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0.0

Time Series: Prerequisites

¢ Basic distribution theory
e Expectations and other moments

e Basics of statistical theory (ie estimation, testing, large
sample theory)

e Linear algebra (matrix manipulations and decomposition)
¢ Basic knowledge of complex numbers

e Computing an advantage (knowledge of R).



0.0

Time Series: Objectives

The basic objective is to construct models for observed data
X1,X2, .., Xty

with t indexing time, with the goals of
¢ explaining the underlying data generating mechanism
e forecasting future values of the underlying process.

We will mainly focus on discrete time modelling, and denote
the underlying stochastic (random) process {X;}.



0.0

Time Series: Objectives

The stochastic process can be (partly) characterized via its

¢ finite dimensional distributions, that is the joint distribu-
tions of
Xty Xty)

for each index set {t,...,ty}

e moment properties (expectation, variance, covariance)

Typically {X;} will not be independent, and inference about
the parameters of the joint distribution will be of central in-
terest.



0.0

Time Series: Forecasting

Given observed values X; = x1,Xp = x2,..., X7 = X7, we aim
to predict or forecast future values of the process

XT+17 s 7XT+K

say.
For example, could use a simple linear predictor

T

Xry1 = Z arXy
t=1

that is, a linear combination of past values of the process. The
objective then is to choose the optimal values for the a;.
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Introduction




1.1 Introduction

A time series is a sequence of random variables
{Xiti—1,..r = (X1,...,X1) = X1.1
or a realization
{Xt}t=1,.. 7= (x1,...,X1) = X1.T

collected over time index t representing some unit time pe-
riod (hours, days, months etc.).

1.1 Introduction



1.2 Simple Stochastic Models

A time series model is a probability model specifying
e the joint distribution

e the second-order moment structure (mean, variance, co-
variance)

of {X;}.

The joint distribution specifies the moment structure.

1.2 Simple Stochastic Models



1.2 Simple Stochastic Models

Recall that for any two random variables, the covariance is
defined as

Cov[Xi, Xj| = E[(Xi — 1) (Xj — py)]
where ;; = E[X;] and pj = E[X]], and the correlation is

Cov|X;, X;|
Var|X;|Var|X;]|

Corr[X;, Xj| =

1.2 Simple Stochastic Models



1.2 Simple Stochastic Models

For a d-dimensional random vector X = (Xi,...,Xq)", we
form the covariance matrix, ¥, so that the (i,j)th element of
Y is

[¥]i; = Cov[X;, Xj].
This matrix is symmetric, and non-negative definite. We may

write
Y = VRV'

where
V = diag(y/Var[Xi], . .., v/Var[Xa])

and R is the matrix of correlations.

1.2 Simple Stochastic Models
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1.2 Simple Stochastic Models

Special Case: Independence

~

T
Fx.r(xur) = | [ Fx(x) = | [ Pr{X; < x]
t=1 t=1

or equivalently, for each t,
P[X; < Xt|X1:(t—1) = Xl:(t—l)] = Pr(X: < x¢]

where the past values of X contain no information about fu-
ture X.

Note: If two variables are independent, then they are also
uncorrelated; however, in general uncorrelatedness does not
imply independence.

1.2 Simple Stochastic Models
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1.2 Simple Stochastic Models

For the specification via moments, interest focusses on
Expectation pe = E[X¢]
Variance 0%, = Var[X;]
Covariance vx(t,s) = E[(X: — pe)(Xs — us)]

for any indices t,s. As the X; usually represent repeated
measurements of the same phenomenon over time, the term
autocovariance is used.

1.2 Simple Stochastic Models
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1.2 Simple Stochastic Models

Example: IID Process

Let 0 < p < 1, and suppose

with the X; mutually independent. Then {X;} is an IID (inde-
pendent, identically distributed) process.

1.2 Simple Stochastic Models
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1.2 Simple Stochastic Models

Example: IID Process

We have that
pe=p+(1-p)(-1)=2p -1
ot =[p(1)* + (1 - p)(-1)’] = (2p — 1)* = 1 — (1 — 2p)?
v(t,s) =0 t#s

and these quantities do not depend non t or s.

1.2 Simple Stochastic Models

14



1.2 Simple Stochastic Models

Example: Random Walk
Suppose {X;} is an IID process, and let

t
St =X =S 1+X
i=1

Then {S;} is a random walk. Also, setting Syp = 0, we have
Xi =St — St

that is, {X;} can be obtained from {S;} by differencing.

1.2 Simple Stochastic Models

15



1.2 Simple Stochastic Models

Example: Random walk

Suppose {X;} is an IID process with

P[X, = 1] = P[X; = —1] = %

and zero otherwise, and let

Then both {X;} and {S;} are zero-mean processes.

If p # 1/2, then E[X;], E[S;] are non-zero; if p < 1/2, then
E[S:] < 0 and we have a downward drift.

1.2 Simple Stochastic Models



1.2 Simple Stochastic Models

Example: Random walk

Note that for any (time-homogeneous) random walk

t t
Var[S;] = Var [2 Xj] = 2 Var [Xj] = tVar [Xi]

i=1 i=1
by the independence of the X;, so the variance grows linearly
with t.

Thus even if E[S;] = 0, the probability distribution of S; has
increasing variability around zero, and will (almost surely) di-
verge to an infinite value.

1.2 Simple Stochastic Models
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1.3 Gaussian processes

Suppose, for all finite collections Xi,...,X,, n = 1, the joint
distribution is multivariate Gaussian (Normal) with

E[Xt] = px
and covariance defined for X;, X as
Cov[X;, Xs] =x(|t —s|) t,se{l,...,n}.
for some function of a single argument ~vx. We have that

Var[X;] = vx(0).

1.3 Gaussian processes 18



1.3 Gaussian processes

Note that the autocovariance only depends on the value of
|t —s|

This version imposes extra conditions, which corresponds to a
structured covariance matrix which has fewer than n(n+1)/2
different elements.

1.3 Gaussian processes
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1.3 Gaussian processes

Let I'x(n) denote the (n x n) matrix with

[Cx()]es = x(|t = s)).
Then I'x(n) is a symmetric, positive definite matrix so that

x' Tx(n)x>0 xeRL

1.3 Gaussian processes 20



1.3 Gaussian processes

The matrix I'x(n) has Toeplitz structure, constant among di-

agonals,
[ x(0)  x(1) - o x(n—1)]
1x(1)  x(0) x(1) '
x(n) =] (2 (1)
()
| x(n—=1) - e x(1) 0 x(0)

We write the vector
Xy =X ~ Nn(ﬂXln; FX(H))-

where 1 = (1,1,...,1)T isan n x 1 vector.

1.3 Gaussian processes



1.3 Gaussian processes

We have the decomposition
X, = puxly + 2, (n x1)

where
Z, ~ Ny(0p,Tx(n)).

1.3 Gaussian processes
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1.3 Gaussian processes

In general, if

2

X1
X = ~ PN
|~V
with X; and X3 being k; x 1 and k; x respectively, where
2 Y11 X2 ]
= E =
H [Nz] [ Y1 X2
then

X1 ~ Ny (B, 211)

Xo[X1 = %1 ~ N, (g + 2157 (x1 — py), Zo2 — 21577 212) -

1.3 Gaussian processes



1.3 Gaussian processes

Specifically, if we consider the one-step-ahead (conditional)
probability distribution

Xni1 |X1:n = X1:n

it follows by standard properties that

Xo41/Xt:n = Xt ~ N (a1 0 1in)

1.3 Gaussian processes 24



1.3 Gaussian processes

Write 7x = vx(k) for each k > 0.

Xi:(n+1) I8

Fx(II + 1) =

where

75; = [7117’711*17’711*17 ‘e

1.3 Gaussian processes
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1.3 Gaussian processes

Applying the previous formula, we have
fnsnin = kx + {7a} {Tx(m)} " (X1 — px1a),

and
0%y = 70 — (75} {Tx()} 4
Note therefore that
J(zn+1)|n <7

as I'x(n) is positive definite.

1.3 Gaussian processes
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1.4 Stationarity

Suppose {X;} is a time series process, where for all t
E[X?] < co.
Define

Mean function : ux(t) = E[X¢]

Covariance function : vx(t,s) = E[(X; — pux(t))(Xs — ux(s))]
for integers t, s. Note that

VX(tv S) = 'YX(Sa t)'

1.4 Stationarity

27



1.4 Stationarity

The process {X;} is weakly stationary if
(i) pux(t) does not depend on t

(ii) vx(t + h,t) does not depend on t for each integer h, so
that we may write

Yx(t,t + h) = yx(h).
Note also that we must have
Vx(=h) = yx(t,t — h) = yx(t — h,t) = yx(h).
forh > 1.

Note: The quantity h is often referred to as the lag.

1.4 Stationarity
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1.4 Stationarity

{Xt} is strongly stationary if
Xi:(t4n) = (Xt+1, -+ Xt4n)

and
X(t+h+1):(t+h+n) = (Xt+n+1,--->Xt+hin)

have the same joint distribution for all t, h, n.

In practice, the (multivariate) distributions required to model
such strongly stationary processes are limited in number.

1.4 Stationarity 29



1.4 Stationarity

If {X;} is weakly stationary process define

e the autocovariance function (ACVF), vx(h), by

vx(h) =vx(h,0) = yx(t + h, t)

e the autocorrelation function (ACF), px(h), by

That is
vx(h) = Cov[X¢+n, Xt] px(h) = Corr[X;ip, Xt].

