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Target Syllabus



Syllabus

1. The basics of probability.
▶ Review of set theory notation.
▶ Sample spaces and events.
▶ The probability axioms and their consequences.
▶ Probability spaces with equally likely outcomes.
▶ Combinatorial probability.
▶ Conditional probability and independence.
▶ The Theorem of Total Probability.
▶ Bayes Theorem.
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Syllabus (cont.)

2. Random variables and probability distributions.
▶ Random variables.
▶ Univariate distributions: cdfs, pmfs and pdfs.
▶ Moments: expectation and variance.
▶ Moment generating functions (mgfs): derivation and uses.
▶ Named distributions:

▶ discrete uniform,
▶ hypergeometric,
▶ binomial,
▶ Poisson,
▶ continuous uniform,
▶ gamma,
▶ exponential,
▶ chi-squared,
▶ beta,
▶ Normal.
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Syllabus (cont.)

3. Probability calculation methods.

▶ Transformations in one dimension.
▶ Techniques for sums of random variables.
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Syllabus (cont.)

4. Multivariate distributions.
▶ Marginal cdfs and pdfs.
▶ Conditional cdfs and pdfs.
▶ Conditional expectation.
▶ Independence of random variables.
▶ Covariance and correlation.
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Syllabus (cont.)

5. Probability inequalities and theorems.
▶ Markov’s inequality.
▶ Chebychev’s inequality.
▶ Definition of convergence in probability.
▶ The Weak Law of Large Numbers.
▶ The Central Limit Theorem and applications.
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Pre-requisite knowledge

• MATH 140/141
▶ Functions, limits
▶ Basic calculus methods (differentiation/integration in 1 di-

mension)
▶ Sequences and series

• MATH 133

Later in the course we will be introducing some basic methods
concerning multi-variable calculus.

If you have already taken MATH 222 or MATH 240, or courses
in analysis, that knowledge will be useful but not essential.
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Introduction



Introduction

This course is concerned with developing mathematical con-
cepts and techniques for modelling and analyzing situations
involving uncertainty.

• Uncertainty corresponds to a lack of complete or perfect
knowledge.

• Assessment of uncertainty in such real-life problems is
a complex issue which requires a rigorous mathematical
treatment.

This course will develop the probability framework in which
questions of practical interest can be posed and resolved.
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Introduction (cont.)

Uncertainty could be the result of

• incomplete observation of a system;

• unpredictable variation;

• simple lack of knowledge of the “state of nature”.
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Introduction (cont.)

“State of nature”: some aspect of the real world.

• could be the current state that is imperfectly observed;

• could be the future state, that is, the result of an experi-
ment yet to be carried out.
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Introduction (cont.)

Example (Uncertain states of nature)

• the outcome of a single coin toss;

• the millionth digit of π;

3.1415926535897932384626433832795028841971....

• the height of the building I am in;

• the number of people on campus now;

• the temperature at noon tomorrow.
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Introduction (cont.)

Note
The millionth digit of π is a fixed number: however, unless
we know its value, we are still in a state of uncertainty when
asked to assess it, as we have a lack of perfect knowledge.
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Introduction (cont.)

Example (Coin tossing)

If I take a coin and decide to carry out an experiment where I
toss the coin once and see which face is turned upward when
the coin comes to rest, then I can assess that there are two
possible results of the toss:

The outcome is of the toss is uncertain before I toss the coin,
and after I toss the coin until I see the result.
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Introduction (cont.)

Example (Thumbtack tossing)

If I take a thumbtack and decide to carry out an experiment
where I toss the thumbtack once, then I can assess that there
are two possible results of the toss:

The outcome of the toss is uncertain before I toss the thumb-
tack, and after I toss the thumbtack until I see the result.
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Chapter 1: The basics of

probability



What is probability ?

By probability, we generally mean a numerical assessment of

the chance of a particular event occurring, given a
particular set of circumstances.
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What is probability ?

That is,

(i) the chance of a particular event occurring ...

(ii) ... given a particular set of circumstances.
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What is probability ?

That is,

(i) the chance of a particular event occurring ...

(ii) ... given a particular set of circumstances.
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What is probability ?

It has seemed to me that the theory of probabilities
ought to serve as the basis for the study of all the
sciences.

Adolphe Quetelet

The probable is what usually happens.

Aristotle
Probability is the very guide of life.

Cicero, De Natura, 5, 12

https://www.stat.berkeley.edu/∼jpopen/probweb/quotes.html
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What is probability ? (cont.)

My thesis, paradoxically, and a little provocatively,
but nonetheless genuinely, is simply this:

PROBABILITY DOES NOT EXIST

The abandonment of superstitious beliefs about the
existence of the Phlogiston, the Cosmic Ether, Abso-
lute Space and Time, ... or Fairies and Witches was
an essential step along the road to scientific think-
ing.
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What is probability ? (cont.)

Probability, too, if regarded as something endowed
with some kind of objective existence, is no less a
misleading misconception, an illusory attempt to ex-
teriorize or materialize our true probabilistic beliefs.

B. de Finetti, Theory of Probability, 1970.
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What is probability ? (cont.)

That is,

• probability is not some objectively defined quantity – it
has a subjective interpretation.

• this subjective element may be commonly agreed upon in
certain circumstances, but in general is always present.

• recall
▶ coin example,
▶ thumbtack example.
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Constructing the mathematical framework

For a given ‘experiment’, we

• identify the possible outcomes;

• assign numerical values to collections of possible values
to represent the chance that they will coincide with the
actual outcome;

• lay out the rules for how the numerical values can be
manipulated.
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Basic concepts in set theory

A set S is a collection of individual elements, such as s.

We write

s ∈ S

to mean “s is one of the elements of S”.

• S = {0,1}; 0 ∈ S ,1 ∈ S .

• S = {‘dog’, ‘cat’, ‘mouse’, ‘rat’}; ‘rat’ ∈ S

• S = [0,1] (the closed interval from zero to one); then

0.3428 ∈ S
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Basic concepts in set theory (cont.)

S may be

• finite if it contains a finite number of elements;

• countable if it contains a countably infinite number of ele-
ments;

• uncountable if it contains an uncountably infinite number
of elements.
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Basic concepts in set theory (cont.)

A is a subset of S if it contains some, all, or none of the ele-
ments of S

some: A ⊂ S some or all: A ⊆ S .

That is, A is a subset of S if every element of A is also an
element of S

s ∈ A =⇒ s ∈ S .

• S = {0,1}; A = {0}, or A = {1}, or A = {0,1}.

• S = {‘dog’, ‘cat’, ‘mouse’, ‘rat’}; A = {‘cat’, ‘mouse’}
• S = [0,1]; A = (0.25,0.3).

Special case: the empty set, ∅, is a subset that contains no
elements.
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Basic concepts in set theory (cont.)

Note
In probability, it is necessary to think of sets of subsets of S .
For example:

• S = {1,2,3,4}.

• Consider all the subsets of S :

One element:{1}, {2}, {3}, {4}

Two elements:{1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}

Three elements:{1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}

Four elements:{1,2,3,4}.

• Add to this list the empty set (zero elements), ∅.

Thus there is a collection of 16 (that is, 24) subsets of S .
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Basic concepts in set theory (cont.)

Note
This is a bit trickier if S is an interval ...
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Set operations

To manipulate sets, we use three basic operations:

• intersection ∩
• union ∪
• complement ′

Consider two sets A and B which are subsets of a set S .
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Set operations (cont.)

• intersection: the intersection of two sets A and B is the
collection of elements that are elements of both A and B .

s ∈ A ∩ B ⇐⇒ s ∈ A and s ∈ B .

We have for any A ,B ⊆ S that

A ∩ ∅ = ∅

A ∩ S = A

A ∩ B ⊆ A

A ∩ B ⊆ B .
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Set operations (cont.)

• union: the union of two sets A and B is the set of distinct
elements that are either in A , or in B , or in both A and B .

s ∈ A ∪ B ⇐⇒ s ∈ A or s ∈ B (or s ∈ A ∩ B).

We have for any A ,B ⊆ S that

A ∪ ∅ = A

A ∪ S = S

A ⊆A ∪ B

B ⊆A ∪ B
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Set operations (cont.)

• complement: the complement of set A , a subset of S , is
the collection of elements of S that are not elements of
A .

s ∈ A ′ ⇐⇒ s ∈ S but s /∈ A .

