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Time Series: Prerequisites


 Basic distribution theory


 Expectations and other moments


 Basics of statistical theory (ie estimation, testing, large
sample theory)


 Linear algebra (matrix manipulations and decomposition)


 Basic knowledge of complex numbers


 Computing an advantage (knowledge of R).
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Time Series: Objectives

The basic objective is to construct models for observed data

x1, x2, . . . , xt , . . .

with t indexing time, with the goals of


 explaining the underlying data generating mechanism


 forecasting future values of the underlying process.

We will mainly focus on discrete time modelling, and denote
the underlying stochastic (random) process tXtu.
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Time Series: Objectives

The stochastic process can be (partly) characterized via its


 finite dimensional distributions, that is the joint distribu-
tions of

pXt1 , . . . ,Xtn q
for each index set tt1, . . . , tnu


 moment properties (expectation, variance, covariance)

Typically tXtu will not be independent, and inference about
the parameters of the joint distribution will be of central in-
terest.
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Time Series: Forecasting

Given observed values X1 � x1,X2 � x2, . . . ,XT � xT , we aim
to predict or forecast future values of the process

XT�1, . . . ,XT�K

say.

For example, could use a simple linear predictor

pXT�1 �
Ţ

t�1

atxt

that is, a linear combination of past values of the process. The
objective then is to choose the optimal values for the at .
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Introduction



1.1 Introduction

A time series is a sequence of random variables

tXtut�1,...,T � pX1, . . . ,XT q � X1:T

or a realization

txtut�1,...,T � px1, . . . , xT q � x1:T

collected over time index t representing some unit time pe-
riod (hours, days, months etc.).
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1.2 Simple Stochastic Models

A time series model is a probability model specifying


 the joint distribution


 the second-order moment structure (mean, variance, co-
variance)

of tXtu.
The joint distribution specifies the moment structure.
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1.2 Simple Stochastic Models

Recall that for any two random variables, the covariance is
defined as

CovrXi ,Xj s � ErpXi � µi qpXj � µj qs

where µi � ErXi s and µj � ErXj s, and the correlation is

CorrrXi ,Xj s � CovrXi ,Xj sa
VarrXi sVarrXj s
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1.2 Simple Stochastic Models

For a d -dimensional random vector X � pX1, . . . ,Xd qJ, we
form the covariance matrix, Σ, so that the pi , jqth element of
Σ is

rΣsi ,j � CovrXi ,Xj s.
This matrix is symmetric, and non-negative definite. We may
write

Σ � VRVJ

where

V � diagp
a

VarrX1s, . . . ,
a

VarrXd sq
and R is the matrix of correlations.
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1.2 Simple Stochastic Models

Special Case: Independence

FX1:T px1:T q �
T¹

t�1

FX pxt q �
T¹

t�1

PrrXt ¤ xt s

or equivalently, for each t ,

PrXt ¤ xt |X1:pt�1q � x1:pt�1qs � PrrXt ¤ xt s

where the past values of X contain no information about fu-
ture X .

Note: If two variables are independent, then they are also
uncorrelated; however, in general uncorrelatedness does not
imply independence.
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1.2 Simple Stochastic Models

For the specification via moments, interest focusses on

Expectation µt � ErXt s
Variance σ2

Xt � VarrXt s
Covariance γX pt , sq � ErpXt � µt qpXs � µsqs

for any indices t , s. As the Xt usually represent repeated
measurements of the same phenomenon over time, the term
autocovariance is used.
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1.2 Simple Stochastic Models

Example: IID Process

Let 0   p   1, and suppose

PrXt � 1s � p PrXt � �1s � 1� p

with the Xt mutually independent. Then tXtu is an IID (inde-
pendent, identically distributed) process.
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1.2 Simple Stochastic Models

Example: IID Process

We have that

µt � p � p1� pqp�1q � 2p � 1

σ2
t � rpp1q2 � p1� pqp�1q2s � p2p � 1q2 � 1� p1� 2pq2

γpt , sq � 0 t � s

and these quantities do not depend non t or s.
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1.2 Simple Stochastic Models

Example: Random Walk

Suppose tXtu is an IID process, and let

St �
ţ

i�1

Xi � St�1 � Xt

Then tStu is a random walk. Also, setting S0 � 0, we have

Xt � St � St�1

that is, tXtu can be obtained from tStu by differencing.
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1.2 Simple Stochastic Models

Example: Random walk

Suppose tXtu is an IID process with

PrXt � 1s � PrXt � �1s � 1

2

and zero otherwise, and let

St �
ţ

i�1

Xi .

Then both tXtu and tStu are zero-mean processes.

If p � 1{2, then ErXt s,ErSt s are non-zero; if p   1{2, then
ErSt s   0 and we have a downward drift.
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1.2 Simple Stochastic Models

Example: Random walk

Note that for any (time-homogeneous) random walk

VarrSt s � Var

�
ţ

i�1

Xi

�
�

ţ

i�1

Var rXi s � tVar rX1s

by the independence of the Xt , so the variance grows linearly
with t .

Thus even if ErSt s � 0, the probability distribution of St has
increasing variability around zero, and will (almost surely) di-
verge to an infinite value.
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1.3 Gaussian processes

Suppose, for all finite collections X1, . . . ,Xn , n ¥ 1, the joint
distribution is multivariate Gaussian (Normal) with

ErXt s � µX

and covariance defined for Xt ,Xs as

CovrXt ,Xs s � γX p|t � s|q t , s P t1, . . . ,nu.

for some function of a single argument γX . We have that

VarrXt s � γX p0q.

1.3 Gaussian processes 18



1.3 Gaussian processes

Note that the autocovariance only depends on the value of

|t � s|

This version imposes extra conditions, which corresponds to a
structured covariance matrix which has fewer than npn�1q{2
different elements.
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1.3 Gaussian processes

Let ΓX pnq denote the pn � nq matrix with

rΓX pnqst ,s � γX p|t � s|q.

Then ΓX pnq is a symmetric, positive definite matrix so that

xJΓX pnqx ¡ 0 x P Rn .
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1.3 Gaussian processes

The matrix ΓX pnq has Toeplitz structure, constant among di-
agonals,

ΓX pnq �

���������

γX p0q γX p1q � � � � � � γX pn � 1q
γX p1q γX p0q γX p1q � � � ...

γX p2q γX p1q . . .
. . .

...
...

. . .
. . .

. . . γX p1q
γX pn � 1q � � � � � � γX p1q γX p0q

���������
We write the vector

Xn � X1:n � NnpµX1n ,ΓX pnqq.

where 1 � p1,1, . . . ,1qJ is an n � 1 vector.
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1.3 Gaussian processes

We have the decomposition

Xn � µX1n � Zn pn � 1q

where

Zn � Nnp0n ,ΓX pnqq.
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1.3 Gaussian processes

In general, if

X �
�
X1

X2

�
� N pµ,Σq

with X1 and X2 being k1 � 1 and k2� respectively, where

µ �
�
µ1

µ2

�
Σ �

�
Σ11 Σ12

Σ21 Σ22

�
then

X1 � Nk1 pµ1,Σ11q
X2|X1 � x1 � Nk2

�
µ2 � Σ21Σ

�1
11 px1 � µ1q,Σ22 � Σ21Σ

�1
11 Σ12

�
.
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1.3 Gaussian processes

Specifically, if we consider the one-step-ahead (conditional)
probability distribution

Xn�1|X1:n � x1:n

it follows by standard properties that

Xn�1|X1:n � x1:n � N
�
µpn�1q|n , σ

2
pn�1q|n
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1.3 Gaussian processes

Write γk � γX pkq for each k ¥ 0. The covariance matrix of
X1:pn�1q is

ΓX pn � 1q �

�
����������

γ0 γ1 γ2 � � � γn�2 γn�1 γn
γ1 γ0 γ1 � � � γn�3 γn�2 γn�1

γ2 γ1 γ0 � � � γn�4 γn�3 γn�2

...
...

...
. . .

...
...

...
γn�2 γn�3 γn�4 � � � γ0 γ1 γ2

γn�1 γn�2 γn�3 � � � γ1 γ0 γ1

γn γn�1 γn�2 � � � γ2 γ1 γ0

�
����������

�

�
ΓX pnq γR

n

tγR
nu
J γ0

�

where
γR
n � rγn , γn�1, γn�1, . . . , γ2, γ1sJ
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1.3 Gaussian processes

Applying the previous formula, we have

µpn�1q|n � µX � tγR
nuJtΓX pnqu�1px1:n � µX1nq,

and

σ2
pn�1q|n � γ0 � tγR

nuJtΓX pnqu�1γR
n .

Note therefore that

σ2
pn�1q|n   γ0

as ΓX pnq is positive definite.
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1.4 Stationarity

Suppose tXtu is a time series process, where for all t

ErX2
t s   8.

Define

Mean function : µX ptq � ErXt s
Covariance function : γX pt , sq � ErpXt � µX ptqqpXs � µX psqqs

for integers t , s. Note that

γX pt , sq � γX ps, tq.
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1.4 Stationarity

The process tXtu is weakly stationary if

(i) µX ptq does not depend on t

(ii) γX pt � h , tq does not depend on t for each integer h , so
that we may write

γX pt , t � hq � γX phq.

Note also that we must have

γX p�hq � γX pt , t � hq � γX pt � h , tq � γX phq.

for h ¥ 1.