The fundamental concept of stationarity is that the stochastic
structure does not change though time

1.4 Stationarity
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1.4 Stationarity

Example: IID Process

An IID process {X;} ~ IID(0, 0%), is characterized by

Var[X;] = E[X?] 0% < 0.

with the X; mutually independent. This process is stationary:

0)2( h=0
’VX(h) = COV[Xt+haXt] =

0O h>0

1 h=0
px(h) = COIT[XHh,Xt] =

0O h>0

1.4 Stationarity
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1.4 Stationarity

Example: White Noise Process

A white noise process {X;} ~ WN(0, %) is characterized by

Var[X;] = E[X?] 0% < 0.

with the X; uncorrelated. This process is stationary:

0)2( h=0

’VX(h) = COV[Xt+haXt] =
0O h>0
1 h=0

px(h) = COIT[XHh,Xt] =
0O h>0

1.4 Stationarity
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1.4 Stationarity

Example: Random Walk
If {X;} ~ WN(0,02%), then the process {S;} defined by

is non-stationary as, by properties of uncorrelated rvs,
E[S¢]=0
Var[S;] = to%

which does depend on t.

1.4 Stationarity
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1.4 Stationarity

Example: Random Walk

For the ACVF:

"}/S(t + h, t) = COV[St+h, St]
= COV[St + Xip1 4+ -+ Xian, St]
h
= Cov[St, St] + >, Cov[Xiyi, Si]
i=1
= COV[St, St]
= Var[St]

= ta)z(.

1.4 Stationarity



1.4 Stationarity

Example: Moving Average

Let {Z;} ~ WN(0,02%), and define process {X;} by
X; :Zt+912t—l teZ

where 0; is a real-valued parameter. As E[Z;] = 0, we also
have E[X;] = 0, and by uncorrelatedness of the {Z;} compo-
nents

Var[X;| = Var[Z;] + 67Var[Z; 1] = (1 + 6%)0%

which does not depend on t.

1.4 Stationarity
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1.4 Stationarity

Example: Moving Average

We have

yx(t +h,t) = Cov[Xiin, X;] = E[X:X¢sn]
=E[(Zt + 01Zt-1)(Zi4n + 01Zt41-1)]
=E[Zi1nZt] + 01 (E[Zt1n Zt—1] + E[Zr4n-1Z¢])
+ 0TE[Z 1Z;n1]

Now,

02 j=k

E[zjzk]:{o o

1.4 Stationarity



1.4 Stationarity

Example: Moving Average

Hence

o2(1+62) h=0

vx(t +h,t) =< o6 h=+1
0 otherwise
1 h=0
px(t+h,t) =< 61/(1+67) h=+1
0 otherwise

These functions do not depend on t, so {X;} is a stationary
process

{Xe} ~ MA(1)

1.4 Stationarity



1.4 Stationarity

Example: Autoregression

Let {Z;} ~ WN(0,02), and define process {X;} by
X = 1 Xe 1+ Z; teZ

where ¢; is a real-valued parameter with |¢1] < 1.

Assume for the moment that {X;} is stationary, and that
Cov[Z;,Xs] =0 t>s.

that is, future values of the Z series are uncorrelated with
past values of the X series.

1.4 Stationarity
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1.4 Stationarity

Example: Autoregression

Then
E[X;] = 1E[X¢—1] + E[Z¢] = 1 E[X¢-1]

so therefore by the stationarity assumption E[X;] = 0.

1.4 Stationarity
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1.4 Stationarity

Example: Autoregression

We have forall h > 0

VX(h) = COV[Xt+h,Xt] = COV[Xt_h7Xt]
= COV[gb]thl,thh] ale COV[Zt,Xt,h]
= ¢1COV[Xt,1,Xt7h] + 0

= p1yx(h — 1)
= ¢iyx(h — 2)
= ¢ vx(0)

by recursion.

1.4 Stationarity 40



1.4 Stationarity

Example: Autoregression

Note that
E[X:Xi—n] = E[X¢+nXt]

by the stationarity assumption. Therefore

Vx(=h) = yx(h)

and so
px(h) = ¢ h=0,+1,+2

that is, a geometrically decaying ACF.

1.4 Stationarity
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1.4 Stationarity

Example: Autoregression

Note also that

vx(0) = Cov[X, X¢]
= Cov[(¢1Xt—1 + Zi) (1 Xi—1 + Z¢)]
= QS%COV[thl;thl] + Cov[Z;, Zt]
= ¢17x(0) + 0%

so therefore

2

g
vx(0) = —%—
1—¢?

{X;} is the autoregressive process of order 1: {X;} ~ AR(1).

1.4 Stationarity
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1.4 Stationarity

Example: Autoregression

From the definition, we have

Xi

1.4 Stationarity

1 X1+ Zy

G1(01Xe—2 + Ze—1) + Zo = $1Xe—2 + (Zp + $1Z4-1)
3 (01Xe—3 + Zt2) + (Z¢ + $1Zi1)

D1Xe—3 + (Ze + )1Zi—1 + 1 Z¢2)

h—-1
S Xion + Y, 2

Jj=0

43



1.4 Stationarity

Example: Autoregression

If we allow h — oo, provided |¢1| < 1, we can continue the
recursion indefinitely to obtain

2 .
X =) ¢z

Jj=0

as the first term converges to zero.

1.4 Stationarity
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1.4 Stationarity

Note: when we write
Xi =Zy + 01244

or
Xi =01 Xi1 + Z;

we need to be precise about the meaning of the symbol ’'=

1.4 Stationarity

’
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1.4 Stationarity

For random variables we have (for example)

¢ equality in distribution
x 2y,

(i.e. the distribution of X; is the same as the distribution
of Yt)

e equality in probability

(i.e. Pr[|X; — Y| < €] =1 forall e > 0)

1.4 Stationarity
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1.4 Stationarity

e equality with probability 1 (almost sure equality)

(i.e. For each w, Pr[|X;(w) — Yi(w)| < €] =1 forall e > 0.)

e mean-square equality

(.e. E[(X; — Y;)?] = 0)

1.4 Stationarity
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1.4 Stationarity

In the case of an explicit formula, we can interpret the equal-
ity as a definition
Xe =Z + 0121

but for an implicit formula
Xp =01 Xe—1+Z;

we may need to use the other definitions.

1.4 Stationarity
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1.4 Stationarity

For a stationary process, moment estimators can be used to
estimate the mean/covariance structure. The estimates are

1 n
Ta

n
th ) (Xe 4 |n| — 12) —n<h<n

b\H

These are consistent estimators of the two functions. The n x
n matrix estimate

Tn = [ — )]y

is non-negative definite.

1.4 Stationarity
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1.5 Trends and Seasonality

The models from the previous section are purely stochastic.
It is also possible to incorporate deterministic components.

We focus on
e trends,

e seasonality.

1.5 Trends and Seasonality
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1.5 Trends and Seasonality

Trends: Suppose that for each t,
X; = my + E;

where
e m; is a deterministic function of t,
e E; is a purely stochastic, zero mean time series.

For example, might have
m; = ag + ait

that is, a linear trend in time. Constants ag, a; are in general
unknown and must be estimated.

1.5 Trends and Seasonality
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1.5 Trends and Seasonality

Ordinary Least-Squares (OLS): estimate ag, a; by minimiz-
ing the sum of squared errors

T
= argmin{Z(xt — ag —alt)z}.

t=1

)

Provided E[E;] = 0, OLS estimators are consistent estimators
of the true parameters (if the trend truly is linear)

a—a

as n — o0. OLS is easily applied for many types of determin-
istic trend (e.g. polynomial trend).

1.5 Trends and Seasonality

52



1.5 Trends and Seasonality

Example: Lake Huron data

Annual level (in ft) of Lake Huron 1875-1972 (T = 98).

8

# 4|
3

580

579

578

577

576

Years since 1872

1.5 Trends and Seasonality



1.5 Trends and Seasonality

Example: Lake Huron data

Fitted linear trend: ap, = 580.204, a; = —0.024.

()

80 =580.204
£ &=-0024

0 20 40 60 80 100

1.5 Trends and Seasonality



1.5 Trends and Seasonality

Example: Lake Huron data

After fitting the linear trend model
Xy =ap + a1t + E;
by OLS to obtain ag, a;, we may examine the residual series

ét:Xt—ao—alt

1.5 Trends and Seasonality 55



1.5 Trends and Seasonality

Example: Lake Huron data

Residual series: e; = x; — a9 — ai t.

AN
IR AV

1.5 Trends and Seasonality



1.5 Trends and Seasonality

Example: Lake Huron data

The residual series is approximately zero mean. However,
there is some structure:

e the variance is not constant over time ?

e successive residuals (€; 1,€;) are positively correlated.
The sample correlation is

corr|[é;_1, €] = 0.775

That is, the residual series does not appear to be a realization
of an IID process.

1.5 Trends and Seasonality
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1.5 Trends and Seasonality

Example: Lake Huron data: e; vs €;_1.

1.5 Trends and Seasonality
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1.5 Trends and Seasonality

Example: Lake Huron data

The positive dependence is potentially useful for forecasting;
if
693, 6947 ) é98

are positive, it is likely that
€99

will also be positive. That is, conditional on the available data,
the prediction for the next data point Xgg9 will be different if
the residuals apparently exhibit correlation.