We have that

A ∩ A ′ = ∅ and A ∪ A ′ = S .

We have for any A ⊆ S that

(A ′)′ = A .
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Set operations (cont.)

Note

The notations A and Ac may also be used.

The textbook uses
A (A ∩ B)

etc., but I find this leads to confusion.
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Set operations: in pictures

Intersection:

A B

A ∩ B

S
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Set operations: in pictures (cont.)

Union:

A B

A ∪ B

S
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Set operations: in pictures (cont.)

Complement:

A

S

A ′
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Example

Example (Finite set)

• S = {1,2,3, . . . ,9,10}
• A = {2,4,6}
• B = {1,2,5,7,9}

Then

• A ∩ B = {2}
• A ∪ B = {1,2,4,5,6,7,9}
• A ′ = {1,3,5,7,8,9,10}
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Set operations: extensions

• Set difference: A − B (or A\B )

s ∈ A − B ⇐⇒ s ∈ A and s ∈ B ′

that is

A − B ≡ A ∩ B ′.
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Set operations: extensions (cont.)

A B

A − B

S
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Set operations: extensions (cont.)

• A or B but not both: A ⊕ B

s ∈ A ⊕ B ⇐⇒ s ∈ A or s ∈ B , but s /∈ A ∩ B

aka

(A ∪ B)− (A ∩ B)
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Set operations: extensions (cont.)

A B

A ⊕ B

S
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Combining set operations

Both intersection and union operators are binary operators,
that is, take two arguments:

A ∩ B A ∪ B .

We have immediately from the definitions that

A ∩ B = B ∩ A

and that

A ∪ B = B ∪ A

(that is, the order does not matter).
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Combining set operations (cont.)

However, A and B are arbitrary, so suppose there is a third
set C ⊆ S , and consider

(A ∩ B) ∩ C

as A ∩ B is a set in its own right. Then

s ∈ (A ∩ B) ∩ C ⇐⇒ s ∈ (A ∩ B) and s ∈ C

⇐⇒ s ∈ A and s ∈ B and s ∈ C .
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Combining set operations (cont.)

That is

(A ∩ B) ∩ C = A ∩ B ∩ C

and by the same logic

(A ∩ B) ∩ C = A ∩ (B ∩ C)

and so on.
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Combining set operations (cont.)

This extends to the case of any finite collection of sets

A1,A2, . . . ,AK

and we may write

A1 ∩ A2 ∩ . . . ∩ AK ≡
K⋂

k=1

Ak

where

s ∈
K⋂

k=1

Ak ⇐⇒ s ∈ Ak for all k
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Combining set operations (cont.)

A

B

C

S
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Combining set operations (cont.)

A

B

C

S
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Combining set operations (cont.)

A

B

C

S

A ∩ B ∩ C
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Combining set operations (cont.)

The same logic holds for the union operator:

(A ∪ B) ∪ C = A ∪ B ∪ C = A ∪ (B ∪ C)

and

A1 ∪ A2 ∪ . . . ∪ AK ≡
K⋃

k=1

Ak

where

s ∈
K⋃

k=1

Ak ⇐⇒ s ∈ Ak for at least one k
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Combining set operations (cont.)

A

B

C

S

A ∪ B ∪ C
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Combining set operations (cont.)

Note
The intersection and union operations can be extended to
work with a countably infinite number of sets

A1,A2, . . . ,Ak , . . .

and we can consider

∞⋂
k=1

Ak : s ∈
∞⋂

k=1

Ak ⇐⇒ s ∈ Ak for all k

∞⋃
k=1

Ak : s ∈
∞⋃

k=1

Ak ⇐⇒ s ∈ Ak for at least one k

1.1 The basics of probability | Set theory notation 53



Combining set operations (cont.)

Consider now

A ∪ (B ∩ C)

To be an element in this set, you need to be

• an element of A or

• an element of B ∩ C or

• an element of both A and B ∩ C .
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Combining set operations (cont.)

S

A ∪ (B ∩ C)

A

B

C
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Combining set operations (cont.)

We can therefore deduce that

A ∪ (B ∩ C) ≡ (A ∪ B) ∩ (A ∪ C).

Similarly

A ∩ (B ∪ C) ≡ (A ∩ B) ∪ (A ∩ C).
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Combining set operations (cont.)

S

A ∩ (B ∪ C)

A

B

C
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Partitions

We call A1,A2, . . . ,AK a partition of S if these sets are

• pairwise disjoint (or mutually exclusive):

Aj ∩ Ak = ∅ for all j ̸= k

• exhaustive:
K⋃

k=1

Ak = S .

(that is, the As cover the whole of S , but do not overlap).

For every s ∈ S , s is an element of precisely one of the Ak .
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Partitions (cont.)

S

A5

A3

A6

A1

A2

A4

A7

A8
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Some simple theorems

For any two subsets A and B of S , we have the partition of S
via the four sets

A ∩ B A ∩ B ′ A ′ ∩ B A ′ ∩ B ′
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Some simple theorems (cont.)

SS

A ∩ B

A ′ ∩ B ′

A ∩ B ′ A ′ ∩ B
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Some simple theorems (cont.)

This picture implies that

(A ∪ B)′ = A ′ ∩ B ′.
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Some simple theorems (cont.)

We can show this as follows: let

A1 = A ∪ B A2 = A ′ ∩ B ′.

We need to show that

A ′
1 = A2

that is,

(i) A1 ∩ A2 = ∅;

(ii) A1 ∪ A2 = S .
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Some simple theorems (cont.)

(i) Disjoint:

A1 ∩ A2 = (A ∪ B) ∩ A2

= (A ∩ A2) ∪ (B ∩ A2)

= (A ∩ A ′ ∩ B ′) ∪ (B ∩ A ′ ∩ B ′)

= ∅ ∪ ∅

= ∅
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Some simple theorems (cont.)

(ii) Exhaustive:

A1 ∪ A2 = A1 ∪ (A ′ ∩ B ′)

= (A1 ∪ A ′) ∩ (A1 ∪ B ′)

= (A ∪ B ∪ A ′) ∩ (A ∪ B ∪ B ′)

= S ∩ S

= S
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Some simple theorems (cont.)

Similarly

A ′ ∪ B ′ = (A ∩ B)′

which is equivalent to saying

(A ′ ∪ B ′)′ = A ∩ B .
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Some simple theorems (cont.)

The first result

(A ∪ B)′ = A ′ ∩ B ′.

holds for arbitrary sets A and B . In particular it holds for the
sets

C = A ′ D = B ′

that is we have

(C ∪ D)′ = C ′ ∩ D ′.
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Some simple theorems (cont.)

But

C ′ = (A ′)′ = A D ′ = (B ′)′ = B

Therefore

(A ′ ∪ B ′)′ = A ∩ B

or equivalently

A ′ ∪ B ′ = (A ∩ B)′

as required.
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Some simple theorems (cont.)

A BBA

S

A ′
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Some simple theorems (cont.)

BA BA

S

B ′
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Some simple theorems (cont.)

A B

S

A ′ ∪ B ′

A ∩ B
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Some simple theorems (cont.)

These two results

A ′ ∩ B ′ = (A ∪ B)′

A ′ ∪ B ′ = (A ∩ B)′

are sometimes known as de Morgan’s Laws.
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Sample spaces and Events

We now utilize the set theory formulation and notation in the
probability context.

Recall the earlier informal definition:

By probability, we generally mean the chance of a
particular event occurring, given a particular set of
circumstances. The probability of an event is gener-
ally expressed as a quantitative measurement.

We need to carefully define what an ‘event’ is, and what con-
stitutes a ‘particular set of circumstances’.
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Sample spaces and Events (cont.)

We will consider the general setting of an experiment:

• this can be interpreted as any setting in which an uncer-
tain consequence is to arise;

• could involve observing an outcome, taking a measure-
ment etc.
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Constructing the framework

1. Consider the possible outcomes of the experiment:
Make a ‘list’ of the outcomes that can arise, and denote
the corresponding set by S .
▶ S = {0,1};
▶ S = {‘head’, ‘tail’} ≡ {H,T};
▶ S = {‘cured’, ‘not cured’};
▶ S = {‘Arts’, ‘Engineering’, ‘Medicine’, ‘Science’};
▶ S = {1,2,3,4,5,6};
▶ S = R+.