Note: The quantity h is often referred to as the lag.
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1.4 Stationarity

tXtu is strongly stationary if

Xt :pt�nq � pXt�1, . . . ,Xt�nq

and
Xpt�h�1q:pt�h�nq � pXt�h�1, . . . ,Xt�h�nq

have the same joint distribution for all t ,h ,n.

In practice, the (multivariate) distributions required to model
such strongly stationary processes are limited in number.
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1.4 Stationarity

If tXtu is weakly stationary process define


 the autocovariance function (ACVF), γX phq, by

γX phq � γX ph ,0q � γX pt � h , tq


 the autocorrelation function (ACF), ρX phq, by

ρX phq � γX phq
γX p0q

That is

γX phq � CovrXt�h ,Xt s ρX phq � CorrrXt�h ,Xt s.

The fundamental concept of stationarity is that the stochastic
structure does not change though time
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1.4 Stationarity

Example: IID Process

An IID process tXtu � IIDp0, σ2
X q, is characterized by

ErXt s � 0

VarrXt s � ErX2
t s � σ2

X   8.

with the Xt mutually independent. This process is stationary:

γX phq � CovrXt�h ,Xt s �
#
σ2
X h � 0

0 h ¡ 0

ρX phq � CorrrXt�h ,Xt s �
#

1 h � 0

0 h ¡ 0
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1.4 Stationarity

Example: White Noise Process

A white noise process tXtu � WNp0, σ2
X q is characterized by

ErXt s � 0

VarrXt s � ErX2
t s � σ2

X   8.

with the Xt uncorrelated. This process is stationary:

γX phq � CovrXt�h ,Xt s �
#
σ2
X h � 0

0 h ¡ 0

ρX phq � CorrrXt�h ,Xt s �
#

1 h � 0

0 h ¡ 0
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1.4 Stationarity

Example: Random Walk

If tXtu � WNp0, σ2
X q, then the process tStu defined by

St �
ţ

i�1

Xi

is non-stationary as, by properties of uncorrelated rvs,

ErSt s � 0

VarrSt s � tσ2
X

which does depend on t .
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1.4 Stationarity

Example: Random Walk

For the ACVF:

γS pt � h , tq � CovrSt�h ,St s
� CovrSt � Xt�1 � � � � � Xt�h ,St s

� CovrSt ,St s �
ḩ

i�1

CovrXt�i ,St s

� CovrSt ,St s
� VarrSt s
� tσ2

X .
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1.4 Stationarity

Example: Moving Average

Let tZtu � WNp0, σ2
Z q, and define process tXtu by

Xt � Zt � θ1Zt�1 t P Z

where θ1 is a real-valued parameter. As ErZt s � 0, we also
have ErXt s � 0, and by uncorrelatedness of the tZtu compo-
nents

VarrXt s � VarrZt s � θ2
1VarrZt�1s � p1� θ2

1qσ2
Z

which does not depend on t .
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1.4 Stationarity

Example: Moving Average

We have

γX pt � h , tq � CovrXt�h ,Xt s � ErXtXt�h s
� ErpZt � θ1Zt�1qpZt�h � θ1Zt�h�1qs
� ErZt�hZt s � θ1 pErZt�hZt�1s � ErZt�h�1Zt sq

� θ2
1ErZt�1Zt�h�1s

Now,

ErZjZk s �
"
σ2
Z j � k

0 j � k
.
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1.4 Stationarity

Example: Moving Average

Hence

γX pt � h , tq �
$&%

σ2
Z p1� θ2

1q h � 0
σ2
Zθ1 h � �1

0 otherwise

.

ρX pt � h , tq �
$&%

1 h � 0
θ1{p1� θ2

1q h � �1
0 otherwise

These functions do not depend on t , so tXtu is a stationary
process

tXtu � MAp1q
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1.4 Stationarity

Example: Autoregression

Let tZtu � WNp0, σ2
Z q, and define process tXtu by

Xt � ϕ1Xt�1 � Zt t P Z

where ϕ1 is a real-valued parameter with |ϕ1|   1.

Assume for the moment that tXtu is stationary, and that

CovrZt ,Xs s � 0 t ¡ s.

that is, future values of the Z series are uncorrelated with
past values of the X series.
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1.4 Stationarity

Example: Autoregression

Then
ErXt s � ϕ1ErXt�1s � ErZt s � ϕ1ErXt�1s

so therefore by the stationarity assumption ErXt s � 0.
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1.4 Stationarity

Example: Autoregression

We have for all h ¡ 0

γX phq � CovrXt�h ,Xt s � CovrXt�h ,Xt s
� Covrϕ1Xt�1,Xt�h s � CovrZt ,Xt�h s
� ϕ1CovrXt�1,Xt�h s � 0

� ϕ1γX ph � 1q
� ϕ2

1γX ph � 2q
...

� ϕh1γX p0q

by recursion.
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1.4 Stationarity

Example: Autoregression

Note that
ErXtXt�h s � ErXt�hXt s

by the stationarity assumption. Therefore

γX p�hq � γX phq

and so
ρX phq � ϕ

|h |
1 h � 0,�1,�2

that is, a geometrically decaying ACF.
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1.4 Stationarity

Example: Autoregression

Note also that

γX p0q � CovrXt ,Xt s
� Covrpϕ1Xt�1 � Zt qpϕ1Xt�1 � Zt qs
� ϕ2

1CovrXt�1,Xt�1s � CovrZt ,Zt s
� ϕ2

1γX p0q � σ2
Z

so therefore

γX p0q � σ2
Z

1� ϕ2
1

tXtu is the autoregressive process of order 1: tXtu � ARp1q.
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1.4 Stationarity

Example: Autoregression

From the definition, we have

Xt � ϕ1Xt�1 � Zt

� ϕ1pϕ1Xt�2 � Zt�1q � Zt � ϕ2
1Xt�2 � pZt � ϕ1Zt�1q

� ϕ2
1pϕ1Xt�3 � Zt�2q � pZt � ϕ1Zt�1q

� ϕ3
1Xt�3 � pZt � ϕ1Zt�1 � ϕ2

1Zt�2q
...

� ϕh1Xt�h �
h�1̧

j�0

ϕj1Zt�j
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1.4 Stationarity

Example: Autoregression

If we allow h ÝÑ 8, provided |ϕ1|   1, we can continue the
recursion indefinitely to obtain

Xt �
8̧

j�0

ϕj1Zt�j

as the first term converges to zero.
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1.4 Stationarity

Note: when we write

Xt � Zt � θ1Zt�1

or

Xt � ϕ1Xt�1 � Zt

we need to be precise about the meaning of the symbol ’=’.
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1.4 Stationarity

For random variables we have (for example)


 equality in distribution

Xt
d� Yt

(i.e. the distribution of Xt is the same as the distribution
of Yt )


 equality in probability

Xt
p� Yt

(i.e. Prr|Xt � Yt |   ϵs � 1 for all ϵ ¡ 0)
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1.4 Stationarity


 equality with probability 1 (almost sure equality)

Xt
a.s.� Yt

(i.e. For each ω, Prr|Xt pωq � Yt pωq|   ϵs � 1 for all ϵ ¡ 0.)


 mean-square equality

Xt
m.s.� Yt

(i.e. ErpXt � Yt q2s � 0)
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1.4 Stationarity

In the case of an explicit formula, we can interpret the equal-
ity as a definition

Xt � Zt � θ1Zt�1

but for an implicit formula

Xt � ϕ1Xt�1 � Zt

we may need to use the other definitions.
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1.4 Stationarity

For a stationary process, moment estimators can be used to
estimate the mean/covariance structure. The estimates are

pµ � x � 1

n

ņ

t�1

xt

pγphq � 1

n

ņ

t�1

pxt � pµqpxt�|h | � pµq � n   h   n

These are consistent estimators of the two functions. The n �
n matrix estimate pΓn � rpγpi � jqsij
is non-negative definite.
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1.5 Trends and Seasonality

The models from the previous section are purely stochastic.
It is also possible to incorporate deterministic components.

We focus on


 trends,


 seasonality.
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1.5 Trends and Seasonality

Trends: Suppose that for each t ,

Xt � mt � Et

where


 mt is a deterministic function of t ,


 Et is a purely stochastic, zero mean time series.

For example, might have

mt � a0 � a1t

that is, a linear trend in time. Constants a0, a1 are in general
unknown and must be estimated.
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1.5 Trends and Seasonality

Ordinary Least-Squares (OLS): estimate a0, a1 by minimiz-
ing the sum of squared errors

pa � argmin

#
Ţ

t�1

pxt � a0 � a1tq2
+
.

Provided ErEt s � 0, OLS estimators are consistent estimators
of the true parameters (if the trend truly is linear)

pa pÝÑ a

as n ÝÑ 8. OLS is easily applied for many types of determin-
istic trend (e.g. polynomial trend).
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1.5 Trends and Seasonality

Example: Lake Huron data

Annual level (in ft) of Lake Huron 1875-1972 (T � 98).