1.5 Trends and Seasonality
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R Code

Huron<-scan("https://www.math.mcgill.ca//dstephens//545//Data//huron.txt")
Huron<-Huron+570
n.H<-length(Huron); t.H<-c(1l:n.H); x<-c(1875:1972)
par(mar=c(4,4,2,2))
plot(t.H,Huron, type="1",
xlab="Years since 1872",ylab=expression(X[t]))
points(t.H,Huron,pch=19,cex=0.7)
abline(lm(Huron~t.H))

1.5 Trends and Seasonality
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R Code
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1.5 Trends and Seasonality
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R Code

a0<-1m(Huron~t.H)$coeff[1]; al<-lm(Huron~t.H)$coeff[2]

mt.H<-a0+alxt.H; et.H<-Huron-mt.H

par(mar=c(4,4,2,2))

plot(t.H,et.H,type="1",xlab="Years since 1872",
ylab=expression(hat(e)[t]))

points(t.H,et.H,pch=19,cex=0.7); abline(h=0,lty=2)

1.5 Trends and Seasonality
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R Code

€
0
|

0 20 40 60 80 100

Years since 1872

1.5 Trends and Seasonality
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R Code

yl<-et.H[2:98];y2<-et.H[1:97];cor(yl,y2)

par(mar=c(5,4,2,2),pty="'s")

plot(yl,y2,xlab=expression(hat(e)[t-1]),
ylab=expression(hat(e)[t]),pch=19,cex=0.7)

1.5 Trends and Seasonality
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R Code

1.5 Trends and Seasonality

Corr. = 0.776
L
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1.5 Trends and Seasonality

Example: Lake Huron data

Recall that the model
X = my + E;

was fitted using a linear trend m; = ag + a; t leaving residuals
that were positively correlated (see plot on page 58). We may
also model

E: ~ AR(1),

that is, assume
Ei = p1Et 1+ 2

and estimate ¢1 using OLS from the fitted residuals e;. This
assumes that {Z;} ~ WN(0,02).

1.5 Trends and Seasonality
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1.5 Trends and Seasonality

Example: Lake Huron data

This procedure yields ggl = 0.791. By inspecting the fitted
values, we may construct the residual quantities

Zr = e — Ppret—1

we may estimate a% via the sample variance of the Z;. This
yields 5% = 0.502.

If the AR(1) model were correct, then the residual quantities
Z: should resemble a realization of a white noise process; how-
ever, they do not - there is still positive correlation between
successive z;s.

1.5 Trends and Seasonality
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1.5 Trends and Seasonality

Example: Trend ?

100 observations

1.5 Trends and Seasonality
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1.5 Trends and Seasonality

Example: Trend ?

1000 observations

T
0 200 400 600 800 1000

1.5 Trends and Seasonality
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1.5 Trends and Seasonality

Example: Trend ?

10000 observations

T T
2000 4000 6000 8000 10000

o

1.5 Trends and Seasonality
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1.5 Trends and Seasonality

Example: Temperature Anomaly: 1850-2006

05

Temperature Anomaly (C)
(relative to 1961 Temp)

0.0

Temperature Anomaly (C)

1.5 Trends and Seasonality
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1.5 Trends and Seasonality

Seasonality: Many time series are influenced by seasonally-
varying factors

e calendar
e climate

e economic cycles

1.5 Trends and Seasonality
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1.5 Trends and Seasonality

A deterministic seasonal model can be constructed. Suppose
that for each t,
X; = st + E;

where s; is a periodic function with period d say, so that
St—d = St

forall t.

1.5 Trends and Seasonality
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1.5 Trends and Seasonality

For example, could use a harmonic regression

k
St = ap + Z [aj cos(Ajt) + bjsin(Ajt)]
j=1
where ag, ai,...,ax and by, ..., by are unknown coefficients

to be estimated, and
Aly vy Ak

are known constants that define the periodic nature of the
function.

1.5 Trends and Seasonality
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1.5 Trends and Seasonality

Example: Accidental Deaths in the US

Accidental Deaths in the US: Monthly totals
Jan 1973 - Dec 1978

11000
I

10000
I

-
8
8

8000
I

7000
I

T T T T
1973 1974 1975 1976 1977 1978 1979

Time.

1.5 Trends and Seasonality
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1.5 Trends and Seasonality

Example: Accidental Deaths in the US
For this data set T = 72, for monthly data. To fit a model with
k=2
e 12 month cycle
e 6 month cycle
set \y = 2m/12, Ay = 27/6. Then fit using OLS.

1.5 Trends and Seasonality 76



1.5 Trends and Seasonality

Example: Accidental Deaths in the US

9000 10000 11000 12000
I I I I

Monthly Accidental Deaths

8000

7000
I

1.5 Trends and Seasonality
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1.5 Trends and Seasonality

Example: Accidental Deaths in the US: Harmonics

8000 9000 10000 11000 12000
I I I I

7000
I

1.5 Trends and Seasonality

78



1.5 Trends and Seasonality

Example: Accidental Deaths in the US: Residuals

Standardized Residuals

1973 1974 1975 1976 1977 1978 1979

Time

1.5 Trends and Seasonality
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R Code

library(datasets)

t.v<-c(1:72)

Cl<-cos(2*pixt.v/12); Sl<-sin(2*pixt.v/12)

C2<-cos(2*pixt.v/6); S2<-sin(2xpixt.v/6)

USA.ACC<-data.frame(as.numeric (USAccDeaths),S1,C1,52,C2)

USA.ACC. fit<-lm(USAccDeaths~S1+C1+S2+C2, data=USA.ACC)$fitted

USA.ACC.coef<-lm(USAccDeaths~S1+C1+S2+C2,data=USA.ACC) $coef

t.c<-seq(from=1,to=72,by=0.01)

Cl.c<-cos(2xpixt.c/12); Sl.c<-sin(2xpixt.c/12)

C2.c<-cos(2xpixt.c/6); S2.c<-sin(2xpixt.c/6)

y.c<-USA.ACC.coef[1]+USA.ACC.coef[2]*S1.c+
USA.ACC.coef[3]*Cl.c +USA.ACC.coef[4]%S2.c+
USA.ACC.coef[5]*C2.c

1.5 Trends and Seasonality
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R Code

par(mar=c(4,4,2,2))

plot(1:72,as.numeric(USAccDeaths),pch=19,cex=0.7,xaxt="n",
xlab='Time',ylab="'Monthly Accidental Deaths')

lines(1:72,as.numeric(USAccDeaths), 1ty=2)

lines(t.c,y.c)

axis(1,at=12xc(0:6),c(1973:1979))

1.5 Trends and Seasonality
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R Code
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1.6 A Decomposition Strategy

Recap: We seek to decompose an observed series {Y;} as
Y =m; +5: + X;

where
e m; is a deterministic trend
e s; is a seasonal component with period d
e X; is a zero mean stationary process.

It may be necessary to replace the global model for trend (lin-
ear, polynomial etc.) by a local model

1.6 A Decomposition Strategy
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1.6 A Decomposition Strategy

Smoothing by averaging: Suppose

1 q
m; = i
t 2q 1 iZth-H

with x; = 1 for s < 1 and s > T. More generally,
q
m; = Z ajXi4j
i=—q

for constants a_g, ..., aq.

This is a form of low-pass filter.

1.6 A Decomposition Strategy 84



1.6 A Decomposition Strategy

Exponential Smoothing: Suppose m; = x;, and for t > 2
I/I\lt = (Xt + (1 — Q)I/T\lt_l

for 0 < o < 1. It follows that
my = (1—a) tx + Z a(l —aYxi_j + ax;

If « is near one, there is strong dependence on recent x val-
ues.
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1.6 A Decomposition Strategy

General Strategy: For series {Y;}
Y =m; +5: + X

where s; has period d.
1. If d is even, set ¢ = d/2, else set ¢ = (d — 1)/2.

2. Use moving average for detrending respecting the sea-

sonality
g+ 1 9
R j=—q+1
me = <
1 g
v D7 Visj d odd
j=-q

1.6 A Decomposition Strategy
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1.6 A Decomposition Strategy

3. Remove seasonality: for k = 1,...,d, compute
Wi = — S (Visja — Firssa)
k = ng - Yk+jd k+jd

J

where ng is the number of terms in the sum (essentially
the number of cycles in the series). Fork =1,...,d, set

d
~ 1
Sk:wk_EEWJ'
j=1

andset Sy =Sk gfork =d +1,d +2,...,T. The desea-
sonalized data are y; = y; — S;.

1.6 A Decomposition Strategy
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1.6 A Decomposition Strategy

4. Recompute the deseasonalized trend m; from the dea-
sonalized data y; using the procedure in Step 2.

5. Compute the residual series
~ A% A
Xt =YVt — mt — St.

The resulting process X; should be a zero mean, but poten-
tially autocorrelated process.

1.6 A Decomposition Strategy
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1.7 Differencing

Differencing: Another method for removing non-stationarity
is differencing. The lag-1 difference operator, V, acts on X;

as follows
VX =Xt —Xt-1 = (1 - B)X;

where B is the backshift operator

BX:y = X;_1.

Note that
B?X, = B(BX;) = BX; 1 = X;_»

etc.

1.7 Differencing
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1.7 Differencing

Similarly

VX, = (
(
(
(Xt — Xe-1) — (Xp-1 — Xt-2)

= Xp—2Xp 1+ Xt 2

Note that k times differencing removes a polynomial trend of
order k.