The set S is termed the sample space of the experiment.
The individual elements of S are termed sample points
(or sample outcomes).
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Constructing the framework (cont.)

2. Events: An event A is a collection of sample outcomes.
That is, A is a subset of S ,

A ⊆ S .

For example
▶ A = {0};
▶ A = {‘tail’} ≡ {T};
▶ A = {‘cured’};
▶ A = {‘Arts’, ‘Engineering’};
▶ A = {1,3,5};
▶ A = [2,3).

The individual sample outcomes are termed simple (or
elementary) events, and may be denoted

E1,E2, . . . ,EK , . . . .
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Constructing the framework (cont.)

3. Terminology: We say that event A occurs if the actual
outcome, s, is an element of A .

For two events A and B
▶ A ∩ B occurs if and only if A occurs and B occurs, that is

s ∈ A ∩ B .

▶ A ∪B occurs if A occurs or if B occurs, or if both A and B
occur, that is

s ∈ A ∪ B

▶ if A occurs, then A ′ does not occur.
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Constructing the framework (cont.)

S

E5

E3

E6

E1

E2

E4

E7

E8

E9

E10
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Constructing the framework (cont.)

In this case

S =

10⋃
k=1

Ek .
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Constructing the framework (cont.)

S

E5

E3

E6

E1

E2

E4

E7

E8

E9

E10

A
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Constructing the framework (cont.)

S

E5

E3

E6

E1

E2

E4

E7

E8

E9

E10

B
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Constructing the framework (cont.)

In this case

A = E5 ∪ E6 ∪ E7

and

B = E1 ∪ E3 ∪ E4 ∪ E8 ∪ E10.
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Constructing the framework (cont.)

Note
• The event S is termed the certain event;

• The event ∅ is termed the impossible event.
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Mathematical definition of probability

Probability is a means of assigning a quantitative measure of
uncertainty to events in a sample space.

Formally, the probability function, P(.) is a function that as-
signs numerical values to events.

P :A −→ R

A 7−→ p

that is

P(A) = p

that is, the probability assigned to event A (a set) is p (a nu-
merical value).
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Mathematical definition of probability (cont.)

Note

(i) The function P(.) is a set function (that is, it takes a set
as its argument).

(ii) A is a “set of subsets of S”; we pick a subset A ∈ A and
consider its probability.

(iii) A has certain nice properties that ensure that the prob-
ability function can operate successfully.
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Mathematical definition of probability (cont.)

This definition is too general:

• what properties does P(.) have ?

• how does P(.) assign numerical values; that is, how do
we compute

P(A)

for a given event A in sample space S ?
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The probability axioms

Suppose S is a sample space for an experiment, and A is an
event, a subset of S . Then we assign P(A), the probability of
event A , so that the following axioms hold:

(I) P(A) ≥ 0.

(II) P(S) = 1.

(III) If A1,A2, . . . form a (countable) sequence of events such
that

Aj ∩ Ak = ∅ for all j ̸= k

then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai )

that is, we say that P(.) is countably additive.
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The probability axioms (cont.)

Note

Axiom (III) immediately implies that P(.) is finitely additive,
that is, for all n, 1 ≤ n < ∞, if A1,A2, . . . ,An form a sequence
of events such that Aj ∩ Ak = ∅ for all j ̸= k , then

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai ).

To see this, fix n and define Ai = ∅ for i > n.
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The probability axioms (cont.)

Example (Partitions)

If A1,A2, . . . ,An form a partition of S , and

P(Ai ) = pi i = 2, . . . ,n

say, then
n∑

i=1

P(Ai ) =

n∑
i=1

pi = 1.
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The probability axioms (cont.)

S

A5

A3

A6

A1

A2

A4

A7

A8
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The probability axioms (cont.)

S

p5

p3

p6

p1

p2

p4

p7

p8
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The probability axioms (cont.)

Some immediate corollaries of the axioms:

(i) For any A , P(A ′) = 1 − P(A).
▶ We have that S = A ∪ A ′. By Axiom (III) we have that

P(S) = P(A) + P(A ′).

▶ By Axiom (II), P(S) = 1, so therefore

1 = P(A) + P(A ′) ∴ P(A ′) = 1 − P(A).
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The probability axioms (cont.)

(ii) P(∅) = 0.

▶ Apply the result from point (i) to the set A ≡ S .
▶ Note that by Axiom (II), P(S) = 1.
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The probability axioms (cont.)

(iii) For any A , P(A) ≤ 1.
▶ By Axiom (III) and point (i) we have

1 = P(S) = P(A) + P(A ′) ≥ P(A)

as P(A ′) ≥ 0 by Axiom (I).
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The probability axioms (cont.)

(iv) For any two events A and B , if A ⊆ B , then

P(A) ≤ P(B)

▶ We may write in this case

B = A ∪ (A ′ ∩ B)

and, as the two events on the right hand side are mutually
exclusive, by Axiom (III)

P(B) = P(A) + P(A ′ ∩ B) ≥ P(A)

as P(A ′ ∩ B) ≥ 0 by Axiom (I).
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The probability axioms (cont.)

Therefore, for example,

P(A ∩ B) ≤ P(A) and P(A ∩ B) ≤ P(B)

that is

P(A ∩ B) ≤ min{P(A),P(B)}.
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The probability axioms (cont.)

S

A

B

B ∩ A ′
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The probability axioms (cont.)

(v) General Addition Rule: For two arbitrary events A and
B ,

P(A ∪ B) = P(A) + P(B)− P(A ∩ B).
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The probability axioms (cont.)

SS

A ∩ B

A ′ ∩ B ′

A ∩ B ′ A ′ ∩ B
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The probability axioms (cont.)

▶ We have that
(A ∪ B) = A ∪ (A ′ ∩ B)

so that by Axiom (III)

P(A ∪ B) = P(A) + P(A ′ ∩ B).

But
B = (A ∩ B) ∪ (A ′ ∩ B)

so that
P(B) = P(A ∩ B) + P(A ′ ∩ B)

and therefore

P(A ′ ∩ B) = P(B)− P(A ∩ B)
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The probability axioms (cont.)

Substituting back in, we have

P(A ∪ B) = P(A) + P(A ′ ∩ B)

= P(A) + P(B)− P(A ∩ B)

as required.

▶ We may deduce from this that

P(A ∪ B) ≤ P(A) + P(B)

as P(A ∩ B) ≥ 0.
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The probability axioms (cont.)

In general, for events A1,A2, . . . ,An , we can construct a
formula for

P

(
n⋃

i=1

Ai

)
using inductive arguments.
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The probability axioms (cont.)

For example, with n = 3, we have that

P(A1 ∪ A2 ∪ A3) = P(A1) + P(A2) + P(A3)

− P(A1 ∩ A2)

− P(A1 ∩ A3)

− P(A2 ∩ A3)

+ P(A1 ∩ A2 ∩ A3).
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The probability axioms (cont.)

A1

A2

A3

S
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The probability axioms (cont.)

A more straightforward general result is Boole’s Inequality

P

(
n⋃

i=1

Ai

)
≤

n∑
i=1

P (Ai ) .

Proof of this result follows by a simple inductive argument.
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Probability tables

It is sometimes helpful to lay out probabilities in table form:

A A ′ Total

B pA∩B pA ′∩B pB

B ′ pA∩B ′ pA ′∩B ′ pB ′

Total pA pA ′ pS

that is, for example, pA∩B = P(A ∩ B), and

A = (A ∩ B) ∪ (A ∩ B ′)

so that

pA = P(A) = P(A ∩ B) + P(A ∩ B ′) = pA∩B + pA∩B ′

and so on.
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Probability tables (cont.)

Example

Suppose

P(A) =
1

3
P(B) =

1

2
P(A ∪ B) =

3

4
.

A A ′ Total

B 1
2

B ′ 1
2

Total 1
3

2
3 1

1.4 The basics of probability | The probability axioms 107



Probability tables (cont.)

Example

We have

P(A ∩ B) = P(A) + P(B)− P(A ∪ B)

=
1

3
+

1

2
− 3

4

=
1

12
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Probability tables (cont.)

Example

Hence

A A ′ Total

B 1
12

5
12

1
2

B ′ 3
12

3
12

1
2

Total 1
3

2
3 1
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Probability tables (cont.)