0 20 40 60 80 100

57
6

57
7

57
8

57
9

58
0

58
1

58
2

Years since 1872

X
t
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1.5 Trends and Seasonality

Example: Lake Huron data

Fitted linear trend: pa0 � 580.204, pa1 � �0.024.
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â0 = 580.204

â1 = − 0.024
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1.5 Trends and Seasonality

Example: Lake Huron data

After fitting the linear trend model

Xt � a0 � a1t � Et

by OLS to obtain pa0, pa1, we may examine the residual series

pet � xt � pa0 � pa1t
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1.5 Trends and Seasonality

Example: Lake Huron data

Residual series: pet � xt � pa0 � pa1t .
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1.5 Trends and Seasonality

Example: Lake Huron data

The residual series is approximately zero mean. However,
there is some structure:


 the variance is not constant over time ?


 successive residuals ppet�1, pet q are positively correlated.
The sample correlation is

corrrpet�1, pet s � 0.775

That is, the residual series does not appear to be a realization
of an IID process.
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1.5 Trends and Seasonality

Example: Lake Huron data: pet vs pet�1.
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1.5 Trends and Seasonality

Example: Lake Huron data

The positive dependence is potentially useful for forecasting;
if pe93, pe94, . . . , pe98

are positive, it is likely that

pe99

will also be positive. That is, conditional on the available data,
the prediction for the next data point X99 will be different if
the residuals apparently exhibit correlation.
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R Code

Huron<-scan("https://www.math.mcgill.ca//dstephens//545//Data//huron.txt")
Huron<-Huron+570
n.H<-length(Huron); t.H<-c(1:n.H); x<-c(1875:1972)
par(mar=c(4,4,2,2))
plot(t.H,Huron,type="l",

xlab="Years since 1872",ylab=expression(X[t]))
points(t.H,Huron,pch=19,cex=0.7)
abline(lm(Huron~t.H))
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R Code
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R Code

a0<-lm(Huron~t.H)$coeff[1]; a1<-lm(Huron~t.H)$coeff[2]
mt.H<-a0+a1*t.H; et.H<-Huron-mt.H
par(mar=c(4,4,2,2))
plot(t.H,et.H,type="l",xlab="Years since 1872",

ylab=expression(hat(e)[t]))
points(t.H,et.H,pch=19,cex=0.7); abline(h=0,lty=2)
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R Code
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R Code

y1<-et.H[2:98];y2<-et.H[1:97];cor(y1,y2)
par(mar=c(5,4,2,2),pty='s')
plot(y1,y2,xlab=expression(hat(e)[t-1]),

ylab=expression(hat(e)[t]),pch=19,cex=0.7)
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R Code

−2 −1 0 1 2

−
2

−
1

0
1

2

êt−1

ê t
Corr. =  0.776

Notes:

1 Other models for trend mt may be fitted using OLS.

 polynomial

 spline

 local regression

2 An apparent trend is not necessarily a trend, so trend
removal must be carried out with care.
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1.5 Trends and Seasonality

Example: Lake Huron data

Recall that the model

Xt � mt � Et

was fitted using a linear trend mt � a0�a1t leaving residuals
that were positively correlated (see plot on page 58). We may
also model

Et � ARp1q,
that is, assume

Et � ϕ1Et�1 � Zt

and estimate ϕ1 using OLS from the fitted residuals et . This
assumes that tZtu � WNp0, σ2

Z q.
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1.5 Trends and Seasonality

Example: Lake Huron data

This procedure yields pϕ1 � 0.791. By inspecting the fitted
values, we may construct the residual quantities

pzt � et � pϕ1et�1

we may estimate σ2
Z via the sample variance of the pzt . This

yields pσ2 � 0.502.

If the ARp1q model were correct, then the residual quantitiespzt should resemble a realization of a white noise process; how-
ever, they do not - there is still positive correlation between
successive pzts.
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Example: Trend ?

100 observations
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Example: Trend ?

1000 observations
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Example: Trend ?

10000 observations
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1.5 Trends and Seasonality

Example: Temperature Anomaly: 1850-2006
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1.5 Trends and Seasonality

Seasonality: Many time series are influenced by seasonally-
varying factors


 calendar


 climate


 economic cycles
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1.5 Trends and Seasonality

A deterministic seasonal model can be constructed. Suppose
that for each t ,

Xt � st � Et

where st is a periodic function with period d say, so that

st�d � st

for all t .
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1.5 Trends and Seasonality

For example, could use a harmonic regression

st � a0 �
ķ

j�1

raj cospλj tq � bj sinpλj tqs

where a0, a1, . . . , ak and b1, . . . ,bk are unknown coefficients
to be estimated, and

λ1, . . . , λk

are known constants that define the periodic nature of the
function.
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1.5 Trends and Seasonality

Example: Accidental Deaths in the US
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Accidental Deaths in the US: Monthly totals 
 Jan 1973 − Dec 1978

1.5 Trends and Seasonality 75



1.5 Trends and Seasonality

Example: Accidental Deaths in the US

For this data set T � 72, for monthly data. To fit a model with
k � 2


 12 month cycle


 6 month cycle

set λ1 � 2π{12, λ2 � 2π{6. Then fit using OLS.
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Example: Accidental Deaths in the US
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Example: Accidental Deaths in the US: Harmonics
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Example: Accidental Deaths in the US: Residuals
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R Code

library(datasets)
t.v<-c(1:72)
C1<-cos(2*pi*t.v/12); S1<-sin(2*pi*t.v/12)
C2<-cos(2*pi*t.v/6); S2<-sin(2*pi*t.v/6)
USA.ACC<-data.frame(as.numeric(USAccDeaths),S1,C1,S2,C2)
USA.ACC.fit<-lm(USAccDeaths~S1+C1+S2+C2, data=USA.ACC)$fitted
USA.ACC.coef<-lm(USAccDeaths~S1+C1+S2+C2,data=USA.ACC)$coef
t.c<-seq(from=1,to=72,by=0.01)
C1.c<-cos(2*pi*t.c/12); S1.c<-sin(2*pi*t.c/12)
C2.c<-cos(2*pi*t.c/6); S2.c<-sin(2*pi*t.c/6)
y.c<-USA.ACC.coef[1]+USA.ACC.coef[2]*S1.c+

USA.ACC.coef[3]*C1.c +USA.ACC.coef[4]*S2.c+
USA.ACC.coef[5]*C2.c
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R Code

par(mar=c(4,4,2,2))
plot(1:72,as.numeric(USAccDeaths),pch=19,cex=0.7,xaxt='n',

xlab='Time',ylab='Monthly Accidental Deaths')
lines(1:72,as.numeric(USAccDeaths),lty=2)
lines(t.c,y.c)
axis(1,at=12*c(0:6),c(1973:1979))
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R Code
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1.6 A Decomposition Strategy

Recap: We seek to decompose an observed series tYtu as

Yt � mt � st � Xt

where


 mt is a deterministic trend


 st is a seasonal component with period d


 Xt is a zero mean stationary process.

It may be necessary to replace the global model for trend (lin-
ear, polynomial etc.) by a local model
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1.6 A Decomposition Strategy

Smoothing by averaging: Suppose

pmt � 1

2q � 1

q̧

i��q

xt�i

with xs � 1 for s   1 and s ¡ T . More generally,

pmt �
q̧

i��q

aixt�i

for constants a�q , . . . , aq .

This is a form of low-pass filter.
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1.6 A Decomposition Strategy

Exponential Smoothing: Suppose pm1 � x1, and for t ¥ 2

pmt � αxt � p1� αq pmt�1

for 0   α   1. It follows that

pmt � p1� αqt�1x1 �
t�2̧

j�1

αp1� αqjxt�j � αxt

If α is near one, there is strong dependence on recent x val-
ues.
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1.6 A Decomposition Strategy

General Strategy: For series tYtu

Yt � mt � st � Xt

where st has period d .

1. If d is even, set q � d{2, else set q � pd � 1q{2.

2. Use moving average for detrending respecting the sea-
sonality

pmt �

$''''''&''''''%

yt�q � yt�q
2d

� 1

d

q�1̧

j��q�1

yt�j d even

1

d

q̧

j��q

yt�j d odd
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1.6 A Decomposition Strategy

3. Remove seasonality: for k � 1, . . . ,d , compute

wk � 1

nd

¸
j

pyk�jd � pmk�jd q

where nd is the number of terms in the sum (essentially
the number of cycles in the series). For k � 1, . . . ,d , set

psk � wk � 1

d

ḑ

j�1

wj

and set psk � psk�d for k � d � 1,d � 2, . . . ,T . The desea-
sonalized data are y�t � yt � pst .
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1.6 A Decomposition Strategy

4. Recompute the deseasonalized trend pm�
t from the dea-

sonalized data y�t using the procedure in Step 2.

5. Compute the residual series

pxt � yt � pm�
t � pst .

The resulting process pxt should be a zero mean, but poten-
tially autocorrelated process.
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1.7 Differencing

Differencing: Another method for removing non-stationarity
is differencing. The lag-1 difference operator, ∇, acts on Xt

as follows
∇Xt � Xt � Xt�1 � p1� BqXt

where B is the backshift operator

BXt � Xt�1.

Note that
B2Xt � BpBXt q � BXt�1 � Xt�2

etc.
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1.7 Differencing

Similarly

∇2Xt � p1� Bq2Xt

� p1� Bqpp1� BqXt q
� p1� BqpXt � Xt�1q
� pXt � Xt�1q � pXt�1 � Xt�2q
� Xt � 2Xt�1 � Xt�2

Note that k times differencing removes a polynomial trend of
order k .
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1.7 Differencing

Seasonal Differencing: The lag-d difference operator, ∇d ,
acts on Xt as follows

∇dXt � p1� Bd qXt � Xt � Xt�d

This operator removes a seasonality with period d .

