x)

f1(x) dx ≥
∫ ∞

−∞
2

(
1−

√
f2(x)
f1(x)

)
f1(x) dx

= 2− 2
∫ ∞

−∞

√
f1(x)f2(x) dx

= H(f1, f2).

and thus
H(f1, f2) ≤ K(f1, f2).

Clearly, we must have H(f2, f1) ≤ K(f2, f1), but as H(f1, f2) = H(f2, f1), we have

H(f1, f2) ≤ K(f1, f2) and H(f1, f2) ≤ K(f2, f1)

so
H(f1, f2) ≤ min {K(f1, f2),K(f2, f1)} .

4 MARKS

H(f1, f2) is termed the (squared) Hellinger distance.

3 This result simply uses Jensen’s Inequality with the convex function

g(x) = xex

which is convex on the positive real half-line. We have

g(µ) = µeµ ≤ EfX
[g(X)] =

∞∑

i=1

pixie
xi

Note that the right hand side need not be finite for the result to hold.
4 MARKS
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