Not all configurations of entries in the table are valid: we
need to ensure that

0 ≤ p∗ ≤ 1

for all entries, with

pA = pA∩B + pA∩B ′

and

pB = pA∩B + pA ′∩B
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Specifying probabilities

We have defined how the probability function must behave
mathematically.

We now consider three ways via which we could specify the
numerical probability of an event.
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Specifying probabilities (cont.)

1. Equally likely sample outcomes: Suppose that sample
space S is finite, with N sample outcomes in total that
are considered to be equally likely to occur. Then for the
elementary events E1,E2, . . . ,EN , we have

P(Ei ) =
1

N
i = 1, . . . ,N
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Specifying probabilities (cont.)

Every event A ⊆ S can be expressed

A =

n⋃
i=1

EiA

for some n ≤ N , and collection E1A , . . . ,EnA , with indices

iA ∈ {1, . . . ,n}.

Then

P(A) =
n

N
=

Number of sample outcomes in A

Number of sample outcomes in S
.
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Specifying probabilities (cont.)

“Equally likely outcomes”

This is a strong (and subjective) assumption, but if it
holds, then it leads to a straightforward calculation.

Suppose we have N = 10:
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Specifying probabilities (cont.)

P(A) =
3

10
: 1A = 5,2A = 6,3A = 7.

S

E5

E3

E6

E1

E2

E4

E7

E8

E9

E10

A
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Specifying probabilities (cont.)

P(B) =
5

10
=

1

2
: 1B = 1,2B = 3,3B = 4,4B = 8,5B = 10.

S

E5

E3

E6

E1

E2

E4

E7

E8

E9

E10

B
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Specifying probabilities (cont.)

We usually apply the logic of “equally likely outcomes” in
certain mechanical settings where we can appeal to some
form of symmetry argument.

(a) Coins: It is common to assume the existence of a ‘fair’
coin, and an experiment involving a single flip. Here the
sample space is

S = {Head,Tail}
with elementary events E1 = {Head} and E2 = {Tail}, and
it is usual to assume that

P(E1) = P(E2) =
1

2
.
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Specifying probabilities (cont.)

(b) Dice: Consider a single roll of a ‘fair’ die, with the out-
come being the upward face after the roll is complete.
Here the sample space is

S = {1,2,3,4,5,6}

with elementary events Ei = {i} for i = 1,2,3,4,5,6, and
it is usual to assume that

P(Ei ) =
1

6
.

Let A be the event that the outcome of the roll is an even
number. Then

A = E2 ∪ E4 ∪ E6

and

P(A) =
3

6
=

1

2
.
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Specifying probabilities (cont.)

(c) Cards: A standard deck of cards contains 52 cards, com-
prising four suits (Hearts, Clubs, Diamonds, Spades) with
thirteen cards in each suit, with cards denominated

2,3,4,5,6,7,8,9,10, Jack ,Queen,King,Ace.

Thus each card has a suit and a denomination. An exper-
iment involves selecting a card from the deck after it has
been well shuffled.

There are 52 elementary outcomes, and

P(Ei ) =
1

52
i = 1, . . . ,52.

If A is the event Ace is selected, then

P(A) =
Total number of Aces

Total number of cards
=

4

52
=

1

13
.
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Specifying probabilities (cont.)

In a second experiment, five cards are to be selected from
the deck without replacement. The elementary outcomes
correspond to all sequences of five cards that could be
obtained. All such sequences are equally likely.

Let A be the event that the five cards contain three cards
of one denomination, and two cards of another denomina-
tion.

What is P(A) ?

Need some rules to help in counting the elementary out-
comes.
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Specifying probabilities (cont.)

The concept of “equally likely outcomes” can be extended
to the uncountable sample space case:
▶ pick a point from the interval (0,1) with each point equally

likely; if A is the event

“point picked is in the interval (0,0.25)”

then we can set P(A) = 0.25.
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Specifying probabilities (cont.)

▶ a point is picked internal to the square centered at (0,0)
with side length one, with each point equally likely. Let A
be the event that

“point lies in the circle centered at (0,0) with radius
1

2
”

Then

P(A) =
Area of circle

Area of Square
=

π

4
= 0.7853982.
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Specifying probabilities (cont.)

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y
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Specifying probabilities (cont.)

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y
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Specifying probabilities (cont.)

A simulation: 10000 points picked from the square.

0 2000 4000 6000 8000 10000

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Number of samples

P
ro

po
rt

io
n
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Specifying probabilities (cont.)

Example (Thumbtack tossing)

▶ S = {Up,Down}.
▶ A = {Up}.

What is P(A) ?
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Specifying probabilities (cont.)

2. Relative frequencies: Suppose S is the sample space,
and A is the event of interest. Consider an infinite se-
quence of repeats of the experiment under identical con-
ditions.

Then we may define P(A) by considering the relative fre-
quency with which event A occurs in the sequence.
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Specifying probabilities (cont.)

▶ Consider a finite sequence of N repeat experiments.
▶ Let n be the number of times (out of N ) that A occurs.
▶ Define

P(A) = lim
N−→∞

n

N
.

The frequentist definition of probability; it generalizes
the “equally likely outcomes” version of probability.
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Specifying probabilities (cont.)

The frequentist definition would cover the thumbtack ex-
ample:

Is it always possible to consider an infinite sequence of
repeats ?
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Specifying probabilities (cont.)

3. Subjective assessment: For a given experiment with
sample space S , the probability of event A is
▶ a numerical representation of your own personal

degree of belief

that the actual outcome lies in A ;
▶ you are rational and coherent (that is, internally consist-

ent in your assessment).

This generalizes the “equally likely outcomes” and “fre-
quentist” versions of probability.
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Specifying probabilities (cont.)

• Especially useful for ‘one-off’ experiments.

• Assessment of ‘odds’ on an event can be helpful:

Odds :
P(A)

P(A ′)
=

P(A)

1 − P(A)

eg Odds = 10:1, then P(A) = 10/11 etc.
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Rules for counting outcomes

Multiplication principle: A sequence of k operations, in
which operation i can result in ni possible outcomes, can res-
ult in

n1 × n2 × · · · × nk

possible sequences of outcomes.
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Rules for counting outcomes (cont.)

Example (Two dice)

Two dice are rolled: there are 6 × 6 = 36 possible outcomes.

1 2 3 4 5 6

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
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Rules for counting outcomes (cont.)

Example

We are to pick k = 5 numbers sequentially from the set

{1,2,3, . . . ,100},

where every number is available on every pick. The number
of ways of doing that is

100 × 100 × 100 × 100 × 100 = 1005.
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Rules for counting outcomes (cont.)

Example

We are to pick k = 11 players sequentially from a squad of 25
players. The number of ways of doing that is

25 × 24 × 23 × · · · × 15.

as players cannot be picked twice.
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Rules for counting outcomes (cont.)

Selection principles: When selecting repeatedly from a fi-
nite set {1,2, . . . ,N} we may select

• with replacement, that is,
▶ each successive selection can be one of the original set,

irrespective of previous selections,

or

• without replacement, that is,
▶ the set is depleted by each successive selection,

1.6 The basics of probability | Combinatorial probability 136



Rules for counting outcomes (cont.)

Ordering: When examining the result of a sequence of selec-
tions, it may be required that

• order is important, that is

13456 is considered distinct from 54163

or

• order is unimportant, that is

13456 is considered identical to 54163
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Rules for counting outcomes (cont.)

Example (Two dice)

Two dice are rolled: there are (7 × 6)/2 = 21 possible un-
ordered outcomes.

1 2 3 4 5 6

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 - (2,2) (2,3) (2,4) (2,5) (2,6)
3 - - (3,3) (3,4) (3,5) (3,6)
4 - - - (4,4) (4,5) (4,6)
5 - - - - (5,5) (5,6)
6 - - - - - (6,6)
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Rules for counting outcomes (cont.)

Distinguishable items: It may be that the objects being se-
lected are

• distinguishable, that is, individually uniquely labelled.
▶ eg lottery balls.

• indistinguishable, that is, labelled according to a type,
but not labelled individually.
▶ eg a bag containing 7 red balls, 2 green balls, and 3 yellow

balls.

1.6 The basics of probability | Combinatorial probability 139



Permutations

An ordered arrangement of r distinct objects is called a per-
mutation.