1.7 Differencing
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1.7 Differencing

Seasonal Differencing: The lag-d difference operator, Vg,
acts on X; as follows

VaXe = (1 —BYHYX; = X; — Xy g
This operator removes a seasonality with period d.
V and V4 can be applied consecutively; they commute

VVaX: = VaVX:

1.7 Differencing
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1.7 Differencing

Elementary algebraic properties:
(@) |
B/X, = X; j=BX; ji1=B*% ji2=-
(i) VWX, = V(V/1X;). So for example,

V2X; = (1 — B)(1 — B)X;
= (1 -2B + B?)X;
=X; —2X; 1 +X¢ 2
= (Xt — Xp—1) — (Xp—1 — Xi—2)

1.7 Differencing
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1.7 Differencing

(iii) If X; = m; + Y;, applying the first-difference operator to
X;, then

VX =Xi — Xe—1 = (my —mp—1) + (Y — Y1)

soif my = By + B1t, then my — my_1 = 5.

That is, V removes a linear trend.
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1.7 Differencing

The stochastic term
Yy = (Y — Y1)

is obtained by differencing.

This is different from our first approach to detrending,
which used a linear parametric formulation for m;.

o If Y; is white-noise, then Y} is no longer white noise,
but MA(1).
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1.7 Differencing

(iv) To remove a polynomial trend of order k, one may apply
k™ order differencing, that is we look at V¥X;.

Note that if {Y;} ~ WN(0,0%), then VXY; is not white-
noise, but is still stationary.
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1.7 Differencing

(v) Commutativity

VVaX; = (1-B)(1-BY)X, = (1-BY)(1-B)X; = VqVX,

(vi) If
Xy = my + s¢ + Yy,
then
VdXt = (mt — mt_d) + (St — St—d) + (Yt — Yt—d)
and

St — St—d = 0.

That is, V4 removes a seasonality with period d.

1.7 Differencing
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Chapter 2

Stationary processes




2.1 Stationary Processes

The objective of the previous section was to remove (system-
atic) deterministic components from an observed series to
leave only the stochastic part. In this section, we study the
basic properties of stationary processes: such processes are
inherently stable (in the long run), and form natural models
for the stochastic component of observed series.

In the main, we will focus on weakly stationary processes,
where the mean and covariance structure is stable over time;
in general we will not make distributional assumptions.

Initially, we focus on forecasting, and demonstrate the utility
of utilizing the covariance structure of the process.

2.1 Stationary Processes
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2.2 Properties of Stationary Processes

Consider first a stationary Gaussian process {X;}, where for
all t and n,

(XtJrlu .. 7Xt+11)

is jointly normally distributed, with E[X;] = p, Var[X;] = 0%,
and for s > t.

s—t
Cov[Xt, Xs] = vx(s—t) Corr[ X, Xs] = px(s—t) = Lz)

Ox
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2.2 Properties of Stationary Processes

Then it follows that
Xn+n|Xn = Xp ~ N(mh (Xn), Vh(Xn))
where

mp(x) = p+px(h)(x—p)
vi(x) = ox(1—pk(h))
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2.2 Properties of Stationary Processes

To define “optimal” forecasting, we need to define a criterion
via which to assess the quality of predictions.

We use a minimum mean-square error (minimum MSE) crite-
rion, and attempt to to make the prediction X, = X, such
that

E[(XnHl - §n+h)2|Xn = Xn]

is minimized. Here the expectation is taken with respect to
the conditional distribution Xy p|Xn = Xp.

2.2 Properties of Stationary Processes
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2.2 Properties of Stationary Processes

This minimization can be carried out analytically to yield
Xnt+h = E[Xnih|Xn = Xn] = mp(x) = p + px(h)(xn — )

that is, the best prediction (measured in minimum prediction
MSE terms) is the conditional expectation. The prediction
MSE corresponding to this prediction is

va(x) = o%(1 — px(h))

In this case, we could deduce the appropriate form for the
optimal predictor from properties of the Gaussian process.

2.2 Properties of Stationary Processes
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2.2 Properties of Stationary Processes

Best Linear Prediction: For a non-Gaussian process, we
seek the again seek the minimum MSE predictor. We restrict
attention to linear predictors, that is, predictors of the form

}?nJrh = Ih(Xn) =aX,+b

for some a and b. Under this restriction, and stationarity, it
again transpires that the optimal predictor takes the form

Run = E[XarnlXa = %] = miu(x) = p+ px() (% — 1)

with the same prediction MSE as before.

2.2 Properties of Stationary Processes
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2.2 Properties of Stationary Processes

Non-negative definite functions: A scalar function g is
non-negative definite if, for all n, and vectors a = (aj,...,an)

n n
Z 2 ajg(i —j)a; = 0.
i=1j=1

If the summation is strictly greater than zero, the function is
termed positive definite.

If G is the n x n matrix formed as G = [g(i — j)];, then the
above definition becomes that

a'Ga > 0.

and G is a non-negative/positive definite matrix.

2.2 Properties of Stationary Processes
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2.2 Properties of Stationary Processes

Theorem:

A function g is the autocovariance function (ACVF) for a sta-
tionary stochastic process if and only if g is even, that is

g(h)=g(—h) forallheZ

and g is non-negative definite.

Note: by elementary properties of covariance, for all h,

~0) = 0
lv(h)] < ~(0)
v(=h) = ~(h)

2.2 Properties of Stationary Processes
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Characterizing the ACVF

Proof. Suppose that g is the ACVF of a stationary stochastic
process, {X;} say. By definition of covariance, g is an even
function, as

g(—h) = E[X;X;_pn] = E[X;11X:] = E[X; X;4n] = g(h).
Let a € R™ be an n x 1 vector, and let Xp.1 = (xu,...,x1) .
Then a' X,,.1 is a scalar random variable, and

n
Var[a'X,.1] = a' Var[Xp.1]a = Z Z ajg(i—j)aj =0
i=1j=1

so g is non-negative definite.

2.2 Properties of Stationary Processes
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Characterizing the ACVF

Now suppose that g is non-negative definite and even. For
each n > 1, define the n x n matrix ¥ by

(%15 = gli =J)

and consider the multivariate Normal distribution with mean
zero and variance-covariance matrix . This distribution is
the finite dimensional distribution arising from a stationary
Gaussian process with the specified covariance structure. [

Note that an autocorrelation function has the same proper-
ties, except that p(0) = 1.

2.2 Properties of Stationary Processes
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2.2 Properties of Stationary Processes

Example: Simple harmonic process

Suppose U and V are zero mean and uncorrelated random
variables with variance 1. Let {X;} be defined by

X: = U cos(wt) + Vsin(wt)

where w is a fixed constant.

U and V define random amplitudes.

2.2 Properties of Stationary Processes
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2.2 Properties of Stationary Processes

Example: Simple harmonic process

Then E[X;] = 0 for all t, and

Cov[X;, Xitn) = E[ X Xi1n]
= E[(U cos(wt) + Vsin(wt))
(U cos(w(t + h)) + Vsin(w(t + h)))]
= E[U?] cos(wt) cos(w(t + h))+
E[V?] sin(wt) sin(w(t + h))
= cos(wt) cos(w(t + h)) + sin(wt) sin(w(t + h))
h)

)

= cos(wh) = cos(w(—

2.2 Properties of Stationary Processes



2.2 Properties of Stationary Processes

omega<-pi/3

set.
xt<-
yl<-
y2<-
y3<-

seed(2343)

seq(0,6,by=0.1)
rnorm(1)*cos(omegaxxt)+rnorm(1)*sin(omegaxxt)
rnorm(1)*cos(omegaxxt)+rnorm(1)*sin(omegaxxt)
rnorm(1)*cos(omegaxxt)+rnorm(1)*sin(omegaxxt)

ymin<-min(yl,y2,y3)
ymax<-max(yl,y2,y3)
par(mar=c(4,4,2,2))
plot(xt,yl,xlab="t",ylab=expression(X[t]),

main=expression(paste('Three independent series:

ylim=range(ymin,ymax),pch=19, cex=0.8)

points(xt,y2,col="'red',pch=19, cex=0.8)
points(xt,y3,col="blue',pch=19,cex=0.8)

2.2 Properties of Stationary Processes

', omega==pi/3)),
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2.2 Properties of Stationary Processes

Three independent series: w=T1/3
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2.3 Construction of stationary processes

Let {Z;} be an IID process, and let {X;} be defined by
Xy =f(Zt,Z¢ 1, .., Zt—q)

for some q > 0. {X;} is a filtered version of {Z;}.
e {X;} is strictly stationary as {Z;} is strictly stationary.

e X; and X; are independent if |t — s| > q; {X;} is termed
g-dependent, and yx(h) = 0 if |h| > q.
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2.3 Construction of stationary processes

Example: Moving average processes

Let {Z;} ~ WN(0,0%) be a white noise process, and let {X;}
be defined by

Xe =Zi +01Zt 1 +02Zt 2+ -+ 0qZ;_¢g
for some q > 0, where 01, 6,,...,04 are real-valued constants.

{X:} is zero mean, stationary and g-dependent; it is termed a
moving average process of order g (MA(q)).