∇ and ∇d can be applied consecutively; they commute

∇∇dXt � ∇d∇Xt
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1.7 Differencing

Elementary algebraic properties:

(i)

B jXt � Xt�j � BXt�j�1 � B2Xt�j�2 � � � �
(ii) ∇jXt � ∇p∇j�1Xt q. So for example,

∇2Xt � p1� Bqp1� BqXt

� p1� 2B � B2qXt

� Xt � 2Xt�1 � Xt�2

� pXt � Xt�1q � pXt�1 � Xt�2q
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1.7 Differencing

(iii) If Xt � mt � Yt , applying the first-difference operator to
Xt , then

∇Xt � Xt � Xt�1 � pmt �mt�1q � pYt � Yt�1q

so if mt � β0 � β1t , then mt �mt�1 � β1.

That is, ∇ removes a linear trend.
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1.7 Differencing

The stochastic term

Y�t � pYt � Yt�1q

is obtained by differencing.

This is different from our first approach to detrending,
which used a linear parametric formulation for mt .


 If Yt is white-noise, then Y�t is no longer white noise,
but MA(1).
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1.7 Differencing

(iv) To remove a polynomial trend of order k , one may apply
k th order differencing, that is we look at ∇kXt .

Note that if tYtu � WNp0, σ2
Y q, then ∇kYt is not white-

noise, but is still stationary.
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1.7 Differencing

(v) Commutativity

∇∇dXt � p1�Bqp1�Bd qXt � p1�Bd qp1�BqXt � ∇d∇Xt

(vi) If

Xt � mt � st � Yt ,

then

∇dXt � pmt �mt�d q � pst � st�d q � pYt � Yt�d q

and

st � st�d � 0.

That is, ∇d removes a seasonality with period d .
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Chapter 2

Stationary processes



2.1 Stationary Processes

The objective of the previous section was to remove (system-
atic) deterministic components from an observed series to
leave only the stochastic part. In this section, we study the
basic properties of stationary processes: such processes are
inherently stable (in the long run), and form natural models
for the stochastic component of observed series.

In the main, we will focus on weakly stationary processes,
where the mean and covariance structure is stable over time;
in general we will not make distributional assumptions.

Initially, we focus on forecasting, and demonstrate the utility
of utilizing the covariance structure of the process.
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2.2 Properties of Stationary Processes

Consider first a stationary Gaussian process tXtu, where for
all t and n,

pXt�1, . . . ,Xt�nq
is jointly normally distributed, with ErXt s � µ, VarrXt s � σ2

X ,
and for s ¡ t .

CovrXt ,Xs s � γX ps�tq CorrrXt ,Xs s � ρX ps�tq � γX ps � tq
σ2
X
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2.2 Properties of Stationary Processes

Then it follows that

Xn�h |Xn � xn � N pmh pxnq, vh pxnqq

where

mh pxq � µ� ρX phqpx � µq
vh pxq � σ2

X p1� ρ2
X phqq
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2.2 Properties of Stationary Processes

To define “optimal" forecasting, we need to define a criterion
via which to assess the quality of predictions.

We use a minimum mean-square error (minimum MSE) crite-
rion, and attempt to to make the prediction pXn�h � pxn�h such
that

ErpXn�h � pxn�h q2|Xn � xn s
is minimized. Here the expectation is taken with respect to
the conditional distribution Xn�h |Xn � xn .
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2.2 Properties of Stationary Processes

This minimization can be carried out analytically to yield

pxn�h � ErXn�h |Xn � xn s � mh pxq � µ� ρX phqpxn � µq

that is, the best prediction (measured in minimum prediction
MSE terms) is the conditional expectation. The prediction
MSE corresponding to this prediction is

vh pxq � σ2
X p1� ρ2

X phqq

In this case, we could deduce the appropriate form for the
optimal predictor from properties of the Gaussian process.
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2.2 Properties of Stationary Processes

Best Linear Prediction: For a non-Gaussian process, we
seek the again seek the minimum MSE predictor. We restrict
attention to linear predictors, that is, predictors of the form

pXn�h � lh pXnq � aXn � b

for some a and b . Under this restriction, and stationarity, it
again transpires that the optimal predictor takes the form

pxn�h � ErXn�h |Xn � xn s � mh pxq � µ� ρX phqpxn � µq

with the same prediction MSE as before.
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2.2 Properties of Stationary Processes

Non-negative definite functions: A scalar function g is
non-negative definite if, for all n, and vectors a � pa1, . . . , anq

ņ

i�1

ņ

j�1

aigpi � jqaj ¥ 0.

If the summation is strictly greater than zero, the function is
termed positive definite.

If G is the n � n matrix formed as G � rgpi � jqsij , then the
above definition becomes that

aJGa ¥ 0.

and G is a non-negative/positive definite matrix.

2.2 Properties of Stationary Processes 104



2.2 Properties of Stationary Processes

Theorem:

A function g is the autocovariance function (ACVF) for a sta-
tionary stochastic process if and only if g is even, that is

gphq � gp�hq for all h P Z

and g is non-negative definite.

Note: by elementary properties of covariance, for all h ,

γp0q ¥ 0

|γphq| ¤ γp0q
γp�hq � γphq
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Characterizing the ACVF

Proof. Suppose that g is the ACVF of a stationary stochastic
process, tXtu say. By definition of covariance, g is an even
function, as

gp�hq � ErXtXt�h s � ErXt�hXt s � ErXtXt�h s � gphq.

Let a P Rn be an n � 1 vector, and let Xn:1 � pxn , . . . , x1qJ.
Then aJXn:1 is a scalar random variable, and

VarraJXn:1s � aJVarrXn:1sa �
ņ

i�1

¸
j�1

aigpi � jqaj ¥ 0

so g is non-negative definite.
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Characterizing the ACVF

Now suppose that g is non-negative definite and even. For
each n ¥ 1, define the n � n matrix Σ by

rΣsij � gpi � jq

and consider the multivariate Normal distribution with mean
zero and variance-covariance matrix Σ. This distribution is
the finite dimensional distribution arising from a stationary
Gaussian process with the specified covariance structure.

Note that an autocorrelation function has the same proper-
ties, except that ρp0q � 1.
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2.2 Properties of Stationary Processes

Example: Simple harmonic process

Suppose U and V are zero mean and uncorrelated random
variables with variance 1. Let tXtu be defined by

Xt � U cospωtq � V sinpωtq

where ω is a fixed constant.

U and V define random amplitudes.
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2.2 Properties of Stationary Processes

Example: Simple harmonic process

Then ErXt s � 0 for all t , and

CovrXt ,Xt�h s � ErXtXt�h s
� E rpU cospωtq � V sinpωtqq

pU cospωpt � hqq � V sinpωpt � hqqqs
� ErU2s cospωtq cospωpt � hqq�

ErV2s sinpωtq sinpωpt � hqq
� cospωtq cospωpt � hqq � sinpωtq sinpωpt � hqq
� cospωhq � cospωp�hqq
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2.2 Properties of Stationary Processes

omega<-pi/3
set.seed(2343)
xt<-seq(0,6,by=0.1)
y1<-rnorm(1)*cos(omega*xt)+rnorm(1)*sin(omega*xt)
y2<-rnorm(1)*cos(omega*xt)+rnorm(1)*sin(omega*xt)
y3<-rnorm(1)*cos(omega*xt)+rnorm(1)*sin(omega*xt)
ymin<-min(y1,y2,y3)
ymax<-max(y1,y2,y3)
par(mar=c(4,4,2,2))
plot(xt,y1,xlab='t',ylab=expression(X[t]),

main=expression(paste('Three independent series: ',omega==pi/3)),
ylim=range(ymin,ymax),pch=19,cex=0.8)

points(xt,y2,col='red',pch=19,cex=0.8)
points(xt,y3,col='blue',pch=19,cex=0.8)
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2.2 Properties of Stationary Processes
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2.3 Construction of stationary processes

Let tZtu be an IID process, and let tXtu be defined by

Xt � fpZt ,Zt�1, . . . ,Zt�qq

for some q ¥ 0. tXtu is a filtered version of tZtu.

 tXtu is strictly stationary as tZtu is strictly stationary.


 Xt and Xs are independent if |t � s| ¡ q; tXtu is termed
q-dependent, and γX phq � 0 if |h | ¡ q.
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2.3 Construction of stationary processes

Example: Moving average processes

Let tZtu � WNp0, σ2
Z q be a white noise process, and let tXtu

be defined by

Xt � Zt � θ1Zt�1 � θ2Zt�2 � � � � � θqZt�q

for some q ¥ 0, where θ1, θ2, . . . , θq are real-valued constants.

tXtu is zero mean, stationary and q-dependent; it is termed a
moving average process of order q (MApqq).
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2.4 Linear Processes

tXtu is a linear process if for all t

Xt �
8̧

j��8

ψjZt�j

where


 tZtu � WNp0, σ2
Z q


 tψju is a real sequence with

8̧

j��8

|ψj |   8
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2.4 Linear Processes

Using the backshift operator notation

Xt � ψpBqZt

where

ψpzq �
8̧

j��8

ψjz
j .

The process is termed non-anticipating or causal if ψj � 0 for
all j   0, so that

Xt �
8̧

j�0

ψjZt�j .

2.4 Linear Processes 115



2.4 Linear Processes

Note that for the linear process to be sensible we need the
sum

8̧

j��8

ψjZt�j

to converge in some appropriate fashion; in this context we
require mean-square convergence, denoted

Xt
m.s.�

8̧

j�0

ψjZt�j .
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2.4 Linear Processes

We require for the definition

lim
nÝÑ8

E

���Xt �
ņ

j��n

ψjZt�j

�2
�� � 0

For finite n ¥ 0,�
ņ

j��n

ψjZt�j

�2

�
ņ

j��n

ψ2
j Z

2
t�j �

ņ

j��n

¸
k�j

ψjψkZt�jZt�k
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2.4 Linear Processes

Taking expectations, as tZtu is a white noise process so that
ErZt�jZt�k s � 0 if j � k

E

��� ņ

j��n

ψjZt�j

�2
�� � σ2

Z

ņ

j��n

ψ2
j .
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2.4 Linear Processes

Now
8̧

j��8

|ψj |   8 ùñ
8̧

j��8

ψ2
j   8

so therefore the partial sums (with limits �n) are also finite
for all n.