The number of ways of ordering n distinct objects taken r at
a time is denoted Pn

r , and by the multiplication rule we have
that

Pn
r = n×(n−1)×(n−2)×· · · (n−r+2)×(n−r+1) =

n!

(n − r)!
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Multinomial coefficients

The number of ways of partitioning n distinct objects into k
disjoint subsets of sizes

n1,n2, . . . ,nk

where
k∑

i=1

ni = n

is

N =

(
n

n1,n2, . . . ,nk

)
=

n!

n1!× n2! . . .× nk !
.
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Multinomial coefficients (cont.)

To see this, consider first selecting the n objects in order;
there are

Pn
n = n! = n × (n − 1)× (n − 2)× · · · × 2 × 1

ways of doing this. Then designate

• objects selected 1 to n1 as Subset 1,

• objects selected n1 + 1 to n1 + n2 as Subset 2,

• objects selected n1 + n2 + 1 to n1 + n2 + n3 as Subset 3,

• . . .

• objects selected n1+n2+ · · ·+nk−1+1 to n1+n2+ · · ·+nk

as Subset k .
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Multinomial coefficients (cont.)

Then note that the specific ordered selection that achieves the
partition is only one of several that yield the same partition;
there are

• n1! ways of permuting Subset 1,

• n2! ways of permuting Subset 2,

• n3! ways of permuting Subset 3,

• . . .

• nk ! ways of permuting Subset k,

that yield the same partition.
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Multinomial coefficients (cont.)

Therefore, we must have that

Pn
n = n! = N × (n1!× n2! . . .× nk !)

and hence

N =
n!

n1!× n2!× . . .× nk !
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Multinomial coefficients (cont.)

Example (n = 8, k = 3, (n1,n2,n3) = (4,2,2))

• One specific ordered selection:

4,6,2,1,8,5,3,7

– there are 8! ways of obtaining such a selection.

• Partition into subsets with (4,2,2) elements:

(4,6,2,1), (8,5), (3,7)
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Multinomial coefficients (cont.)

Example (n = 8, k = 3, (n1,n2,n3) = (4,2,2))

• Consider all within-subset permutations:

(4,6,2,1), (8,5), (3,7)

(4,6,1,2), (8,5), (3,7)

(4,1,2,6), (8,5), (3,7)

...

1.6 The basics of probability | Combinatorial probability 146



Multinomial coefficients (cont.)

Example (n = 8, k = 3, (n1,n2,n3) = (4,2,2))

• There are

8!

4!× 2!× 2!
=

40320

24 × 2 × 2
= 420

possible distinct partitions;

(4,6,2,1), (8,5), (3,7)

is regarded as identical to

(1,2,4,6), (5,8), (3,7).
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Multinomial coefficients (cont.)

Example (Department committees)

A University Department comprises 40 faculty members. Two
committees of 12 faculty members, and two committees of 8
faculty members, are needed.

The number of distinct committee configurations that can be
formed is

N =

(
40

12,12,8,8

)
=

40!

12!× 12!× 8!× 8!
= 1785474512.
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Multinomial coefficients (cont.)

Note: Binomial coefficients
Recall the binomial theorem:

(a + b)n =

n∑
j=0

(
n

j

)
a j bn−j

where (
n

j

)
=

n!

j !(n − j)!
≡
(

n

j ,n − j

)
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Multinomial coefficients (cont.)

Note: Binomial coefficients
Here we are solving a partitioning problem; partition n ele-
ments into one subset of size j and one subset of size n − j .

We can use this result and the multiplication principle to de-
rive the general multinomial coefficient result.
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Multinomial coefficients (cont.)

Note: Binomial coefficients
For a collection of n elements:

1. Partition into two subsets of n1 and n − n1 elements;

2. Take the n−n1 elements and partition them into two sub-
sets of n2 and n − n1 − n2 elements;

3. Repeat until the final partition step; at this stage we have
a set of n − n1 − · · · − nk−2 elements, which we partition
into a subset of nk−1 elements and a subset of

nk = n − n1 − · · · − nk−2 − nk−1

elements.
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Multinomial coefficients (cont.)

Note: Binomial coefficients
By the multiplication rule, the number of ways this sequence
of partitioning steps can be carried out is(

n

n1

)
×
(

n − n1

n2

)
× · · · ×

(
n − n1 − · · · − nk−2

nk−1

)
that is

n!

n1!(n − n1)!
× (n − n1)!

n2!(n − n1 − n2)!
× · · · × (n − n1 − · · · − nk−2)!

nk−1!nk !
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Multinomial coefficients (cont.)

Note: Binomial coefficients
Cancelling terms top and bottom in successive factors, we
see that this equals

n!

n1 × n2!× . . .× nk−1!× nk !

as required.

1.6 The basics of probability | Combinatorial probability 153



Combinations

The number of combinations of n objects taken r at a time is
the number of subsets of size r that can be formed.

This number is denoted

Cn
r =

(
n

r

)
where (

n

r

)
=

n!

r!(n − r)!

i.e. we “choose r from n”.
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Combinations (cont.)

We first consider sequential selection of r objects: the number
of possible selections (without replacement) is

n × (n − 1)× ...× (n − r + 1) =
n!

(n − r)!
= Pn

r

leaving (n − r) objects unselected.

We then remember that the order of selected objects is not
important in identifying a combination, so therefore we must
have that

Pn
r = r!× Cn

r .

as there are r! equivalent combinations that yield the same
permutation. The result follows.
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Binary sequences

Binary sequences

101000100101010

arise in many probability settings; if we take ‘1’ to indicate
inclusion and ‘0’ to indicate exclusion, then we can identify
combinations with binary sequences.

• the number of binary sequences of length n containing r
1s is (

n

r

)
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Combinatorial probability

The above results are used to compute probabilities in the
case of equally likely outcomes.

• S : complete list of possible sequences of selections.

• A : sequences having property of interest.

• We have

P(A) =
Number of elements in A

Number of elements in S
=

nA

nS
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Combinatorial probability (cont.)

Example (Cards)

Five cards are selected without replacement from a standard
deck. What is the probability they are all Hearts ?

• Number of elements in S :

nS =

(
52

5

)
• Number of elements in A :

nA =

(
13

5

)
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Combinatorial probability (cont.)

Example (Cards)

Therefore

P(A) =

(
13

5

)
(

52

5

) = 0.0004951981.
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Other combinatorial problems

• Poker hands;

• Hypergeometric selection;

• Occupancy (or allocation) problems – allocate r objects to
n boxes and identify
▶ the occupancy pattern;
▶ the occupancy of a specific box.

1.6 The basics of probability | Combinatorial probability 160



Other combinatorial problems (cont.)

Allocate r = 6 indistinguishable balls to n = 4 boxes: how
many distinct allocation patterns are there ?

1.6 The basics of probability | Combinatorial probability 161



Conditional probability

We now consider probability assessments in the presence of

partial knowledge.

In the case of ‘ordinary’ probability, we have (by assumption)
that the outcome must be an element in the set S , and pro-
ceed to assess the probability that the outcome is an element
of the set A ⊆ S .

That is, the only ‘certain’ knowledge we have is that the out-
come, s, is in S .
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Conditional probability (cont.)

Now suppose we have the ‘partial’ knowledge that, in fact,

s ∈ B ⊆ S

for some B ;

• that is, we know that event B occurs.
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Conditional probability (cont.)

How does this change our probability assessment concerning
the event A ?

• in light of the information that B occurs, what do we now
think about the probability that A occurs also ?
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Conditional probability (cont.)

First, we are considering the event that both A and B occur,
that is

s ∈ A ∩ B

so P(A ∩ B) must play a role in the calculation.

Secondly, with the knowledge that event B occurs, we restrict
the parts of the sample space that should be considered; we
are certain that the sample outcome must lie in B .
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Conditional probability (cont.)

For two events A and B , the conditional probability of A given
B is denoted P(A |B), and is defined by

P(A |B) =
P(A ∩ B)

P(B)

Note that we consider this only in cases where P(B) > 0.
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Conditional probability (cont.)

Ordinary Probability: P(A).

SS

A ∩ BA ∩ B ′ A ′ ∩ B

A B
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Conditional probability (cont.)

Conditional Probability: P(A |B) = P(A ∩ B)/P(B).

SS

A ∩ BA ∩ B ′ A ′ ∩ B

A B
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Conditional probability (cont.)

