
MATH 323: PROBABILITY

CONTINUOUS DISTRIBUTIONS AND THE NORMAL DISTRIBUTION

For a continuous random variable Y , consider the cdf F (y) = P (Y ≤ y), for y ∈ R where F (y) is a
continuous function. We assume that F (y) can be expressed

F (y) =

∫ y

−∞
f(t) dt

for a function f(y) called the pdf (probability density function). The fundamental law of calculus tells
us that wherever F (y) is differentiable

f(y) =
dF (t)

dt

∣∣∣∣
t=y

or, less formally, f(y) =
dF (y)

dy
.

• The pdf f(y) describes how the probability is distributed across the real line; we have the funda-
mental properties that for all y

f(y) ≥ 0 and
∫ ∞

−∞
f(y) dy = 1.

but we could have f(y) = 0 for some y.

• Notice also that f(y) is NOT constrained to be less than or equal to 1.

• The pdf f(y) does not specify probabilities directly; that is, f(y) does not represent P (Y = y),
instead it captures the slope of F (.) at y.

Suppose now that we have a continuous random variable Y with pdf fY , and we consider a linear
transformation from Y to X , where

X = aY + b.

where a > 0 and b are constants. We aim to compute the pdf fX of X . To do this, notice that for any
number x ∈ R we have

FX(x) = P (X ≤ x) = P (aY + b ≤ x) = P

(
Y ≤ x− b

a

)
= FY ((x− b)/a)

so we have cdf of X in terms of the cdf of Y . Finally we can compute fX(x)

fX(x) =
dFX(x)

dx
=

d

dx

{
FY

(
x− b

a

)}
=

1

a
fY

(
x− b

a

)
by the chain rule for differentiation.

Notice that the identity FX(x) = FY ((x− b)/a) can be written in integral form∫ x

−∞
fX(s) ds =

∫ (x−b)/a

−∞
fY (t) dt

but changing variables t −→ s = at+ b in the second integral reveals that∫ x

−∞
fX(s) ds =

∫ x

−∞
fY ((s− b)/a)

dt

ds
ds =

∫ x

−∞
fY ((s− b)/a)

1

a
ds

This confirms our earlier result: by equating the integrands, we have

fX(s) = fY ((s− b)/a)
1

a
.

for s ∈ R.



The Normal case: For the Normal (or Gaussian) distribution, we have the pdf

f(y) =
1

σ
√
2π

exp

{
− 1

2σ2
(y − µ)2

}
specified using parameters µ ∈ R and σ ∈ R+. Notice that this function achieves its maximum value
at y = µ, and

f(µ) =
1

σ
√
2π

=
0.3989423

σ

Hence it is clear that f(y) can exceed 1 if σ is chosen small enough. For the expectation, we have

E[Y ] =

∫ ∞

−∞
yf(y) dy =

∫ ∞

−∞
y

1

σ
√
2π

exp

{
− 1

2σ2
(y − µ)2

}
dy

=

∫ ∞

−∞
y

1

σ
√
2π

exp

{
− 1

2σ2
(y − µ)2

}
dy

=

∫ ∞

−∞
(µ+ t)

1

σ
√
2π

exp

{
− 1

2σ2
(t+ µ− µ)2

}
dt (setting t = y − µ)

= µ

∫ ∞

−∞

1

σ
√
2π

exp

{
− t2

2σ2

}
dt+

∫ ∞

−∞
t

1

σ
√
2π

exp

{
− t2

2σ2

}
dt.

However, for the first integral ∫ ∞

−∞

1

σ
√
2π

exp

{
− t2

2σ2

}
dt = 1

as the integrand is merely the Normal pdf with µ = 0. Similarly, for the second integral, integrating
directly ∫ ∞

−∞
t

1

σ
√
2π

exp

{
− t2

2σ2

}
dt =

1

σ
√
2π

[
σ2 exp

{
− t2

2σ2

}]∞
−∞

= 0,

a result we can spot by noting that the integrand is an odd function around zero (i.e. g(y) is an odd
function around zero if g(−y) = −g(y)). Therefore E[Y ] = µ.

Now suppose that Z = (Y − µ)/σ is a linear transformed version of Y

Z =
Y − µ

σ
=

1

σ
Y − µ

σ

so that Y = σZ + µ. Following the general method calculation from page 1, we have that the cdf of Z
is given for each fixed z ∈ R by

FZ(z) = P (Z ≤ z) = P

(
Y − µ

σ
≤ z

)
= P (Y ≤ σz + µ) = FY (σz + µ).

Differentiating both sides with respect to z, we have that

fZ(z) = σfY (σz + µ) = σ
1

σ
√
2π

exp

{
− 1

2σ2
(σz + µ− µ)2

}
=

1√
2π

exp

{
−z2

2

}
but this is identical to the Normal pdf with parameters µ = 0 and σ = 1. Notice that the identity
FZ(z) = FY (σz + µ) can be written in integral form as∫ z

−∞
fZ(s) ds =

∫ σz+µ

−∞
fY (t) dt =

∫ z

−∞
fY (σs+ µ)

dt

ds
ds =

∫ z

−∞
σfY (σs+ µ) ds

by changing variables t = σs+ µ in the second integral. We equate the integrands to conclude

fZ(s) = σfY (σs+ µ)

for s ∈ R as before.