If
8̧

j��8

|ψj |   8

then we term the sequence tψju absolutely summable.
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2.4 Linear Processes

Note also that by the Cauchy-Schwarz inequality

Er|Zt |s ¤
b
ErZ2

t s � σ,

therefore

Er|Xt |s ¤
8̧

j��8

|ψj |Er|Zt�j |s ¤ σ
8̧

j��8

|ψj |   8

so that
8̧

j��8

ψjZt�j

is convergent (almost surely).
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2.4 Linear Processes

The operator ψpBq is termed a linear filter; it acts on the sta-
tionary (white noise) process tZtu to produce the stationary
(autocorrelated) process tXtu.

The operator can also be applied to any stationary process.
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2.4 Linear Processes

Suppose that tYtu is a weakly stationary, zero mean process
with ACVF γY , and ψpBq is the above linear filter with abso-
lutely summable coefficients. Then the process

Xt � ψpBqYt �
8̧

j��8

ψjYt�j

is also weakly stationary with mean zero. The ACVF of tXtu is

γX phq �
8̧

j��8

8̧

k��8

ψjψkγY ph � j � kq.
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2.4 Linear Processes

If tYtu is a white noise process, so that tXtu is a linear process,
then

γX phq �
8̧

j��8

ψjψj�hσ
2
Y .

To see this, note that

ErXt s ¤ Er|Xt |s ¤
8̧

j��8

|ψj ||ErYt s|   8

so that ErXt s � 0 for all t . Then

ErXtXt�h s � E

��
8̧

j��8

ψjYt�j

��
8̧

k��8

ψkYt�h�k

��
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2.4 Linear Processes

Multiplying out yields

ErXtXt�h s �
8̧

j��8

8̧

k��8

ψjψkE rYt�jYt�h�k s

�
8̧

j��8

8̧

k��8

ψjψkγY pj � h � kq.

If tYtu is white noise, then γY phq � σ2
Y if h � 0 and zero

otherwise, in which case

γX phq � ErXtXt�h s �
8̧

j��8

ψjψj�hσ
2
Y .
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2.4 Linear Processes

If αpBq and βpBq are two linear filters, each of which has ab-
solutely summable coefficients, and

ψpBq � αpBqβpBq � βpBqαpBq

then ψpBq is also a linear filter, with

ψj �
8̧

k��8

αkβj�k �
8̧

k��8

βkαj�k

and if tYtu is a stationary process, then

Xt � ψpBqYt � αpBqβpBqYt

defines a stationary process tXtu. Note that Wt � βpBqYt is
also stationary, and Xt � αpBqWt .
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Example: AR(1) process

Let tZtu � WNp0, σ2
Z q, |ϕ|   1, and

Xt � ϕXt�1 � Zt

with ErZsXt s � 0 for s ¡ t . That is, tXtu is the solution of the
equation

Xt � ϕXt�1 � Zt

or
p1� ϕBqXt � Zt .
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Example: AR(1) process

Consider the linear process

Xt �
8̧

j�0

ϕjZt�j .

Note that
8̧

j�0

|ϕ|j � 1

1� |ϕ|   8

hence the conditions of absolute summability hold.
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Example: AR(1) process

This is a solution to the equation above as

Xt � ϕXt�1 � Zt

� ϕpϕXt�2 � Zt�1q � Zt recursion

...

� lim
nÝÑ8

#
ϕnXt�n �

n�1̧

j�0

ϕjZt�j

+

�
8̧

j�0

ϕjZt�j
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Example: AR(1) process

Also, for h ¥ 0,

γX phq �
8̧

j��8

ψjψj�hσ
2
Z �

8̧

j�0

ϕjϕj�hσ2
Z � σ2

Z

8̧

j�0

ϕ2j�h

that is

γX phq � σ2
Zϕ

h

1� ϕ2
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Example: AR(1) process

If tYtu is another stationary solution to the ARp1q equation,
then, for any k ¥ 0

E

�
��Yt � ķ

j�0

ϕjZt�j

�2
�
� � E

�
�� 8̧

j�k�1

ϕjZt�j

�2
�
�

� E

�
�� 8̧

l�0

ϕl�k�1Zt�k�1�l

�2
�
�

� ϕ2pk�1qE

�
�� 8̧

l�0

ϕlZt�k�1�l

�2
�
�

� ϕ2pk�1qE
�
pYt�k�1q

2
�
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Example: AR(1) process

The right hand side of this equation converges to zero as
k ÝÑ 8, as |ϕ|   1, and E

�
Y2
t�k�1

�   8.

Therefore Yt and Xt are equal in mean square

Yt
m.s.� Xt

and therefore tXtu is essentially the unique stationary solu-
tion to the ARp1q equation

Xt � ϕXt�1 � Zt

with |ϕ|   1 and tZtu � WNp0, σ2
Z q.
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Example: AR(1) process

Therefore for any stationary AR process there is an essentially
unique MAp8q representation, with ψj � ϕj for j ¥ 0, and
ψj � 0 for j   0.
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Example: Non-stationary AR(1) process

If |ϕ| � 1, say

Xt � Xt�1 � Zt or Xt � �Xt�1 � Zt

then Xt is not stationary. Clearly

VarrXt s � Varr�Xt�1s � VarrZt s ¡ VarrXt�1s

for all t .
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Non-causal ARp1q: In the ARp1q formulation, suppose |ϕ| ¡
1, that is

Xt � ϕXt�1 � Zt

so that
1

ϕ
Xt � Xt�1 � 1

ϕ
Zt

or
Xt�1 � ϕ�Xt � Z�t

where tZ�t u � WNp0, σ2
Z{ϕ2q is defined by

Z�t � �1

ϕ
Zt

and ϕ� � 1{ϕ, so that |ϕ�|   1.
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Therefore, by considering a reverse time formulation, we can
construct a stationary solution to the ARp1q equation. It takes
the linear process form

Xt �
8̧

j�0

ϕj�Z
�
t�1�j � �

8̧

j�0

ϕ�pj�1qZt�1�j

that is, Xt is defined in terms of future values of tZtu.

The ACVF can be computed by the usual methods. Such a
process is termed non-causal.
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Note: we have for the ARp1q process that

p1� ϕBqXt � Zt 6 Xt � p1� ϕBq�1Zt

and by a geometric series expansion,

Xt �
#

8̧

j�0

ϕjB j

+
Zt �

8̧

j�0

ϕjZt�j

as before.
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2.5 Autoregressive Processes

Suppose that tZtu � WNp0, σ2
Z q, and that the equation

Xt � ϕ1Xt�1 � � � � � ϕpXt�p � Zt

is used to define (implicitly) tXtu. This definition does not
ensure (or even suggest) that the solution can be found, or is
unique or stationary.

This process is termed the autoregressive process of order p
(ARppq). We have that

ErXt s � ErZt s � 0.
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Example: ARp2q process

If p � 2 we have

Xt � ϕ1Xt�1 � ϕ2Xt�2 � Zt or ΦpBqXt � Zt .

where ΦpBq � p1� ϕ1B � ϕ2B2q, and the following linear pro-
cess representation obtained by noting that

Xt � p1� ϕ1B � ϕ2B
2q�1Zt �

8̧

j��8

ψjZt�j

where ψj is the coefficient of B j in the series expansion of

p1� ϕ1B � ϕ2B
2q�1

2.5 Autoregressive Processes 138



2.5 Autoregressive Processes

Example: ARp2q process

Consider the factorization

Φpzq � p1� ϕ1z � ϕ2z
2q � p1� ξ1zqp1� ξ2zq.

where z is an arbitrary complex number, and pξ1, ξ2q are a
complex conjugate pair. In general,

p1� ξzq�1

has radius of convergence |ξ|   1 when |z| � 1.
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Example: ARp2q process

pξ1, ξ2q are the reciprocal roots (that is, the reciprocals of the
roots) of the equation

Φpzq � 0

then the series expansion of

tp1� ξ1zqp1� ξ2zqu�1

is convergent for |z| � 1 if and only if

|ξ1| � |ξ2|   1.
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Example: ARp2q process

We have that

ΦpBqXt � Zt 6 Xt � tΦpBqu�1Zt �
8̧

j��8

ψjZt�j

where ψj is the coefficient of z j in the series expansion of

tΦpzqu�1 � tp1� ξ1zqp1� ξ2zqu�1 �
8̧

j�0

8̧

k�0

ξj1ξ
k
2 z

j�k

that is

ψj �
j̧

k�0

ξk1 ξ
j�k
2
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Example: ARp2q process

Note that

|ψj | ¤
j̧

k�0

|ξ1|k |ξ2|j�k � pj � 1qM j

where M � maxt|ξ1|, |ξ2|u   1. Therefore

8̧

j�0

|ψj | ¤
8̧

j�0

pj � 1qM j � 1

p1�Mq2   8.