Example

Experiment: roll a fair die, record the score.

• S = {1,2,3,4,5,6}, all outcomes equally likely.

• A = {1,3,5} (score is odd).

• B = {4,5,6} (score is more than 3).

• A ∩ B = {5}.

P(A) =
3

6
=

1

2
P(B) =

3

6
=

1

2
P(A ∩ B) =

1

6
so

P(A |B) =
P(A ∩ B)

P(B)
=

1/6

1/2
=

1

3
.
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Conditional probability (cont.)

Example

In a class of 100 students:

• 60 are from Faculty of Science, 40 are from Faculty of
Arts.

• 80 are in a Major program, 20 are in another program.

• 50 of the Science students are in a Major program.
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Conditional probability (cont.)

Example

A – Faculty of Science; B – Major program.

SS

50

10

10 30

A B
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Conditional probability (cont.)

Example

A student is selected from the class, with all students equally
likely to be selected.

• What is the probability that the selected student is from
Science, P(A) ?:

P(A) =
60

100
=

3

5

1.7 The basics of probability | Conditional probability 172



Conditional probability (cont.)

Example

• What is the probability that the selected student is from
Science and in a Major program, P(A ∩ B) ?:

P(A ∩ B) =
50

100
=

1

2
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Conditional probability (cont.)

Example

• If the selected student is known to be in a Major pro-
gram, what is the probability that the student is from Sci-
ence, P(A |B) ?:

P(A |B) =
P(A ∩ B)

P(B)
=

50/100

80/100
=

50

80
=

5

8
.
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Conditional probability (cont.)

Note: some consequences
• If B ≡ S , then

P(A |S) =
P(A ∩ S)

P(S)
=

P(A)

1
= P(A).

• If B ≡ A , then

P(A |A) =
P(A ∩ A)

P(A)
=

P(A)

P(A)
= 1.

• We have

P(A |B) =
P(A ∩ B)

P(B)
≤ P(B)

P(B)
= 1.
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Conditional probability (cont.)

Direct from the definition, we have that

P(A ∩ B) = P(B)P(A |B)

(recall P(B) > 0).

1.7 The basics of probability | Conditional probability 176



Conditional probability (cont.)

Note
It is important to understand the distinction between

P(A ∩ B) and P(A |B).

• P(A ∩ B) records the chance of A and B occurring re-
lative to S . A and B are treated symmetrically in the
calculation.

• P(A |B) records the chance of A and B occurring relative
to B . A and B are not treated symmetrically; from the
definition, we see that in general

P(B |A) =
P(A ∩ B)

P(A)
̸= P(A ∩ B)

P(B)
= P(A |B).

1.7 The basics of probability | Conditional probability 177



Conditional probability (cont.)

Note
From the above calculation, we see that we could have

P(A |B) ≤ P(A)

or
P(A |B) ≥ P(A)

or
P(A |B) = P(A).

That is, certain knowledge that B occurs could decrease, in-
crease or leave unchanged the probability that A occurs.
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Conditional probability (cont.)

Example

A box of 500 light bulbs is purchased from each of two factor-
ies (labelled 1 and 2).

• In the box from Factory 1, there are 25 defective bulbs.

• In the box from Factory 2, there are 10 defective bulbs.

The bulbs are unpacked and placed in storage.
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Conditional probability (cont.)

Example

A – Defective; B – Factory 1.

SS

25

490

10 475

A B
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Conditional probability (cont.)

Example

At the time of the next installation, a bulb is selected from the
store.

• What is the probability that the bulb is defective, P(A) ?:

P(A) =
35

1000
= 0.035.
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Conditional probability (cont.)

Example

• What is the probability that the bulb came from Factory
1, P(B) ?:

P(B) =
500

1000
= 0.5.

1.7 The basics of probability | Conditional probability 182



Conditional probability (cont.)

Example

• If the selected bulb came from Factory 1, what is the
probability it is defective P(A |B) ?:

P(A |B) =
P(A ∩ B)

P(B)
=

25/1000

500/1000
=

25

500
= 0.05.
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Conditional probability (cont.)

Example

• If the selected bulb is defective, what is the probability
it came from Factory 1, P(B |A) ?:

P(B |A) =
P(A ∩ B)

P(A)
=

25/1000

35/1000
=

25

35
=

5

7
.
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Conditional probability (cont.)

Example

Experiment: We measure the failure time of an electrical com-
ponent.

• S = R+.

• A = [10,∞) (fails after 10 hours or more).

• B = [5,∞) (fails after 5 hours or more).

Suppose we assess

P(A) = 0.25 P(B) = 0.4.

Now here A ⊂ B ⊂ S , so therefore P(A ∩ B) ≡ P(A), and

P(A |B) =
P(A ∩ B)

P(B)
=

P(A)

P(B)
=

0.25

0.4
= 0.625.
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Conditional probability (cont.)

The conditional probability function satisfies the Probability
Axioms: suppose B is an event in S such that P(B) > 0.

(I) Non-negativity:

P(A |B) =
P(A ∩ B)

P(B)
≥ 0.

1.7 The basics of probability | Conditional probability 186



Conditional probability (cont.)

(II) For P(S |B) we have

P(S |B) =
P(S ∩ B)

P(B)
=

P(B)

P(B)
= 1.
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Conditional probability (cont.)

(III) Countable additivity: if A1,A2, . . . form a (countable) se-
quence of events such that Aj ∩ Ak = ∅ for all j ̸= k .
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Conditional probability (cont.)

Then

P

( ∞⋃
i=1

Ai

∣∣∣∣B
)

=

P

(( ∞⋃
i=1

Ai

)
∩ B

)
P(B)

=

P

( ∞⋃
i=1

(Ai ∩ B)

)
P(B)

=

∞∑
i=1

P(Ai ∩ B)

P(B)

=

∞∑
i=1

P(Ai |B).
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Conditional probability (cont.)

P

(
A1 ∪ A2

∣∣∣∣B) =
P ((A1 ∪ A2) ∩ B)

P(B)

=
P ((A1 ∩ B) ∪ (A2 ∩ B))

P(B)

=
P(A1 ∩ B) + P(A1 ∩ B)

P(B)

= P(A1|B) + P(A2|B).

as

A1,A2 disjoint =⇒ (A1 ∩ B), (A2 ∩ B) disjoint.
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Conditional probability (cont.)

Example (Three cards)

Three two sided cards:

1 2 3

One of the three cards is selected, with all cards being
equally likely to be chosen.
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Conditional probability (cont.)

Example (Three cards)

One side is displayed:

What is the probability that the other side of this card is red ?
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Conditional probability (cont.)

Example (Three cards)

Let

• S = {R1,R2,R ,B ,B1,B2} be the possible exposed sides.
The outcomes in S are equally likely.

• A – Card 1 is selected.

A = {R1,R2}

and P(A) = 2/6.

• B – A red side is exposed.

B = {R1,R2,R}

and P(B) = 3/6.
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Conditional probability (cont.)

Example (Three cards)

Then
A ∩ B = {R1,R2} ≡ A

and hence

P(A |B) =
P(A ∩ B)

P(B)
=

P(A)

P(B)
=

2/6

3/6
=

2

3
.
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Conditional probability (cont.)

Example (Drug testing)

A drug testing authority tests 100000 athletes to assess
whether they are using performance enhancing drugs (PEDs).
The drug test is not perfect as it produces

• False positives: declares an athlete to be using PEDs,
when in reality they are not.

• False negatives: declares an athlete not to be using PEDs,
when in reality they are.
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Conditional probability (cont.)

Example (Drug testing)

Suppose that after detailed investigation it is discovered that

• 2000 athletes gave positive test results.

• 100 athletes were using PEDs.

• 95 athletes who were using PEDs tested positive.
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Conditional probability (cont.)

Example (Drug testing)

A – Drug test is positive; B – Athlete is using PED.

SS

95

97995

1905 5

A B
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Conditional probability (cont.)

Example (Drug testing)

However, in the original analysis, an athlete is selected at
random from the 100000, and is observed to test positive.

What is the probability that they actually were using PEDs ?
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Conditional probability (cont.)

Example (Drug testing)

The required conditional probability is

P(B |A) =
P(A ∩ B)

P(A)
=

95

2000
= 0.0475.

