Addendum: another method of proof to show that if if $X \sim Poisson(\lambda)$ and $Y \sim Poisson(\mu)$, and $\lambda \geq \mu$, then X is stochastically greater than Y.

By definition, for integer $t \ge 0$, explicitly recognising the dependence on λ , we have

$$F_X(t;\lambda) = \sum_{x=0}^t \frac{e^{-\lambda}\lambda^x}{x!}$$

Consider the derivative of $F_X(t; \lambda)$ with respect to λ :

$$\frac{dF_X(t;\lambda)}{d\lambda} = \sum_{x=0}^t \left[-\frac{e^{-\lambda}\lambda^x}{x!} + \frac{xe^{-\lambda}\lambda^{x-1}}{x!} \right]$$
$$= -\sum_{x=0}^t \frac{e^{-\lambda}\lambda^x}{x!} + \sum_{x=1}^t \frac{e^{-\lambda}\lambda^{x-1}}{(x-1)!}$$
$$= -\sum_{x=0}^t \frac{e^{-\lambda}\lambda^x}{x!} + \sum_{x=0}^{t-1} \frac{e^{-\lambda}\lambda^x}{x!}$$
$$= -\frac{e^{-\lambda}\lambda^t}{t!}$$
$$= -P[X=t] < 0.$$

Thus, as the derivative is negative for all *t* whatever the value of λ , $F_X(t; \lambda)$ is a decreasing function of λ . Hence, if $\lambda \ge \mu$, then

$$F_X(t;\lambda) \le F_X(t;\mu) = F_Y(t;\mu)$$

for all integers $t \ge 0$. As *X* and *Y* have discrete distributions on the same support, this relationship holds for all $t \in \mathbb{R}$.