Hence tXtu is a linear process with absolutely summable co-
efficients.
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The extension to the ARppq case is straightforward: write

Φpzq � 1� ϕ1z � ϕ2z
2 � � � � � ϕpz

p �
p¹

j�1

p1� ξjzq

and by an identical argument to above, to ensure stationarity,
we require that the reciprocal roots

ξ1, ξ2, . . . , ξp

all satisfy |ξj |   1.
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Equivalently, if we let ηj � ξ�1
j denote the roots of Φpzq � 0,

then we have

Φpzq �
p¹

j�1

pηj � zq

and require |ηj | ¡ 1 for each j .
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If |ξj | ¡ 1 for at least one j , then no causal stationary solution
to the ARppq equation exists, but a similar approach to the
ARp1q case allows us to define a (unique) non-causal station-
ary solution.
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Hence the only case that leads to non-stationary solutions is
when |ξj | � 1 for at least one j . In the simplest case ξj � 1,
which corresponds to the factor p1 � Bq in the AR polyno-
mial; however any complex root with modulus 1 yields a non-
stationary solution, that is

ξj � e 9ιω

for �π   ω ¤ π, where 9ι � ?�1.
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Example: ARp2q process

Suppose

Xt � 13

4
Xt�1 � 3

4
Xt�2 � Zt .

Then

Φpzq � 1� 13

4
z � 3

4
z2 � p1� 3zqp1� z{4q

Therefore the reciprocal roots are 3 and 1{4. Therefore no
causal stationary solution exists.
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Example: ARp2q process

Suppose

Xt � 31

20
Xt�1 � 3

5
Xt�2 � Zt .

Then

Φpzq � 1� 31

20
z � 3

5
z2 � p1� 4z{5qp1� 3z{4q

Therefore the reciprocal roots are 4{5 and 3{4. Therefore a
causal stationary solution does exist.
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Code: we can use the functions in R to perform key calcula-
tions


 polyroot to compute the roots of Φpzq � 0.


 arima.sim to simulate a time series.


 ARMAtoMA to compute the ψj values in the MAp8q linear
process formulation


 ARMAacf to compute the theoretical ACF.

In these functions, the representation

Xt � ϕ1Xt�1 � ϕ2Xt�2 � Zt

is used, so that the coefficients in the above model are ϕ1 �
31{20 and ϕ2 � �3{5.
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polyroot(c(3/5,-31/20,1)) #Finding the roots (coefs in increasing term order)

## [1] 0.75+2.041443e-14i 0.80-2.041443e-14i

#Numerical solutions for roots are in complex number form, but imaginary part is negligible.

#Using the roots of a quadratic formula
aval<-1
bval<--31/20
cval<-3/5
root.vals<-(-bval+c(-1,1)*sqrt(bval^2-4*aval*cval))/(2*aval)
root.vals

## [1] 0.75 0.80

1/root.vals

## [1] 1.333333 1.250000

set.seed(32)
X<-arima.sim(n=500,model=list(ar=c(31/20,-3/5)))
par(mar=c(4,4,2,2))
plot(1:500,X,pch=19,cex=0.8,xlab='t')
lines(1:500,X)
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ARMAtoMA(ar=c(31/20,-3/5),lag.max=20) #Linear Process representation (first 20 coefs)

## [1] 1.5500000 1.8025000 1.8638750 1.8075063 1.6833097 1.5246263 1.3531849
## [8] 1.1826608 1.0212134 0.8732842 0.7408625 0.6243663 0.5232503 0.4364182
## [15] 0.3624980 0.3000210 0.2475338 0.2036647 0.1671601 0.1368993

par(mar=c(4,4,1,2))
true.acf<-ARMAacf(ar=c(31/20,-3/5),lag.max=50)
acf(X,main='ACF of X',lag.max=50)
points(0:50,true.acf,col='red',pch=19,cex=0.8)
legend(25,1,c('True ACF'),pch=19,col='red')
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Larger sample size: n � 5000.

set.seed(32)
X<-arima.sim(n=5000,model=list(ar=c(31/20,-3/5)))
par(mar=c(4,4,1,2))
true.acf<-ARMAacf(ar=c(31/20,-3/5),lag.max=50)
acf(X,main='ACF of X',lag.max=50)
points(0:50,true.acf,col='red',pch=19,cex=0.8)
legend(25,1,c('True ACF'),pch=19,col='red')
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2.6 ARMA Processes

If tZtu � WNp0, σ2
Z q, we have


 Moving Average:

Xt � Zt � θ1Zt�1 � � � � � θqZt�q

� stationary

� q-dependent; γX phq � 0 for h ¡ q
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 Autoregression:

Xt � ϕ1Xt�1 � � � � � ϕpXt�p � Zt

� stationary provided the roots of the AR polynomial

Φpzq � 1� ϕ1z � � � � � ϕpz
p �

p¹
j�1

p1� ξjzq

satisfy |ξj | � 1 for each j ; causal if |ξj |   1 for each j .

� yields an MAp8q representation.
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tXtu is an ARMApp,qq process if it is stationary and satisfies

ΦpBqXt � ΘpBqZt

where tZtu � WNp0, σ2
Z q, and

Φpzq � 1� ϕ1z � � � � � ϕpz
p �

p¹
j�1

p1� ξjzq

Θpzq � 1� θ1z � � � � � θqz
q �

q¹
j�1

p1� ωjzq
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Example: ARMAp1,1q

Suppose tXtu satisfies

p1� ϕBqXt � p1� θBqZt

This is the ARMAp1,1q process. Suppose that |ϕ|   1, and let

αpBq � tΦpBqu�1 �
8̧

j�0

ϕjB j
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Example: ARMAp1,1q

Then
Xt � αpBqΘpBqZt � ΨpBqZt

where

Ψpzq � αpzqΘpzq � p1� ϕz � ϕ2z2 � � � � qp1� θzq
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Example: ARMAp1,1q

Therefore

ψ0 � 1

ψj � pθ � ϕqϕj�1, j ¥ 1.

so

Xt � Zt � pθ � ϕq
8̧

j�1

ϕj�1Zt�j

Note: if |ϕ| ¡ 1, can construct a stationary non-causal version.
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Invertibility: If

ΦpBqXt � ΘpBqZt
then we may also write

tΘpBqu�1ΦpBqXt � Zt

provided the expansion

βpBq � tΘpBqu�1 �
8̧

j�0

βjB
j

converges.
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From above, we have

Θpzq �
q¹

j�1

p1� ωjzq

so therefore expansion exists provided |ωj |   1 converges.
Such a process is termed invertible.
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Example: ARMAp1,1q

In this case

ΘpBq � 1� θB βpBq � 1� θB � θ2B2 � � � �

and we require |θ|   1. Let πpBq � βpBqΦpBq, where

π0 � 1

πj � �pθ � ϕqp�θqj�1, j ¥ 1.

We then have an ARp8q representation

πpBqXt � Zt .
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2.7 ARMA processes: Estimation

Estimation for ARMA processes, and indeed all stationary pro-
cesses, can be achieved in a non-parametric fashion using
moment-based estimation.

For example, we may estimate expectation µ � ErXt s using
estimator pµ � 1

n

ņ

i�1

Xt � X
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2.7 ARMA processes: Estimation

Recall that we require an estimator to have good statistical
properties. In the non IID case, properties of this estimator
are more difficult to study; it is clear that, under stationarity,

ErX s � µ

so we have an unbiased estimator, but the variance of this
estimator must be computed with care.
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VarrX s � 1

n2

ņ

i�1

ņ

j�1

CovrXi ,Xj s � 1

n2

ņ

i�1

ņ

j�1

γX p|i � j |q

� 1

n2

ņ

h��n

pn � |h |qγX phq

� 1

n

ņ

h��n

�
1� |h |

n



γX phq

As n ÝÑ 8, this variance should stay finite, otherwise the
performance of the estimator will be poor.
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A necessary condition is that

γX phq ÝÑ 0 as h ÝÑ 8,

but this is not sufficient, for example if γX phq � 1{h as h ÝÑ
8, the sum diverges.
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If VarrX s ÝÑ 0, then X ÝÑ µ in mean square. If

8̧

h��8

|γX phq|   8

the asymptotic variance is the probability limit of nVarrX s,

nVarrX s pÝÑ
8̧

h��8

γX phq

Note that it is not necessarily the case that

8̧

h��8

|γX phq|   8.
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For a Gaussian series tXtu

?
npX � µq � N

�
0,

ņ

h��n

�
1� |h |

n



γX phq

�

whereas for non-Gaussian stationary series this result holds
as an asymptotic approximation, provided the autocovariance
series is absolutely summable.
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In practice, γX phq must be estimated from the data, and in the
asymptotic case, the infinite sum must be truncated;

ļ

h��l

�
1� |h |

n


pγphq
commonly this is done at l � ?

n.
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Example: ARp1q process

Suppose that tZtu � WNp0, σ2
Z q, and

Xt � µ � ϕpXt�1 � µq � Zt

with |ϕ|   1. Then

γX phq � σ2
Zϕ

|h |

1� ϕ2
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Example: ARp1q process

Then

8̧

h��8

|γX phq| �
8̧

h��8

γX phq

� σ2
Z

1� ϕ2

�
1� 2

8̧

h�1

ϕh

�

� σ2
Z

p1� ϕq2

2.7 ARMA processes: Estimation 175



2.7 ARMA processes: Estimation

Estimation of the autocovariance function γX phq can also be
achieved by moment-based methods

pγphq � 1

n

n�|h |¸
t�1

pxt�h � xqpxt � xq.

This is a biased estimator of γX phq, but the bias is low (order
op1{nq.