Note that is very different from

P(A |B) =
P(A ∩ B)

P(B)
=

95

100
= 0.95.
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Independence

Two events A and B in sample space S are independent if

P(A |B) = P(A);

equivalently, they are independent if

P(A ∩ B) = P(A)P(B).

Note that if P(A |B) = P(A), then

P(B |A) =
P(A ∩ B)

P(A)
=

P(A)P(B)

P(A)
= P(B).
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Independence (cont.)

Note
Independence is not a property of the events A and B them-
selves, it is a property of the probabilities assigned to them.
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Independence (cont.)

Note
Independence is not the same as mutual exclusivity.

Independent: P(A ∩ B) = P(A)P(B)

Mutually exclusive: P(A ∩ B) = 0.
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Independence (cont.)

Example

A fair coin is tossed twice, with the outcomes of the two tosses
independent. We have

S = {HH ,HT ,TH ,TT}

with all four outcomes equally likely.

(a) If the first toss result is H , what is the probability that
the second toss is also H ?

(b) If one result is H , what is the probability that the other is
H ?
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Independence (cont.)

Example

Let

• A = {HH} (both heads).

• B = {HH ,HT ,TH} (at least one head).

• C = {HH ,HT} (first result is head).

(a) We want P(A |C):

P(A |C) =
P(A ∩ C)

P(C)
=

P(A)

P(C)
=

1/4

2/4
=

1

2
.

(b) We want P(A |B):

P(A |B) =
P(A ∩ B)

P(B)
=

P(A)

P(B)
=

1/4

3/4
=

1

3
.

1.8 The basics of probability | Independence 204



Independence for multiple events

Independence as defined above is a statement concerning two
events.

What if we have more than two events ?

• Events A1, A2, A3 in sample space S .

• We can consider independence pairwise:

P(A1 ∩ A2) = P(A1)P(A2)

P(A1 ∩ A3) = P(A1)P(A3)

P(A2 ∩ A3) = P(A2)P(A3)
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Independence for multiple events (cont.)

• What about

P(A1 ∩ A2 ∩ A3);

Can we deduce

P(A1 ∩ A2 ∩ A3) = P(A1)P(A2)P(A3)?

• In general, no.
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Independence for multiple events (cont.)

Example (Two dice)

Suppose we roll two dice with outcomes independent.

• A1 – first roll outcome is odd.

• A2 – second roll outcome is odd.

• A3 – total score is odd.

We have

P(A1) = P(A2) = P(A1|A3) = P(A2|A3) =
1

2

– can compute this by identifying all 36 pairs of scores, which
are all equally likely, and counting the relevant sample out-
comes.

Thus A1,A2 and A3 are pairwise independent.
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Independence for multiple events (cont.)

Example (Two dice)

However,
P(A1 ∩ A2 ∩ A3) = 0

and
P(A1|A2 ∩ A3) = 0

etc.
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Independence for multiple events (cont.)

Mutual Independence: Events A1,A2, . . . ,AK are mutually
independent if

P

( ⋂
k ∈ I

Ak

)
=
∏

k ∈ I
P(Ak )

for all subsets I of {1,2, . . . ,K}.

For example, if K = 3, we require that

P(A1 ∩ A2) = P(A1)P(A2)

P(A1 ∩ A3) = P(A1)P(A3)

P(A2 ∩ A3) = P(A2)P(A3)

and P(A1 ∩ A2 ∩ A3) = P(A1)P(A2)P(A3).
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Conditional independence

Conditional independence: Consider events A1,A2 and B
in sample space S , with P(B) > 0. Then A1 and A2 are condi-
tionally independent given B if

P(A1|A2 ∩ B) = P(A1|B)

or equivalently

P(A1 ∩ A2|B) = P(A1|B)P(A2|B).
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General Multiplication Rule

For events A1,A2, . . . ,AK , we have the general result that

P(A1 ∩ A2 ∩ · · · ∩ AK ) = P(A1)P(A2|A1)P(A3|A1 ∩ A2) . . .

. . .P(AK |A1 ∩ A2 ∩ · · · ∩ AK−1)

This follows by the recursive calculation

P(A1 ∩ A2 ∩ · · · ∩ AK ) = P(A1)P(A2 ∩ · · · ∩ AK |A1)

= P(A1)P(A2|A1)

P(A3 ∩ · · · ∩ AK |A1 ∩ A2)

= . . .

Also known as the Chain Rule for probabilities.
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General Multiplication Rule (cont.)

If the events are mutually independent, then we have that

P(A1 ∩ A2 ∩ · · · ∩ AK ) =

K∏
k=1

P(Ak )
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Probability Trees

Probability trees are simple ways to display joint probabilities
of multiple events. They comprise

• Junctions: correspond to the multiple events

• Branches: correspond to the sequence of (conditional)
choices of events, given the previous choices.

We multiply along the branches to get the joint probabilities.
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Probability Trees (cont.)

A ′
1

A ′
2 : P(A ′

1 ∩ A ′
2) =

4
7 · 4

9

P(A ′
2 |A ′

1 )

4
9

A2 : P(A ′
1 ∩ A2) =

4
7 · 5

9
P(A2|A

′
1
)

5
9

P(A ′
1 )

4
7

A1

A ′
2 : P(A1 ∩ A ′

2) =
3
7 · 3

9

P(A ′
2 |A1 )

3
9

A2 : P(A1 ∩ A2) =
3
7 · 6

9
P(A2|A1)

6
9

P(
A 1
)

3
7

1.9 The basics of probability | General Multiplication Rule 214



Probability Trees (cont.)

Note that each junction has two possible branches coming
from it, corresponding to

Ak and A ′
k

respectively.

Such a tree extends to as many events as we need.
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The Theorem of Total Probability

For two events A and B in sample space S , we have the par-
tition of A as

A = (A ∩ B) ∪ (A ∩ B ′).
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The Theorem of Total Probability (cont.)

SS

A ∩ BA ∩ B ′ A ′ ∩ B

A B
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The Theorem of Total Probability (cont.)

Therefore

P(A) = P(A ∩ B) + P(A ∩ B ′)

and using the multiplication rule, we may rewrite this as

P(A) = P(A |B)P(B) + P(A |B ′)P(B ′).
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The Theorem of Total Probability (cont.)

B ′

A ′ : P(B ′ ∩ A ′)

P(A ′|B ′
)

A : P(B ′ ∩ A)
P(A

|B
′ )

P(B ′
)

B

A ′ : P(B ∩ A ′)

P(A ′|B)

A : P(B ∩ A)
P(A

|B)

P(
B)
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The Theorem of Total Probability (cont.)

That is, there are two ways to get to A :

• via B ;

• via B ′.

To compute P(A) we add up all the probabilities on paths that
end up at A .

Note that B and B ′ together form a partition of S .
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The Theorem of Total Probability (cont.)

Now suppose we have a partition into n subsets

B1,B2, . . . ,Bn .

Again, these events also partition A .
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The Theorem of Total Probability (cont.)

S

B5

B3

B6

B1

B2

B4

B7

B8
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The Theorem of Total Probability (cont.)

S

A

B5

B3

B6

B1

B2

B4

B7

B8
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The Theorem of Total Probability (cont.)

That is, we have that

A = (A ∩ B1) ∪ (A ∩ B2) ∪ · · · ∪ (A ∩ Bn)

and

P(A) = P(A ∩ B1) + P(A ∩ B2) + · · ·+ P(A ∩ Bn).
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The Theorem of Total Probability (cont.)

Using the definition of conditional probability, we therefore
have

P(A) = P(A |B1)P(B1) + P(A |B2)P(B2) + · · ·+ P(A |Bn)P(Bn).

that is

P(A) =

n∑
i=1

P(A |Bi )P(Bi ).

This result is known as the Theorem of Total Probability.
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The Theorem of Total Probability (cont.)

Notes
• The formula assumes that P(Bi ) > 0 for i = 1, . . . ,n.

• It might be that

P(A ∩ Bi ) = P(A |Bi ) = 0.

for some i .

• This formula is a mathematical encapsulation of the prob-
ability tree when it is used to compute P(A).
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The Theorem of Total Probability (cont.)

Example (Three bags)

Suppose that an experiment involves selecting a ball from
one of three bags. Let

• Bag 1: 4 red and 4 white balls.

• Bag 2: 1 red and 10 white balls.

• Bag 3: 7 red and 11 white balls.

