MATH 556 - ASSIGNMENT 3: SOLUTIONS

1 (a) Suppose first that
Epxlg(X)] = Epy [9(Y)]

for any non-decreasing real function g. Proof given for continuous random variables, but
proof in the discrete case follows after minor adjustment. Let g:(z) = Ij; )(z) ; thisis a
non-decreasing function for all real ¢, so

Efy[9:(X)] > Epp [9:(Y)]
But

sl (0] = [ Ty (@) (o) do= [ fx(a)do = PLX >4

and hence for all ¢,
PX >t] > P[Y > ] = Fx(t) < Fy(t)
by linearity of expectation.
Conversely, suppose X is stochastically greater than Y, so that for all ¢,
Fx(t) < Fy(t) = PX>Y]=1
Hence, for any non-decreasing g
Plg(X) 2 g(Y)| = PIX 2 Y] =
and thus if Z = ¢g(X) — g(Y) then
P[Z > 0] = Plg(X) —g(Y) > 0] =

Hence, as Z is a non-negative random variable,

E[Z] =E[g(X)—g(¥)] 20 = Ep[g(X)] > Ep[9(Y)]

6 MARKS

(b) Three different ways to prove this:
e Suppose first that Z(n) ~ Gamma(n, \), for positive integer n. Then, integrating by

parts,
PlZ(n)>1] = /Oo al 2 lem A gy
1 T(n)
)\n,1 PR :|OO /oo )\n,1 5

= |- 2 eV + — " dz
[ L'(n) 1 1 I'(n=1)
)\n—l N 00 )\n—l ) N

— - L n=2,-Xz2y
F(n)e +/1 F(n—l)z e z
/\nfl N |: )\n72 ) N :| 0 /oo )\n72 3 N

= e+ | — Z"TeT M+ —— "M dz
I'(n) I'(n) 1 1 (n—=1)
)\n—l N )\n—Q N 0o )\n—2 3

= - - p N — Zd
¢ TTm-D° +/1 Tm—1° ¢ *
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Iterating this procedure, we ultimately obtain

n—1

<A
P[Z(n)>1] = A+/ e dz
jle(n—]—i—l 1 (2
— 1
— Z A+ 77)\
= n—j—i—l (2
A" A A
Tn—j+0° ¢

I
<. 3
3 ||M|
— —_

D\ A e S € N
- ;F(n—'ﬂ)e _;)r(xﬂ)e

ButI'(z + 1) = z!if x is a positive integer, so
n—1 A"
PlZ(n)>1]=) e =PV <n-1]=F/(n-1)

z!
x=0

where V' ~ Poisson(\). This is a fundamental representation of the cdf of the Poisson
distribution.

Thus we must have, in the original problem, for real ¢,
Fx(t)=P[X <t]=P[Z(t+1) > 1]
where Z(t + 1) ~ Gamma(t + 1, ). Thus,

e AN
= I'(z+1)

[e'e] )\t—i-l
/ L teTM gy
1 T(t+1)

= //\jo F():—Jlr—ll) <%)t6_“y <%) dy setting y = 2,2

t+1

Fx(t)=PlX <t] =

=

8

_/ iz
— Jyu DE+1)

yte—uy dy

and the result follows.

This result uses the connection between the Poisson and Gamma distributions through
the Poisson Process.
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e By properties of the Poisson distribution, we may write

X< x +X

where X ~ Poisson(p) and Xo ~ Poisson(A — p) are independent random variables,
that is X and X; + X have the same distribution. But, by construction, X 4 Y, so also

x4y + X
and thus for real ¢, as P[X; > 0] =1,
Fx(t) =P[X <t]=PlY + Xy <t] < P[Y <t] = Fy(t)

e Suppose X ~ Poisson(\), and suppose Y| X = z ~ Binomial(x,0), for some0 < 6 < 1,
and z € {0,1,...}. Then clearly P[X > Y] =1, butalso, fory € {0,1,...},

@) =) Frxlo)fx@) = ) <x> 0v(1 — g)miy/\i:@ﬂ\
2=0 =y \Y v

efA e _ T—y

v = (@)

_ y e (L= 0)N)”
= Y y! Z (z)!

=0

679)\

y!

-
= (N %eﬂ—”@ — (ON)"

so Y ~ Poisson(0)). Setting 0 = 11/ gives the result.
4 MARKS

2 (a) Clearly H(f1, f2) > 0 as the integrand is positive. Also,

2H(f1, f2) = /Z(\/fl(m)_\/fz(az)f dx
= [T n@ar—2 [T VR@E@ b [ pwir<

as the first and third terms are 1, and the middle integral is non-negative.
2 MARKS

(b) First note H(f1, f2) = H(f2, f1). Secondly, from (a)

SH(fr, fo) = /Z (Vi@ - Vi@ )’ da

= 2—2/00 V fi(z) fa(2) d

_ o o [T L)
= 2 2/_00 fl(a;)fl()d
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Now, as given in the proof of the Kullback-Leibler non-negativity result, log(z + 1) < z, so

f2(z) _ o\ fa(z) fa(z)
k’gfl(m)‘”g(”( Ai(@) 1>>§2< Ai(@) 1)

S0
" Jog 222 x) dx h folw) x) dx
IRk S/_of( e l)fl()d
so that
=~ [fian = [ 7215
= 2—2/00 V [i(z) fa(z) da
= H(f1, f2).
and thus

H(f1, f2) < K(f1, f2)-
Clearly, we must have H( f2, f1) < K(f2, f1), butas H(f1, f2) = H(f2, f1), we have
H(f1, f2) < K(f1, f2) and H(f1, f2) < K(f2, f1)

SO

H(f1, f2) < min {K(f1, f2), K(f2, f1)}-

4 MARKS
H(f1, f2) is termed the (squared) Hellinger distance.

3 This result simply uses Jensen’s Inequality with the convex function
glx) = ze*

which is convex on the positive real half-line. We have
9(n) = pe" < Ep[g(X)] =D piwie™
i=1

Note that the right hand side need not be finite for the result to hold.
4 MARKS
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