Note that the k � k symmetrix matrix pΓk with

rpΓk sij � pγp|i � j |q

is non-negative definite for each k ¥ 1.
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The autocorrelation function ρX phq can be estimated by

pRk � 1pγp0q pΓk

The properties of this estimator can be established, and can
be used to construct hypothesis tests for each h that ρX phq is
zero based on a z-score approach.
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In particular, under the null hypothesis that the process is a
white-noise process, we have approximately that

?
nrRk s1,h �

?
npρphq � N p0,1q h ¥ 1

Global (or portmanteau) tests, that assess multiple h can be
constructed based on a Chi-squared distribution approxima-
tion. See for example the Box-Ljung test (Box.test in R).
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Note: The matrices Γk , pΓk and other related matrices are
symmetric Toeplitz matrices (that is, they are constant along
diagonals).

Γk �

�
��������

γp0q γp1q γp2q γp3q � � � γpk � 1q
γp1q γp0q γp1q γp2q � � � γpk � 2q
γp2q γp1q γp0q γp1q � � � γpk � 3q
γp3q γp2q γp1q γp0q � � � γpk � 4q

...
...

...
...

. . .
...

γpk � 1q γpk � 2q γpk � 3q γpk � 4q � � � γp0q

�
��������
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Note: The matrices Γk , pΓk and other related matrices are
symmetric Toeplitz matrices (that is, they are constant along
diagonals).

Γk �

�
��������

γp0q γp1q γp2q γp3q � � � γpk � 1q
γp1q γp0q γp1q γp2q � � � γpk � 2q
γp2q γp1q γp0q γp1q � � � γpk � 3q
γp3q γp2q γp1q γp0q � � � γpk � 4q

...
...

...
...

. . .
...

γpk � 1q γpk � 2q γpk � 3q γpk � 4q � � � γp0q

�
��������
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2.8 Forecasting for Stationary Processes

Forecasting for stationary processes utilizes the autocovari-
ance structure of the process to optimize predictions. Sup-
pose we wish to forecast Xn�h given the observed data

x1:n � px1, . . . , xnq.

We focus on linear predictors, that is, linear combinations of
past values.

We will focus on model-free procedures, and utilize moment
properties rather distributional properties of tXtu.
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2.8 Forecasting for Stationary Processes

We utilize the minimum Mean-Square Error (MSE) criterion,
and choose constants a0:n � pa0, a1, . . . , anqJ to minimize

E

���Xn�h � a0 �
ņ

i�1

aiXn�i�1

�2
��

where the expectation is over the joint distribution of all the
random quantities.

We denote the linear predictor using the n-data prediction
operator notation

PnXn�h � a0 �
ņ

i�1

aiXn�i�1
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By differentiation, we need to solve simultaneously

E

��
Xn�h � a0 �

ņ

i�1

aiXn�i�1

��
� 0

and, for j � 1, . . . ,n

E

��
Xn�h � a0 �

ņ

i�1

aiXn�i�1

�
Xn�j�1

�
� 0

From the first equation, we see that we must choose

a0 � µ

�
1�

ņ

i�1

ai

�

where µ � ErXt s.
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In vector notation, the resulting system of n simultaneous
equations is written

Γna � γh :ph�n�1q (1)

where

Γn � rγX pi � jqsij pn � nq
a � pa1, . . . , anqJ pn � 1q

γh :ph�n�1q � pγX phq, . . . , γX ph � n � 1qqJ pn � 1q

with a0 � a0pa1, . . . , anq given by the previous expression.
This is a linear system in pa1, . . . , anq; in general the solution
will also depend on h .
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Denote the solution to (1) by

apn,hq � pap1,hq, . . . , apn,hqqJ

so that

PnXn�h � µ�
ņ

i�1

api ,hqpXn�i�1 � µq.

Note that, by construction

ErpXn�h � PnXn�h qs � 0

ErpXn�h � PnXn�h qXj s � 0 j � 1, . . . ,n

The minimum value of the MSE achieved by apn,hq is

ErpXn�h � PnXn�h q2s � γX p0q � apn,hqJγh :ph�n�1q

2.8 Forecasting for Stationary Processes 185



2.8 Forecasting for Stationary Processes

The formula

Γna � γh :ph�n�1q

depends only on the autocovariance function. Direct solution
of this equation is possible for most practical situations

apn,hq � Γ�1
n γh :ph�n�1q

can be computed using solve in R. However, the form of Γn

(symmetric, Toeplitz) can make it relatively easy to invert.
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Example: ARp1q

Recall that
rΓn sij � ϕ|i�j |

so that
γh :ph�n�1q � pϕh , ϕh�1, . . . , ϕh�n�1qJ

Then the matrix inversion can be carried out analytically,
yielding

apn,hq � pϕh ,0,0, . . . ,0qJ

which is an intuitively reasonable result. It follows that

PnXn�1 � ϕXn PnXn�2 � ϕ2Xn

and so on.
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Let Y ,W1, . . . ,Wn be random variables with

ErY s � µY ErWi s � µi

and

VarrY s,VarrWi s,CovrY ,Wi s,CovrWi ,Wj s   8.
Write Wn:1 � pWn , . . . ,W1qJ, and

γ � CovpY ,Wn:1q pn � 1q
Γ � CovpWn:1,Wn:1q pn � nq
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Denote the best linear predictor of Y , given W1, . . . ,Wn by

pPpY |Wq � µY � aJpWn:1 � µn:1q

where a solves Γa � γ. The minimum MSE is then

ErpY � pPpY |Wqq2s � VarrY s � aJγ.
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Let U and V be random variables with ErU2s,ErV2s   8, and
β, α1, . . . , αn be constants. Then

1. pPpU |Wn:1q � ErU s � aJpWn:1 � µn:1q.
2. ErU � pPpU |Wn:1qs � ErpU � pPpU |Wn:1qqWn:1s � 0.

3. ErpU � pPpU |Wn:1qq2s � VarrU s � aJγ.

4. pP is a linear operator

pPpα1U�α2V�β|Wn:1q � α1
pPpU |Wn:1q�α2

pPpV |Wn:1q�β.
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5. pPpαJWn:1 � β|Wn:1q � αJWn:1 � β.

6. If γ � 0, pPpU |Wn:1q � ErU s.
7. Coherent iterated prediction: If W � pWn:1,W�

n:1q, then

pPpU |Wq � pPppPpU |Wn:1,W
�
n:1q|Wn:1q.
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Example: ARppq process

If tZtu � WNp0, σ2q, and

ΦpBqXt � Zt

such that tXtu is stationary and causal. Then for each n

Pn�1Xn � Pn rϕ1Xn�1 � � � � � ϕpXn�p � Zn s
� ϕ1Xn�1 � � � � � ϕpXn�p

by 4., 5. and 6.
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2.9 Levinson-Durbin Algorithm

For a stationary process tXtu, suppose we write

PnXn�1 �
ņ

j�1

ϕn,jXn�j�1 � ϕJn X1:n

say as the general form of a linear predictor, where

ϕn � pϕn,1, . . . , ϕn,nqJ pn � 1q

is the coefficient vector resulting from n data.
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By the arguments above, the optimal MSE choice for ϕn is

ϕn � Γ�1
n γn

where

rΓn sij � γX p|i � j |q γn � pγX p1q, . . . , γX pnqqJ.

Let the minimum MSE be denoted

vn � ErpXn�1 � PnXn�1q2s � γX p0q � ϕJn γn .
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We seek a recursion for ϕn ; suppose ϕn�1 and vn�1 have been
computed, and define ϕn by setting the nth component as

ϕn,n � 1

vn�1

�
γX pnq � ϕJn�1γpn�1q:1

�
and the first n � 1 components via

ϕn,1:pn�1q � ϕn�1 � ϕn,nϕ
R
n�1

where

ϕR
n�1 � pϕn�1,n�1, . . . , ϕn�1,1qJ

is the reversed version of ϕn�1. Finally, set

vn � vn�1p1� ϕ2
n,nq

2.9 Levinson-Durbin Algorithm 195



2.9 Levinson-Durbin Algorithm

To initialize the recursion, set

ϕ1,1 � ρX p1q � γX p1q
γX p0q v0 � γX p0q v1 � γX p0qp1� ϕ2

1,1q

To see that the recursion produces a valid solution, first set Rn

to be the autocorrelation matrix Rn � Γn{γX p0q, and define

ρn �
1

γX p0qγn � pρX p1q, . . . , ρX pnqqJ.

We verify the inductive step

Rnϕn � ρn ùñ Rn�1ϕn�1 � ρn�1
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Clearly the relation holds for n � 1, as

R1 � 1 ϕ1 � ϕ1,1 � ρX p1q ρ1 � ρX p1q.

We assume the relation holds for n � k , and verify that it
holds for n � k � 1. Now

Rk�1 �
�

Rk ρR
k

tρR
kuJ 1

�

where

ρR
k � pρX pkq, . . . , ρX p1qqJ � 1

γX p0qγ
R
k
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Recall that

Rk�1 �
1

γX p0q

�
���������

γX p0q γX p1q γX p2q � � � γX pkq

γX p1q γX p0q γX p1q � � � γX pk � 1q

γX p2q γX p1q γX p0q � � � γX pk � 2q

...
...

...
. . .

...