A bag is selected (with all bags equally likely), and then a
ball is selected from that bag (with all balls equally likely).

What is the probability that the ball selected is red ?
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The Theorem of Total Probability (cont.)

Example (Three bags)

Let

• S : all possible selections of balls.

• B1: bag 1 selected.

• B2: bag 2 selected.

• B2: bag 3 selected.

• A : ball selected is red.
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The Theorem of Total Probability (cont.)

Example (Three bags)

We have that

P(A) = P(A ∩ B1) + P(A ∩ B2) + P(A ∩ B3)

= P(A |B1)P(B1) + P(A |B2)P(B2) + P(A |B3)P(B3)

=
4

8
× 1

3
+

1

11
× 1

3
+

7

18
× 1

3

=
97

297
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The Theorem of Total Probability (cont.)

Example (Three bags)

Note that this is not equal to

Total number of red balls

Total number of balls

that is
4 + 1 + 7

8 + 11 + 18
=

12

37

as the red balls are not equally likely to be selected – this is
only true conditional on the bag selection.
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Bayes Theorem

The second great theorem of probability is Bayes Theorem.

• Named after Reverend Thomas Bayes (1701 – 1761)

https://en.wikipedia.org/wiki/Thomas_Bayes

• Could be written Bayes’s Theorem.

• It is not really a theorem.
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Bayes Theorem (cont.)

Bayes Theorem: For two events A and B in sample space S ,
with P(A) > 0 and P(B) > 0,

P(B |A) =
P(A |B)P(B)

P(A)
.

If 0 < P(B) < 1, we may write by the Theorem of Total Prob-
ability.

P(B |A) =
P(A |B)P(B)

P(A |B)P(B) + P(A |B ′)P(B ′)
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Bayes Theorem (cont.)

“Proof”: By the definition of conditional probability

P(A |B)P(B) = P(A ∩ B) = P(B |A)P(A).

Then as P(A) > 0 and P(B) > 0 we can cross multiply and
write

P(B |A) =
P(A |B)P(B)

P(A)
.

If 0 < P(B) < 1, then we can legitimately write

P(A) = P(A |B)P(B) + P(A |B ′)P(B ′)

and substitute this expression in the denominator.
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Bayes Theorem (cont.)

General version: Suppose that B1,B2, . . . ,Bn form a parti-
tion of S , with P(Bj ) > 0 for j = 1, . . . ,n. Suppose that A is
an event in S with P(A) > 0.

Then for i = 1, . . . ,n

P(Bi |A) =
P(A |Bi )P(Bi )

P(A)
=

P(A |Bi )P(Bi )
n∑

j=1
P(A |Bj )P(Bj )

.
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Bayes Theorem (cont.)

Probability tree interpretation: Given that we end up at A ,
what is the probability that we got there via branch Bi ?
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Bayes Theorem (cont.)

Example (Three bags)

Suppose that an experiment involves selecting a ball from
one of three bags. Let

• Bag 1: 4 red and 4 white balls.

• Bag 2: 1 red and 10 white balls.

• Bag 3: 7 red and 11 white balls.

A bag is selected (with all bags equally likely), and then a
ball is selected from that bag (with all balls equally likely).

The ball selected is red. What is the probability it came from
Bag 2 ?
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Bayes Theorem (cont.)

Example (Three bags)

Let

• S : all possible selections of balls.

• B1: bag 1 selected.

• B2: bag 2 selected.

• B2: bag 3 selected.

• A : ball selected is red.
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Bayes Theorem (cont.)

Example (Three bags)

Recall that

P(A) = P(A ∩ B1) + P(A ∩ B2) + P(A ∩ B3)

= P(A |B1)P(B1) + P(A |B2)P(B2) + P(A |B3)P(B3)

=
4

8
× 1

3
+

1

11
× 1

3
+

7

18
× 1

3

=
97

297
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Bayes Theorem (cont.)

Example (Three bags)

Then

P(B2|A) =
P(A |B2)P(B2)

P(A |B1)P(B1) + P(A |B2)P(B2) + P(A |B3)P(B3)

=
1
11 × 1

3
4
8 × 1

3 + 1
11 × 1

3 + 7
18 × 1

3

=
1/33

97/297

=
9

97
≏ 0.09278.
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Bayes Theorem (cont.)

Example (Three bags)

We can also compute that

P(B1|A) =
4/24

97/297
=

297

582
≏ 0.51031

and

P(B3|A) =
21/54

97/297
=

1746

2079
≏ 0.39691.
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Bayes Theorem (cont.)

Note
We have that

P(B1|A) + P(B2|A) + P(B3|A) = 1

but note that

P(A |B1) + P(A |B2) + P(A |B3) ̸= 1.

In the first formula, we are conditioning on A everywhere; in
the second, we have different conditioning sets.
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Using Bayes Theorem

Bayes theorem is often used to make probability statements
concerning an event B that has not been observed, given an
event A that has been observed.
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Using Bayes Theorem (cont.)

Example (Medical screening)

A health authority tests individuals from a population to as-
sess whether they are sufferers from some disease. The
screening test is not perfect as it produces

• False positives: declares someone to be a sufferer, when
in reality they are a non-sufferer.

• False negatives: declares someone to be a non-sufferer,
when in reality they are a sufferer.
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Using Bayes Theorem (cont.)

Example (Medical screening)

Suppose that we denote by

• A – Screening test is positive;

• B – Person is actually a sufferer.
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Using Bayes Theorem (cont.)

Example (Medical screening)

Suppose that

• P(B) = p;

• P(A |B) = 1 − α (true positive rate);

• P(A |B ′) = β (false positive rate).

for probabilities p, α, β.
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Using Bayes Theorem (cont.)

Example (Medical screening)

We have for the rate of positive tests

P(A) = P(A |B)P(B) + P(A |B ′)P(B ′) = (1 − α)p + β(1 − p)

by the Theorem of Total Probability, and by Bayes theorem

P(B |A) =
P(A |B)P(B)

P(A |B)P(B) + P(A |B ′)P(B ′)

=
(1 − α)p

(1 − α)p + β(1 − p)
.
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Using Bayes Theorem (cont.)

Example (Medical screening)

Similarly, for the false negative rate, we have

P(B |A ′) =
P(A ′|B)P(B)

P(A ′|B)P(B) + P(A ′|B ′)P(B ′)

=
αp

αp + (1 − β)(1 − p)
.
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Using Bayes Theorem (cont.)

Example (Medical screening)

We have

P(A |B) = (1 − α) P(B |A) = (1 − α)
p

(1 − α)p + β(1 − p)

and these two values are potentially very different.
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Using Bayes Theorem (cont.)

Example (Medical screening)

That is, in general,

P(“Spots”|“Measles”) ̸= P(“Measles”|“Spots”)
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Using Bayes Theorem (cont.)

Note
This phenomenon is sometimes known as the Prosecutor’s
Fallacy:

P(“Evidence”|“Guilt”) ̸= P(“Guilt”|“Evidence”)
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Bayes Theorem and Odds

Recall that the odds on event B is defined by

P(B)

P(B ′)
=

P(B)

1 − P(B)

The conditional odds given event A (with P(A) > 0) is defined
by

P(B |A)

P(B ′|A)
=

P(B |A)

1 − P(B |A)
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Bayes Theorem and Odds (cont.)

We have that
P(B |A)

P(B ′|A)
=

P(A |B)

P(A |B ′)

P(B)

P(B ′)

that is, in light of knowledge that B occurs, the odds change
by a factor

P(A |B)

P(A |B ′)
.
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Bayes Theorem with multiple events

If A1 and A2 are two events in a sample space S so that

P(A1 ∩ A2) > 0

and there is a partition of S via B1, . . . ,Bn , with P(Bi ) > 0,
then

P(Bi |A1 ∩ A2) =
P(A1 ∩ A2|Bi )P(Bi )

n∑
j=1

P(A1 ∩ A2|Bj )P(Bj )

• we use the previous version of Bayes Theorem with

A ≡ A1 ∩ A2.

• this extends to conditioning events A1,A2, . . . ,An .
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Bayes Theorem with multiple events (cont.)

Note that we have by earlier results

P(A1 ∩ A2|Bi ) = P(A1|Bi )P(A2|A1 ∩ Bi )

that is, the chain rule applies to conditional probabilities also.
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