2.3 Construction of stationary processes
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2.4 Linear Processes

{X:} is a linear process if for all t

0
Xp = Z ViZyj

j=—0o
where
o {Z:} ~ WN(0,0%)
e {1} is a real sequence with

e}

D7 Iyl < o0

j=—
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2.4 Linear Processes

Using the backshift operator notation
X; = ¢(B)Z

where

W(z) = D 7.

j==o0

The process is termed non-anticipating or causal if ¢); = 0 for
all j < 0, so that

o 0]
&ZZ%aﬁ
Jj=0

2.4 Linear Processes
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2.4 Linear Processes

Note that for the linear process to be sensible we need the
sum

Z YiZej

Jj=—®

to converge in some appropriate fashion; in this context we
require mean-square convergence, denoted

o0
X" 7
j=0
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2.4 Linear Processes

We require for the definition

2
n
nh—n>100E (Xt - Z ijtJ) =0

j=-n

For finite n > 0O,

n 2 n n
(Z %ZtJ) = 2 WZE YL D ivZe jZe k

j=—n j=—nk#j

2.4 Linear Processes
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2.4 Linear Processes

Taking expectations, as {Z;} is a white noise process so that
E|Z; jZ; | =0ifj # k

n 2 n
E (zjwaﬂ) =03 > Y.

j=—n
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2.4 Linear Processes

Now
e8]

Dgl<o = > <o

j=— j=—

so therefore the partial sums (with limits +n) are also finite
for all n.

If

ee}

D1 Iyl <0

Jj=—

then we term the sequence {¢;} absolutely summable.

2.4 Linear Processes
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2.4 Linear Processes

Note also that by the Cauchy-Schwarz inequality

E[|Zi|] < \/E[Z¢] = o,

therefore
0 0
E[IX:|] < > [[E[Zi] <o D> o] <o
Jj=—w© j=—©
so that
o0
iz
Jj=—®

is convergent (almost surely).

2.4 Linear Processes
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2.4 Linear Processes

The operator ¢ (B) is termed a linear filter; it acts on the sta-

tionary (white noise) process {Z;} to produce the stationary
(autocorrelated) process {X;}.

The operator can also be applied to any stationary process.

2.4 Linear Processes
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2.4 Linear Processes

Suppose that {Y;} is a weakly stationary, zero mean process
with ACVF vy, and ¢(B) is the above linear filter with abso-
lutely summable coefficients. Then the process

Xe =9(B)Y = Z VY
j=—0

is also weakly stationary with mean zero. The ACVF of {X;} is

e o] e 0]

w(h)= > > dihiyy(h +j - k).

j=—wk=—w0

2.4 Linear Processes
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2.4 Linear Processes

If {Y:} is a white noise process, so that {X;} is a linear process,
then

yx(h) = Y oy

j=—0
To see this, note that
o
EX] <E[X[ < ), WylE[Yi]] <o
j=—0

so that E[X;]| = 0 for all t. Then

E[X;Xi+n] = E[(/i 'l/Jth—j) ( i kat+h—k)]
j=—00 k=—o0

2.4 Linear Processes
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2.4 Linear Processes

Multiplying out yields

E[X:Xi1n] = Z Z Vi E Y Yiyn—k]

j=—wk=—0w0

DT> v+ h — k).

j=—0wk=—00

If {Y;} is white noise, then vy(h) = 0% if h = 0 and zero
otherwise, in which case

vx(h) = E[Xt Xt 4n] = Z ijjJrhUY

j=—00
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2.4 Linear Processes

If a(B) and (B) are two linear filters, each of which has ab-
solutely summable coefficients, and

then ¢ (B) is also a linear filter, with

Y= > axBik= ). Brojk

k=—o0 k=—ow0

and if {Y;} is a stationary process, then

defines a stationary process {X;}. Note that W; = §(B)Y; is
also stationary, and X; = «(B)W;.

2.4 Linear Processes
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2.4 Linear Processes

Example: AR(1) process
Let {Z;} ~ WN(0,02), |¢| < 1, and

Xt = ¢Xe1+ Zt

with E[ZsX;] = 0 for s > t. That is, {X;} is the solution of the
equation
Xe —¢Xp 1 = Z4

or
(1 — ¢B)X; = Z,.

2.4 Linear Processes
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2.4 Linear Processes

Example: AR(1) process

Consider the linear process
w -
Xp =Y ¢Z .
j=0

Note that
0 _ 1
Dl = g < o0
ST Ty

hence the conditions of absolute summability hold.

2.4 Linear Processes
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2.4 Linear Processes

Example: AR(1) process

This is a solution to the equation above as

Xi = ¢Xe 1+ Z;
= ¢(pXe—2 + Zi—1) + Zt recursion

n—1
= nligloo {¢nXt—n + Z ¢]Zt—j}

j=0

w .
= 2 & Zy_j
j=o

2.4 Linear Processes



2.4 Linear Processes

Example: AR(1) process
Also, for h > 0,
vx(h) = Y dianok = S JP o = 02 S gHth
j=— Jj=0 Jj=0

that is

2 1h
vx(h) = 1o-i¢g[)2
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2.4 Linear Processes

Example: AR(1) process

If {Y:} is another stationary solution to the AR(1) equation,
then, for any k > 0

(EEDIR (L)

o] 2
=F (Z ¢l+k+lztk11) ]

1=0

g [(ZM . )]

— @2+ DR [(thkfl)z]

2.4 Linear Processes
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2.4 Linear Processes

Example: AR(1) process

The right hand side of this equation converges to zero as
k— o, as|¢| <1, and E[Y? ,_,] < 0.

Therefore Y; and X; are equal in mean square
Y, = X,

and therefore {X;} is essentially the unique stationary solu-
tion to the AR(1) equation

X; — ¢Xe1 = Z

with |¢| < 1 and {Z;} ~ WN(0, 02).

2.4 Linear Processes
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2.4 Linear Processes

Example: AR(1) process

Therefore for any stationary AR process there is an essentially
unique MA(o0) representation, with ¢); = ¢/ for j > 0, and
;= 0forj < 0.

2.4 Linear Processes
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2.4 Linear Processes

Example: Non-stationary AR(1) process
If || =1, say

Xe =Xy 1+2Z or Xp=-Xp1+24
then X; is not stationary. Clearly
Var[X;| = Var[+X; 1] + Var|Z;| > Var[X; 1]

forall t.

2.4 Linear Processes
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2.4 Linear Processes

Non-causal AR(1): In the AR(1) formulation, suppose |¢p| >

1, that is
Xi = ¢0Xe 1+ Z;
so that
1X Xi_ 1 + 1Z
—Xt = X1+ <4t
o ¢
or

Xt—l = ¢*Xt + Zt*
where {Z}} ~ WN(0, 0%/¢?) is defined by

N 1
Zt = —521;

and ¢, = 1/¢, so that |¢.| < 1.

2.4 Linear Processes
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2.4 Linear Processes

Therefore, by considering a reverse time formulation, we can
construct a stationary solution to the AR(1) equation. It takes
the linear process form

(e 0] o8]
X = 2 GoZigyj = — Z ¢70+1)Zt+1+j
j=0 j=0

that is, X; is defined in terms of future values of {Z;}.

The ACVF can be computed by the usual methods. Such a
process is termed non-causal.

2.4 Linear Processes
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2.4 Linear Processes

Note: we have for the AR(1) process that
1-¢B)X; =2 .. X,=(1-¢B)"'Z

and by a geometric series expansion,

X = {Z qbeJ} Zi=) 07
j=0 j=0

as before.

2.4 Linear Processes
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2.5 Autoregressive Processes

Suppose that {Z;} ~ WN(0, ¢%), and that the equation
Xe — 1 Xe 1 — - —0pXe—p=2Z;

is used to define (implicitly) {X;}. This definition does not
ensure (or even suggest) that the solution can be found, or is
unique or stationary.

This process is termed the autoregressive process of order p
(AR(p)). We have that

E[X;] = E[Z] = 0.

2.5 Autoregressive Processes
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2.5 Autoregressive Processes

Example: AR(2) process
If p = 2 we have

— ¢1Xt—1 — ¢2Xt—2 = Zt or @(B)Xt = Zt'
where ®(B) = (1 — ¢1 B — ¢, B?), and the following linear pro-

cess representation obtained by noting that

X, =(1—¢1B—¢2B*)7'Z; = 2 ViZej
j=—0

where 1) is the coefficient of B/ in the series expansion of

(1 —¢1B — ¢B?)!

2.5 Autoregressive Processes
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2.5 Autoregressive Processes

Example: AR(2) process

Consider the factorization
®(z) = (1 = g1z — $22%) = (1 — &12)(1 — &2).

where z is an arbitrary complex number, and (£;,&;) are a
complex conjugate pair. In general,

(1-¢€2)7"

has radius of convergence || < 1 when |z| = 1.