γX pkq γX pk � 1q γX pk � 2q � � � γX p0q

�
���������

and note that

Rkϕk � ρk ùñ Rkϕ
R
k � ρR

k .
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Rk�1ϕk�1 �
�

Rk ρR
k

tρR
kuJ 1

��
ϕk � ϕk�1,k�1ϕ

R
k

ϕk�1,k�1

�

�
�

Rkϕk � ϕk�1,k�1Rkϕ
R
k � ϕk�1,k�1ρR

k

tρR
kuJϕk � ϕk�1,k�1 tρR

kuJϕR
k � ϕk�1,k�1

�

�
�

Rkϕk

tρR
kuJϕk � ϕk�1,k�1p1� tρR

kuJϕR
k q

�
as Rkϕ

R
k � ρR

k .
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Now by definition

ϕk�1,k�1 � 1

vk

�
γX pk � 1q � ϕJk γ

R
k

�
and by definition

vk � γX p0q � ϕJk γk � γX p0q � tϕR
kuJ γR

k

� γX p0qp1� tρR
kuJϕR

k q

so therefore
1

vk
p1� tρR

kuJϕR
k q �

1

γX p0q
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Therefore

ϕk�1,k�1 � 1

γX p0q
�
γX pk � 1q � ϕJk γ

R
k

� � ρX pk � 1q � ϕJk ρ
R
k

and hence

Rk�1ϕk�1 �
�

Rkϕk

tρR
kuJϕk � ρX pk � 1q � ϕJk ρ

R
k

�

�
�

ρk

ρX pk � 1q

�
� ρk�1

and the recursion holds.
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For the prediction MSE recursion: using the recursion for ϕn ,

vn � ErpXn�1 � ϕJnXn:1q2s � γX p0q � ϕJn γn

� γX p0q � ϕJn�1γn�1 � ϕn,n
 
ϕR
n�1

(J
γn�1 � ϕn,nγX pnq

� vn�1 � ϕn,n

� 
ϕR
n�1

(J
γn�1 � γX pnq

	
� vn�1 � ϕ2

n,npγX p0q � ϕJn�1γn�1q
� vn�1p1� ϕ2

n,nq.

where line 2 follows from line 1 by substituting in the formula
for ϕn given by the recursion.
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2.10 Partial Autocorrelation Function (PACF)

Define the function αX phq by αX p0q � 1 and

αX phq � ϕh ,h h � 1,2, . . . ,n

where ϕh ,h is the value returned as the coefficient on the h th
step of the Levinson-Durbin recursion.

This function is termed the partial autocorrelation function,
or PACF, which is uniquely determined by the ACF γX .
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Note also that as vn is non-negative, and

vn � vn�1p1� ϕ2
n,nq

we must have that ϕ2
n,n ¤ 1 for all n, and hence that

vn ¤ vn�1

so the optimal prediction MSEs form a decreasing sequence.

2.10 Partial Autocorrelation Function (PACF) 204



2.10 Partial Autocorrelation Function (PACF)

For random variables X ,Y ,Z , the partial correlation of X and
Y , given Z is defined by

CorrrpX � ErX |Z sq, pY � ErY |Z sqs

that is, the correlation between the residuals from a regres-
sion of X on Z with those from a regression of Y on Z .

2.10 Partial Autocorrelation Function (PACF) 205



2.10 Partial Autocorrelation Function (PACF)

For process tXtu, if we let X � Xt , Y � Xt�h , and Z �
Xpt�1q:pt�h�1q.

αX phq � ϕh ,h

� CorrrpXt � pPpXt |Xpt�1q:pt�h�1qqq,
pXt�h � pPpXt�h |Xpt�1q:pt�h�1qqqs

The PACF computes the correlation between prediction resid-
uals for Xt and Xt�h , using Xpt�1q:pt�h�1q to make the predic-
tions.
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Example: ARppq

Suppose tXtu � ARppq, with parameters ϕ1, . . . , ϕp , and con-
sider h ¡ p. Then

pPpXt�h |Xpt�1q:pt�h�1qq � ϕ1Xt�h�1 � � � � � ϕpXt�h�p

and

pPpXt |Xpt�1q:pt�h�1qq � pXt � ϕ1Xt�1 � � � � � ϕpXt�p

so therefore

Xt�h � pPpXt�h |Xpt�1q:pt�h�1qq � Zt�h

Xt � pPpXt |Xpt�1q:pt�h�1qq � Zt

and as CorrrZt ,Zt�h s � 0, the PACF is zero for h ¡ p.
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The Levinson-Durbin algorithm provides a method for solving
the linear system

Rnϕn � ρn

by recursion, for arbitrary n, and given ACF γX phq without
the need for large matrix inversion. It exploits the symmetric
Toeplitz nature of an autocovariance matrix, and is an order
n2 algorithm.

Other algorithms for inverting this type of matrix are typically
higher order; the Cholesky decomposition

Rn � LnLJn

with Ln lower triangular is order n3. It does not exploit the
Toeplitz nature of Rn .
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2.11 The Innovations Algorithm

Another approach to forecasting proves feasible even for the
non-stationary case. Suppose that tXtu is zero mean process
with Er|Xt |2s, and ErXiXj s � κpi , jq. Denote

pXn �
#

0 n � 1

Pn�1Xn n � 2,3, . . . .

and let
Un � Xn � pXn

denote the one step prediction error. Then

U1:n � AnX1:n

where An contains the coefficients ai ,j that appear in the op-
timal linear predictor.
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An �

����������

1 0 0 � � � 0

a1,1 1 0 � � � 0

a2,2 a2,1 1 � � � 0

...
...

...
. . .

...

an�1,n�1 an�1,n�2 an�1,n�3 � � � 1

����������
This lower triangular matrix is non-singular and let

A�1
n � Cn

where Cn is also lower triangular.
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Let

Cn �

����������

1 0 0 � � � 0

θ1,1 1 0 � � � 0

θ2,2 θ2,1 1 � � � 0

...
...

...
. . .

...

θn�1,n�1 θn�1,n�2 θn�1,n�3 � � � 1

����������

Then, recalling that X1:n � CnU1:n ,

X1:n � CnU1:n � CnpX1:n � pX1:nq.
AlsopX1:n � X1:n �U1:n � CnU1:n �U1:n � ΘnpX1:n � pX1:nq
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Θn �

����������

0 0 0 � � � 0

θ1,1 0 0 � � � 0

θ2,2 θ2,1 0 � � � 0

...
...

...
. . .

...

θn�1,n�1 θn�1,n�2 θn�1,n�3 � � � 0

����������
Therefore

pXn�1 �

$'&'%
0 n � 0

n°
j�1

θn,j pXn�1�j � pXn�1�j q n � 1,2, . . . .
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Therefore the one-step predictions

pX1, pX2, . . . , pXn , . . .

can be computed as weighted sums of previous prediction er-
rors

X1 � pX1,X2 � pX2, . . . ,Xn � pXn , . . .

provided the entries in the matrix Θn are known. Note that
by the previous results, the sequence tDnu defined by

Dn � Xn � pXn

is an uncorrelated sequence.

Another recursive approach avoids the need to carry out ma-
trix inversion.
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Initialize v0 � κp1,1q � ErX2
1 s, then for each n set

θn,n�k � 1

vk

�
κpn � 1, k � 1q �

k�1̧

j�0

θk ,k�jθn,n�jvj

�

for 0 ¤ k   n, and

vn � κpn � 1,n � 1q �
n�1̧

j�0

θ2
n,n�jvj

That is, we compute

v0

θ1,1 v1

θ2,2 θ2,1 v2

θ3,3 θ3,2 θ3,1 v3

and so on.
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For h -step ahead prediction

PnXn�h �
n�h�1¸
j�h

θn�j�1,j pXn�h�j � pXn�j�j q

and

vn�h � κpn � h ,n � hq �
n�h�1¸
j�h

θ2
n�j�1,jvn�h�j�1

In this case, the innovations algorithm must be run forward
h � 1 steps.
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Note: It is possible to extend the idea of optimal linear pre-
diction from the finite case to the infinite, that is, to find con-
stants tβju such that

rPXn�h �
8̧

j�1

βjXn�1�j .

The infinite system of moment constraints

ErpXn�h � rPXn�h qXn�1�i s � 0 i � 1,2, . . .

yield the infinite system of equations

8̧

j�1

γX pi � jqβj � γX ph � i � 1q i � 1,2,
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2.12 The Wold Decomposition

Any process tXtu where

Xn � rPn�1Xn � 0

in mean square, that is

ErpXn � rPn�1Xnq2s � 0

for all n is termed deterministic
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Example: Simple Deterministic Process

Suppose U ,V are zero mean and uncorrelated variables with
variance σ2, and let

Xt � U cospωtq � V sinpωtq

for some ω P p0, πq. Then for each integer n,

Xn � 2 cospωqXn�1 � Xn�2 � rPn�1Xn

say, and hence
Xn � rPn�1Xn � 0
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2.12 The Wold Decomposition

The Wold Decomposition gives a fundamental representation
of stationary processes.

If tXtu is stationary and non-deterministic, then tXtu has the
representation

Xt �
8̧

j�0

ψjZt�j � Vt (Wold)

where


 tZtu � WNp0, σ2q

 tVtu is deterministic


 tZtu and tVtu are uncorrelated


 ψ0 � 1,
8°
j�1

ψ2
j   8.
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We also have that


 Zt � rPtZt for all t


 Vt � rPsVt for all s, t .

and that the representation in (Wold) is unique. Furthermore


 for each t , Zt � Xt � rPt�1Xt ;


 for each j , ψj satisfies

ψj � ErXtZt�j s
ErZ2

t s
;


 for each t , Vt � Xt �
8°
j�0

ψjZt�j .
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