MATH 556 - ASSIGNMENT 4

To be handed in not later than 5pm, 27th November 2008. Please hand in during lectures, to Burnside 1235, or to the Mathematics Office Burnside 1005

1 (a) Let $r > s \ge 1$. Prove that, for **convergence in mean**,

 $X_n \xrightarrow{r^{th}} X \qquad \Longrightarrow \qquad X_n \xrightarrow{s^{th}} X.$

that is, convergence in *r*th mean implies convergence in *s*th mean. Show that the converse does not hold in general by using the following counterexample: let $\{X_n\}$ be defined by

$$X_n = \begin{cases} n & \text{with probability } n^{-(r+s)/2} \\ 0 & \text{with probability } 1 - n^{-(r+s)/2} \end{cases}$$

6 Marks

(b) Prove that

 $X_n \xrightarrow{r=1} X \implies X_n \xrightarrow{p} X.$

Show that the converse does not hold in general by using the following counterexample: let $\{X_n\}$ be defined by

$$X_n = \begin{cases} n^{\alpha} & \text{with probability } 1/n^2 \\ 0 & \text{with probability } 1 - 1/n^2 \end{cases}$$

for constant α .

6 Marks

- 2 Consider the following two results
 - *The Central Limit Theorem:* Suppose $\{X_n\}$ are i.i.d. random variables with mgf M_X , with expectation μ and variance σ^2 , both finite. Let the random variable Z_n be defined by

$$Z_n = \frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n\sigma^2}} = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \quad \text{where} \quad \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Then, as $n \longrightarrow \infty$, $Z_n \stackrel{d}{\longrightarrow} Z \sim \mathcal{N}(0, 1)$.

• *The Delta Method*: Consider sequence of random variables $\{X_n\}$ such that

$$\sqrt{n}(X_n - \mu) \stackrel{d}{\longrightarrow} X$$

Suppose that g(.) is a function such that first derivative $\dot{g}(.)$ is continuous in a neighbourhood of μ , with $\dot{g}(\mu) \neq 0$. Then

$$\sqrt{n}(g(X_n) - g(\mu)) \stackrel{d}{\longrightarrow} \dot{g}(\mu)X.$$

In particular, if

$$\sqrt{n}(X_n - \mu) \xrightarrow{d} X \sim \mathcal{N}(0, \sigma^2).$$

then

$$\sqrt{n}(g(X_n) - g(\mu)) \stackrel{d}{\longrightarrow} \dot{g}(\mu)X \sim \mathcal{N}(0, \{\dot{g}(\mu)\}^2 \sigma^2).$$

MATH 556 ASSIGNMENT 4

Using these two results, find a large sample approximation (*n* large but finite) to the distribution of the statistic $\binom{n}{2} \frac{1}{n}$

$$T_n = \left\{\prod_{i=1}^n X_i\right\}^{1/2}$$

if X_1, X_2, \ldots , are independent Uniform(0, 1) random variables.

Verify your result by simulating 5000 copies of T_n for n = 100, and plotting a histogram and your approximate density.

8 Marks