2.5 Autoregressive Processes
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2.5 Autoregressive Processes

Example: AR(2) process

(&1,&2) are the reciprocal roots (that is, the reciprocals of the

roots) of the equation
®(z) =0

then the series expansion of
{1-a2)(1-&2)}"
is convergent for |z| = 1 if and only if

61| = &2 < 1.
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2.5 Autoregressive Processes

Example: AR(2) process

We have that

®B)X;=Z .. X ={®B)} 'z = Z ViZe_j
j=—00
where ); is the coefficient of z/ in the series expansion of

{2} ' ={1-&z)(1-&2)} ' =) ) gtk
j=0k=0
that is

J .
Y=y eed"
k=0

2.5 Autoregressive Processes



2.5 Autoregressive Processes

Example: AR(2) process
Note that

J
il < D l&alfleb ™ = G + )M
k=0

where M = max{|¢1], |€2]|} < 1. Therefore

o0 0 ) ] 1
J§|¢j| <J;)(J +1)M = A <>

Hence {X;} is a linear process with absolutely summable co-
efficients.
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2.5 Autoregressive Processes

The extension to the AR(p) case is straightforward: write

p
O(z) =1—¢1z— ¢oz> — - = ¢pzP = [ [(1 - §2)

j=1

and by an identical argument to above, to ensure stationarity,
we require that the reciprocal roots

51’527'-"519

all satisfy |¢| < 1.
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Equivalently, if we let 7 = fjfl denote the roots of ®(z) = 0,
then we have

p
®(z) = [ [(y - 2)
j=1

J

and require |n;| > 1 for each j.
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2.5 Autoregressive Processes

If |¢| > 1 for at least one j, then no causal stationary solution
to the AR(p) equation exists, but a similar approach to the
AR(1) case allows us to define a (unique) non-causal station-
ary solution.
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2.5 Autoregressive Processes

Hence the only case that leads to non-stationary solutions is
when |{j| = 1 for at least one j. In the simplest case & = 1,
which corresponds to the factor (1 — B) in the AR polyno-
mial; however any complex root with modulus 1 yields a non-
stationary solution, that is

gj _ eiw

for —m < w < 7, where ; = v/—1.
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2.5 Autoregressive Processes

Example: AR(2) process

Suppose
;(t 1 ;(tfl 1;(t72 - Zt-

Then = 5

P(z)=1- 22t Zz2 = (1 -32)(1 — z/4)
Therefore the reciprocal roots are 3 and 1/4. Therefore no
causal stationary solution exists.
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2.5 Autoregressive Processes

Example: AR(2) process

Suppose
Xi— 21X, 1 42X, 5= 2
t 20 t—1 5 t—2 — 4t
Then
31 3
®(z) =1- 252+ gz2 = (1 —4z/5)(1 — 3z/4)

Therefore the reciprocal roots are 4/5 and 3/4. Therefore a
causal stationary solution does exist.
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2.5 Autoregressive Processes
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2.5 Autoregressive Processes

Code: we can use the functions in R to perform key calcula-
tions

e polyroot to compute the roots of ®(z) = 0.
e arima.sim to simulate a time series.

o ARMAtoMA to compute the 1); values in the MA(c0) linear
process formulation

e ARMAacf to compute the theoretical ACF.

In these functions, the representation
Xt =01Xe 1+ 9Xe 2+ 7

is used, so that the coefficients in the above model are ¢; =
31/20 and ¢, = —3/5.
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polyroot(c(3/5,-31/20,1)) #Finding the roots (coefs in increasing term order)
## [1] 0.75+2.041443e-141 0.80-2.041443e-14i

#Numerical solutions for roots are in complex number form, but imaginary part is negligible.

#Using the roots of a quadratic formula

aval<-1

bval<--31/20

cval<-3/5
root.vals<-(-bval+c(-1,1)*sqrt(bval”2-4xavalxcval))/(2+aval)
root.vals

## [1] 0.75 0.80

1/root.vals

## [1] 1.333333 1.250000

set.seed(32)
X<-arima.sim(n=500,model=list(ar=c(31/20,-3/5)))
par(mar=c(4,4,2,2))

plot(1:500,X,pch=19,cex=0.8,xlab="t")
lines(1:500,X)
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ARMAtoMA (ar=c(31/20,-3/5),lag.max=20) #Linear Process representation (first 20 coefs)

## [1] 1.5500000 1.8025000 1.8638750 1.8075063 1.6833097 1.5246263 1.3531849
## [8] 1.1826608 1.0212134 0.8732842 0.7408625 0.6243663 0.5232503 0.4364182
## [15] 0.3624980 0.3000210 0.2475338 0.2036647 0.1671601 0.1368993

par(mar=c(4,4,1,2))
true.acf<-ARMAacf(ar=c(31/20,-3/5),lag.max=50)
acf(X,main="ACF of X', lag.max=50)
points(0:50,true.acf,col="red',pch=19,cex=0.8)
legend(25,1,c('True ACF'),pch=19,col="red')
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2.5 Autoregressive Processes

Larger sample size: n = 5000.

set.seed(32)
X<-arima.sim(n=5000,model=list(ar=c(31/20,-3/5)))
par(mar=c(4,4,1,2))
true.acf<-ARMAacf(ar=c(31/20,-3/5),lag.max=50)
acf(X,main="ACF of X', lag.max=50)
points(0:50,true.acf,col="red',pch=19,cex=0.8)
legend(25,1,c('True ACF'),pch=19,col="red")
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2.6 ARMA Processes

If {Z;} ~ WN(0,02%), we have

e Moving Average:
Xe =Zt + 01 Zp 1+ + Qth,q

» stationary
» g-dependent; yx(h) = 0for h > q

2.6 ARMA Processes
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2.6 ARMA Processes

e Autoregression:
Xe — 1 Xe 1 — - —0pXe—p =74

» stationary provided the roots of the AR polynomial

p

B(z) =1 -1z~ —dpz’ = [ (1 - §2)

Jj=1

satisfy || # 1 for each j; causal if |§j| < 1 for each j.
» yields an MA(o0) representation.
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2.6 ARMA Processes

{X;} is an ARMA(p, q) process if it is stationary and satisfies

p
®z) = 1-dr1z— - —dpzP =[[(1 - g2)
=1
Jq
O(z) = 1+b1z+-+0gz7 =] [(1 - w;z)
j=1
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2.6 ARMA Processes

Example: ARMA(1,1)

Suppose {X;} satisfies
(1—¢B)X; = (1 + 0B)Z,

This is the ARMA(1, 1) process. Suppose that |¢| < 1, and let

o(B) = {®(B)} ' = ) ¢/B/
j=0
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2.6 ARMA Processes

Example: ARMA(1,1)
Then

where

U(z) = a(2)0(z) = (1 + ¢z + ¢*z* +---)(1 + 02)
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2.6 ARMA Processes

Example: ARMA(1,1)
Therefore
o = 1
Y o= @+ j=1

SO

X =Zi+0+¢) >, ¢ 'Z
j=1

Note: if |¢| > 1, can construct a stationary non-causal version.
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2.6 ARMA Processes

Invertibility: If
®(B)X; = ©(B)Z;

then we may also write
{6(B)} '2(B)X: = Z
provided the expansion

B(B)={6(B)}' =} 5B
Jj=0

converges.
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2.6 ARMA Processes

From above, we have

q
H (1 —wJ
j=1

so therefore expansion exists provided |wj| < 1 converges.

Such a process is termed invertible.
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2.6 ARMA Processes

Example: ARMA(1,1)

In this case

O(B)=1+6B B(B)=1-6B+6*B* — ...

and we require || < 1. Let n(B) = 5(B)®(B), where
m =1
m=—0+¢)(—0Y " j=1.

We then have an AR(o0) representation

W(B)Xt = Zt.
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2.7 ARMA processes: Estimation

Estimation for ARMA processes, and indeed all stationary pro-
cesses, can be achieved in a non-parametric fashion using
moment-based estimation.

For example, we may estimate expectation u = E[X;] using
estimator
n

.’:s\»—\

2.7 ARMA processes: Estimation
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2.7 ARMA processes: Estimation

Recall that we require an estimator to have good statistical
properties. In the non IID case, properties of this estimator
are more difficult to study; it is clear that, under stationarity,

E[X] =

so we have an unbiased estimator, but the variance of this
estimator must be computed with care.

2.7 ARMA processes: Estimation
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2.7 ARMA processes: Estimation

Var[X] = 5 D7 D Cov[X X] = 5 D1 Dol — )
i=1j=1 i=1j=1
= 5 > (n—|nlx(h)
h=-n
_1y h|
-2 (-5

As n — oo, this variance should stay finite, otherwise the
performance of the estimator will be poor.
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2.7 ARMA processes: Estimation

A necessary condition is that
vx(h) — 0 as h — oo,

but this is not sufficient, for example if yx(h) ~ 1/h as h —
o0, the sum diverges.

2.7 ARMA processes: Estimation
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2.7 ARMA processes: Estimation

If Var[X] — 0, then X —  in mean square. If

0

S (b)) < o

h=—w

the asymptotic variance is the probability limit of nVar[X],

o}

nVar[X] 2> ) x(h)

h=—w

Note that it is not necessarily the case that

0

>, hx(h)] <o

h=—w
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2.7 ARMA processes: Estimation

For a Gaussian series {X;}
VaX =) ~ N (o,hEH ( - 'ﬁ') 7X<h>>

whereas for non-Gaussian stationary series this result holds
as an asymptotic approximation, provided the autocovariance
series is absolutely summable.
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2.7 ARMA processes: Estimation

In practice, yx(h) must be estimated from the data, and in the
asymptotic case, the infinite sum must be truncated;

5 (1- )5

h=-1I

commonly this is done at I = 1/n.

2.7 ARMA processes: Estimation
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2.7 ARMA processes: Estimation

Example: AR(1) process

Suppose that {Z;} ~ WN(0,02), and
Xe —p=¢Xe1—p) +Z

with |¢| < 1. Then

2 plh|
Yx(h) = (172_ b2
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2.7 ARMA processes: Estimation

Example: AR(1) process

Then
> hx@) = ) x(h)
h=—o h=—-w
_ % {142y ¢h]
1-¢2 [ hz=]l
o7
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2.7 ARMA processes: Estimation

Estimation of the autocovariance function vx(h) can also be
achieved by moment-based methods

n—|h|

(Xt+n — X)(x¢ — X).

1
o3

This is a biased estimator of yx(h), but the bias is low (order

o(1/n).
Note that the k x k symmetrix matrix f‘k with
[Cily = (i =i

is non-negative definite for each k > 1.
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2.7 ARMA processes: Estimation

The autocorrelation function px(h) can be estimated by

Ry = — Iy

2
—

=)
~—

The properties of this estimator can be established, and can
be used to construct hypothesis tests for each h that px(h) is
zero based on a z-score approach.

2.7 ARMA processes: Estimation
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2.7 ARMA processes: Estimation

In particular, under the null hypothesis that the process is a
white-noise process, we have approximately that

vVn[Rglin = +v/np(h) ~N(0,1)  h>1

Global (or portmanteau) tests, that assess multiple h can be
constructed based on a Chi-squared distribution approxima-
tion. See for example the Box-Ljung test (Box.test in R).
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2.7 ARMA processes: Estimation

Note: The matrices I‘k,f‘k and other related matrices are
symmetric Toeplitz matrices (that is, they are constant along

diagonals).
[ ~(0) (1) 7(2) 7(3) (k= 1)]
v(1) 7(0) v(1) 7(2) v(k —2)
7(2) (1) 7(0) (1) v(k = 3)
Te=1 43 1(2) (1) ~(0) v(k - 4)
Wk=1) y(k=2) A(k—=3) y(k—4) 10) |
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2.7 ARMA processes: Estimation

Note: The matrices I‘k,f‘k and other related matrices are
symmetric Toeplitz matrices (that is, they are constant along

diagonals).
[ ~(0) (1) 73) e k= 1)]
v(1) 7(0) v(1) e oy(k—2)
(1) 7(0) (1) o y(k=3)
Te=1 (3 (1) (0) - y(k—4)
Wk=1) y(k=2) A(k—=3) y(k—4) 2(0) ]
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2.8 Forecasting for Stationary Processes

Forecasting for stationary processes utilizes the autocovari-
ance structure of the process to optimize predictions. Sup-
pose we wish to forecast X, given the observed data

X1:n = (le"' 7XH)'

We focus on linear predictors, that is, linear combinations of
past values.

We will focus on model-free procedures, and utilize moment
properties rather distributional properties of {X;}.

2.8 Forecasting for Stationary Processes
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2.8 Forecasting for Stationary Processes

We utilize the minimum Mean-Square Error (MSE) criterion,
and choose constants ap., = (ao, a1,...,a,)' to minimize

2
n
E <Xn+h —ap — Z aan1+1>
i=1

where the expectation is over the joint distribution of all the
random quantities.

We denote the linear predictor using the n-data prediction
operator notation

n
Pan+h =ao + Z aanfiJrl
i=1
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2.8 Forecasting for Stationary Processes

By differentiation, we need to solve simultaneously

n
E [(Xn+h —ap — Z aani+1>] =0
i=1

and, forj=1,...,n
n
E [(XnJrh —ap — Z anni+1> an+1] =0
i=1

From the first equation, we see that we must choose

n
apg = [ (1 — Zaj>
i=1

where p = E[X¢].

2.8 Forecasting for Stationary Processes
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2.8 Forecasting for Stationary Processes

In vector notation, the resulting system of n simultaneous
equations is written

I'na = Yn:(h+n-1) (1)
where
Ln = [ywx(i-jly (nxn)
a = (ay,...,ap) (nx1)
Ynihan-1) = (x(h),....ox(h+n-1)"  (ax1)
with ap = aop(ai,...,an) given by the previous expression.
This is a linear system in (aj,...,ap); in general the solution

will also depend on h.

2.8 Forecasting for Stationary Processes
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Denote the solution to (1) by
a(n7h) = (a(lvh)v- . 'aa(nvh))T

so that

n
PpXnyh = p+ Z a(17h)(Xn—i+l - M)‘
i=1

Note that, by construction
E[(XHJrh - Pan+h)] =0
E[(Xa+n — PuXp4n)Xj] = 0 J=1...,n
The minimum value of the MSE achieved by a(n, h) is

E[(Xn+n — PoXntn)*] = 7x(0) — a(n, h)T’Yh:(thn—l)

2.8 Forecasting for Stationary Processes
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2.8 Forecasting for Stationary Processes

The formula
I'na = Yh:(h+n—1)

depends only on the autocovariance function. Direct solution
of this equation is possible for most practical situations

a(n,h) = FI:l’Yh:(thnfl)

can be computed using solve in R. However, the form of I',
(symmetric, Toeplitz) can make it relatively easy to invert.

2.8 Forecasting for Stationary Processes
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2.8 Forecasting for Stationary Processes

Example: AR(1)

Recall that
[Tl — ¢

so that
7h:(h+n—1) = (¢h7¢h+17 sy ¢h+n71)—r

Then the matrix inversion can be carried out analytically,
yielding
a(n,h) = (¢",0,0,...,0)"

which is an intuitively reasonable result. It follows that
Pan+1 = ¢Xn Pan+2 = ¢2Xn

and so on.

2.8 Forecasting for Stationary Processes
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2.8 Forecasting for Stationary Processes

Let Y, Wy,..., W, be random variables with
E[Y] = py E[Wi] = p

and
Var[Y], Var[W;], Cov[Y, W;], Cov[W;, W] < .

Write Wy.1 = (Wy,...,W;)T, and

v =Cov(Y,Wp1) (nx1)
I' = Cov(Whp.1, Wh.1) (n x n)
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2.8 Forecasting for Stationary Processes

Denote the best linear predictor of Y, given Wy,..., W, by
P(Y|W) = py +a' (Wn1 — pin1)
where a solves I'a = ~v. The minimum MSE is then

E[(Y — P(Y|W))?] = Var[Y] — a ' ~.
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2.8 Forecasting for Stationary Processes

Let U and V be random variables with E[U?], E[V?] < o0, and
B,a1,...,an be constants. Then

1. P(U|Wp) = E[U] +a" (Wpi — fin:1).

2. E[U — P(U|Wya)] = E[(U — P(U|Wy.1))Wn] = 0.
3.
4

. P is alinear operator

E[(U — P(U|Wp.1))?] = Var[U] — a .

P(ayU+aaV+B|Wai) = a1 P(U|Wait ) + a2 P(V|Wpip) + 8.

2.8 Forecasting for Stationary Processes
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2.8 Forecasting for Stationary Processes

5. f’(aTanl + /8|an1) = OéTWn:l + ﬁ
6. If vy = 0, P(U|Wy1) = E[U].
7. Coherent iterated prediction: If W = (W,.1, W), then

P(U|W) = P(P(U|Wpa1, W)W ).
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2.8 Forecasting for Stationary Processes

Example: AR(p) process
If {Z;} ~ WN(0, 02), and

®(B)X; = Z;
such that {X;} is stationary and causal. Then for each n
Poo1Xy = Pn[¢1Xn_1+ -+ ¢pXap + Zn]
= ¢1Xn-1+ -+ opXnp

by 4., 5. and 6.

2.8 Forecasting for Stationary Processes
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2.9 Levinson-Durbin Algorithm

For a stationary process {X;}, suppose we write
n
Pan+1 = 2 ¢nJXn—j+1 = d)]l— Xin
j=1
say as the general form of a linear predictor, where

d)n = (¢H,1a" . 7¢11711)T (I] X 1)

is the coefficient vector resulting from n data.
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2.9 Levinson-Durbin Algorithm

By the arguments above, the optimal MSE choice for ¢, is
¢, = 1—‘1:1'711

where

[Taly = (i —jl) 2= (x(1),...,9x(n))".
Let the minimum MSE be denoted

Vo = E[(Xa41 — PaXni1)?] = 7x(0) — b1,
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2.9 Levinson-Durbin Algorithm

We seek a recursion for ¢ ,; suppose ¢,_; and v,_1 have been
computed, and define ¢, by setting the nth component as

1
$n,n = v [’YX(H) - d);—zr—l’Y(n—l):l]

n—1

and the first n — 1 components via

(I)n,l:(nfl) = q)nfl - ¢n,n¢?1—1

where

O 1 = (Pn—tn—1,--sbn_11)"

is the reversed version of ¢,_;. Finally, set

Vn = vp-1(1 — ¢121,n)

2.9 Levinson-Durbin Algorithm 195



2.9 Levinson-Durbin Algorithm

To initialize the recursion, set

$1,1 = px(1) = vo=7x(0)  vi=7x(0)(1—¢7,)

To see that the recursion produces a valid solution, first set R,
to be the autocorrelation matrix R, = I' /vx(0), and define

P o = (ox(1).px()

7x(0
We verify the inductive step

Rpd, =pp = Rot1®ni1 = Pnt1
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2.9 Levinson-Durbin Algorithm

Clearly the relation holds for n = 1, as
Ri=1 ¢ =0¢11=px(1) p;=px(1).

We assume the relation holds for n = k, and verify that it
holds forn = k + 1. Now

Rx Pk
Rii1 = [ {pi}T 1

where
pi = (px(k),...,px(1))" = 0k

2.9 Levinson-Durbin Algorithm
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2.9 Levinson-Durbin Algorithm

Recall that

7x(0) ¥x(1) 7x(2) vx (k)
7x(1) 7x(0) 7x(1) x(k —1)
Ry = — | w2 (1) (0 - x(k—2)
7x(0)
| wx(k) w(k—=1) w(k—=2) -+ wx(0) ]

and note that

Ridby = py = Ry = pk-
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2.9 Levinson-Durbin Algorithm

Rer1Ppy1 =

Ry p} [ b — dk+1,k+1Dk ]
| {p3}T 1 P11 k+1
_ [ Ridy — dri1 k1 RedE + Pt kr1py ]
T T
| {pL} bk — Prr1 k1 {PE} Ok + ki1 k1

Rydy ]
| {Pi}bek + Ok41,k4+1(1 — {Pi}Td)i)

as Rxd} = p}.
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2.9 Levinson-Durbin Algorithm

Now by definition

1
Pkilkil = 7k [VX(k +1)— (1)1}7%]

and by definition
N T _ R1T R
vk = 7x(0) —bxvx = x(0) — {dk} vk

1x(0)(1 = {pi} &})

so therefore

1 R R\ _
ka(l —{pF} d}) = % (0)
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2.9 Levinson-Durbin Algorithm

Therefore

1
Prr1k+1 = — [1x(k+1) — ¢1I’Yi] = px(k +1) — diph
7x(0)

and hence

Rir10p1 =

[ Ridy ]
| {p3} by +ox(k+ 1) —dpph

_ | Pk
| px(k +1)
= Pk+1

and the recursion holds.
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2.9 Levinson-Durbin Algorithm

For the prediction MSE recursion: using the recursion for ¢,

E[(Xnt1 — &y Xn1)?] = 7x(0) — bpvn

= 7x(0) = dp_1Vn1 + Gnn {O5-1} Va1 — Gnnx(n)
Va—1+ ¢nn ({d)ﬁfl}T Yo-1— 7x(ﬂ)>

Vn1 — 05, (7x(0) — &) 1vn_1)

= Vp1(1— ¢?1,n)'

Vn

where line 2 follows from line 1 by substituting in the formula
for ¢, given by the recursion.

2.9 Levinson-Durbin Algorithm
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2.10 Partial Autocorrelation Function (PACF)

Define the function ax(h) by ax(0) = 1 and
O‘X(h):éh,h h:1727"'7n

where ¢p, j is the value returned as the coefficient on the hth
step of the Levinson-Durbin recursion.

This function is termed the partial autocorrelation function,
or PACF, which is uniquely determined by the ACF ~x.
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2.10 Partial Autocorrelation Function (PACF)

Note also that as v, is non-negative, and
_ 2
Vn = Vﬂfl(l - ¢n,n)
we must have that qbrzm < 1 for all n, and hence that

Vn < Vo1

so the optimal prediction MSEs form a decreasing sequence.

2.10 Partial Autocorrelation Function (PACF)
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2.10 Partial Autocorrelation Function (PACF)

For random variables X, Y, Z, the partial correlation of X and
Y, given Z is defined by

Corr[(X — E[X|Z]), (Y — E[Y]Z])]

that is, the correlation between the residuals from a regres-
sion of X on Z with those from a regression of Y on Z.
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2.10 Partial Autocorrelation Function (PACF)

For process {X:}, if we let X = X;, Y = Xiyp, and Z =
X(t+1):(t+h—1)-

ax(h) = énn

= Corr[(X; — 13(Xt|X(t+1):(t+h—l)))7

(Xt+n — P(XenlX(e41):(t+h-1))]

The PACF computes the correlation between prediction resid-
uals for X; and X¢1p, using X(;41).(t+n—1) to make the predic-
tions.

2.10 Partial Autocorrelation Function (PACF)
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2.10 Partial Autocorrelation Function (PACF)

Example: AR(p)

Suppose {X;} ~ AR(p), with parameters ¢1,...,¢,, and con-
sider h > p. Then

~

P(Xt+n|X(t+1):(t+n-1)) = P1Xe4n-1+ -+ ¢pXeihp
and
P(Xt|X(t+1):(t+h—1)) =Xt =1 X411+ + gprHp

so therefore

~

Xi+n — P(Xe4n|X(t41):(t4n-1) = Zi+n
Xt — P(Xe|X(t11):t40-1) = Zt

and as Corr[Z;, Z;1p] = 0, the PACF is zero for h > p.

2.10 Partial Autocorrelation Function (PACF)



2.10 Partial Autocorrelation Function (PACF)

The Levinson-Durbin algorithm provides a method for solving
the linear system

an)n = Pn

by recursion, for arbitrary n, and given ACF ~x(h) without
the need for large matrix inversion. It exploits the symmetric
Toeplitz nature of an autocovariance matrix, and is an order
n? algorithm.

Other algorithms for inverting this type of matrix are typically
higher order; the Cholesky decomposition

R, = L,L}

with L, lower triangular is order n3

Toeplitz nature of R;,.

. It does not exploit the

2.10 Partial Autocorrelation Function (PACF)
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Another approach to forecasting proves feasible even for the
non-stationary case. Suppose that {X;} is zero mean process
with E[|X¢|?], and E[X;X;] = (i,j). Denote

~ 0 n=1
Xn:
Py 1Xa n=2,3,....

and let
Un = Xn - Xn

denote the one step prediction error. Then
Urn = ApXip

where A, contains the coefficients a; ; that appear in the op-
timal linear predictor.

2.11 The Innovations Algorithm
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[ 1 0 0
ai
A, = az? az 1
| dn—-1,n—1 @dn—-1,n—2 @dn—-1n-3 " 1 ]

This lower triangular matrix is non-singular and let
A;l = Cn

where C, is also lower triangular.

2.11 The Innovations Algorithm 210
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Let
_ . 0 _
011
C, = ) 021
| enfl,nfl anl,an anl,nfS e 1 ]

Then, recalling that X;., = C,Uj.p,
X1:n = CpUn = Cn(X1n — X1:n).
Also
Xin = Xin — Utn = CaUin — Utip = O (X1 — Xion)

2.11 The Innovations Algorithm
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0 0 0 |
9171 0 0
e, = 022 021
| 91171,1171 91171,1172 enfl,nf3 - 0 ]
Therefore
0 n=0
Xn+1 = s

n
> Onj(Xng1—j —Xny1-5) n=1,2,....
j=1
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Therefore the one-step predictions
X1,Xo, ..., Xn, ...

can be computed as weighted sums of previous prediction er-
rors

~

X1 — X1, X —Xo, ..., Xn — Xn, ...

provided the entries in the matrix ®, are known. Note that
by the previous results, the sequence {D,} defined by

Dy = Xn — Xj
is an uncorrelated sequence.

Another recursive approach avoids the need to carry out ma-
trix inversion.

2.11 The Innovations Algorithm
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Initialize vo = x(1,1) = E[X?], then for each n set

k—1
1
Onpn-k = — |k(n+1,k+1)— E Ok, k—jOn,n—;Vj
Vi j=o

for 0 < k < n, and
vp=k(n+1,n+1)— Zennj

That is, we compute

Vo

)

bro 01 W2

)

033 632 631 V3

)

and so on.
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For h-step ahead prediction

n+h-1
PpXnin = Z en—i—j—l,j(Xn—&-h—j - n+j—j)
j=h
and
n+h-—1
Vn+h—/<;(n+h 1’1+h Z 0n+] 1,jVn+h—j—1

In this case, the innovations algorithm must be run forward
h — 1 steps.

2.11 The Innovations Algorithm
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Note: It is possible to extend the idea of optimal linear pre-
diction from the finite case to the infinite, that is, to find con-
stants {fj} such that

Q0
PXnin = 2 BiXn+1-j-
j=1

The infinite system of moment constraints
E[(Xpsn — PXpen)Xai1—i] =0 i=1,2,...

yield the infinite system of equations

0
ZVx(i ) =wxh+i—-1) i=1,2,
j=1

2.11 The Innovations Algorithm
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2.12 The Wold Decomposition

Any process {X;} where
Xp — Py 1Xp =0
in mean square, that is

E[(Xn — Pa_1X2)?] =0

for all n is termed deterministic

2.12 The Wold Decomposition

217



2.12 The Wold Decomposition

Example: Simple Deterministic Process
Suppose U, V are zero mean and uncorrelated variables with
variance o2, and let

Xt = U cos(wt) + Vsin(wt)

for some w € (0, 7). Then for each integer n,

~

Xn = ZCOS(w)Xn_l — Xn—2 = PH_1XH

say, and hence
Xn - Pn_1Xn S 0

2.12 The Wold Decomposition
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2.12 The Wold Decomposition

The Wold Decomposition gives a fundamental representation
of stationary processes.

If {X;} is stationary and non-deterministic, then {X;} has the
representation

ee}
Xp = > Z j+ Vi (Wold)
Jj=0
where
e {Z} ~ WN(0,0?)
o {V;} is deterministic

e {Z;} and {V;} are uncorrelated

0
. ¢0:1, ZwJ2<OO
j=1

2.12 The Wold Decomposition
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2.12 The Wold Decomposition

We also have that
o 7, = INZ’tZt forallt
o V; = INDSVt for all s, t.
and that the representation in (Wold) is unique. Furthermore
e foreacht, Z; = X; — 1~3t,1Xt;
e for each j, 1); satisfies
o = E[XtZt_j];
E[Z}]

0
e foreacht, V; = Xy — >, ViZy—j.
j=0

2.12 The Wold Decomposition
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