
MATH 323: PROBABILITY

SOME COMBINATORIAL CALCULATIONS

THE HYPERGEOMETRIC FORMULA

There are two alternate forms for the probability that results from a ‘hypergeometric’ sampling exper-
iment; if a finite population of size N comprises R Type I objects and N − R Type II objects, and a
sample of size n ≤ N is obtained from the population, then the probability that the sample contains r
Type I objects and n − r Type II objects is either expressed
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These two calculations originate from different methods of viewing the sampling mechanism:

• Method A: Consider choosing items in the population to label Type I and Type II, broken down
by whether they are IN the sample or OUT of the sample. The denominator is the total number
of ways of choosing R from N items to label Type I. The numerator is the number of ways of
choosing r from n items IN the sample to be Type I items, multiplied by the number of ways of
choosing the R − r from N − n items OUT of the sample to be Type I items.

• Method B: Consider items to be IN the sample, broken down by Type. The denominator is
the total number of ways of choosing n items from N to be IN the sample. The numerator is the
number of ways of choosing r Type I items from R to be IN the sample, multiplied by the number
of ways of choosing the n − r Type II items from N − R to be IN the sample.

THE BIRTHDAY PROBLEM

The Birthday Problem can be stated as follows: in a class of N pupils, what is the probability that no two
pupils share the same birthday ? Assuming that birthdays are uniformly spread across the 365 days of
the year, then the total number of possible ways of selecting N birthdays is, using the multiplication
principle,

nS = 365 × 365 × 365 × · · · × 365 = 365N .

For those birthdays to all be different, we must sample birthdays from the set of days without replace-
ment N times, and the number of ways of doing that is

nA = 365 × 364 × 363 × · · · × (365 − N + 1) = P 365

N

P (A) =
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=
365 × 364 × ... × (365 − N + 1)
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=
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1

365N
=

P 365

N
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We can equivalently write this as

P (A) =
365

365
×

364

365
×
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365
× · · · ×
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= 1 ×
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×
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This probability decreases remarkably rapidly:

N 5 10 15 20 25 30 35 40 450 50
Prob. 0.9729 0.8831 0.7471 0.5886 0.4313 0.2937 0.1856 0.1088 0.059 0.0296

Thus, before N reaches 25, the probability that all the birthdays are distinct drops below 0.5 (see Figure
1).
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Figure 1: The probability that all N birthdays selected are distinct for N = 1, . . . , 50

OCCUPANCY PROBLEMS

Consider the combinatorial problem of allocating r items (objects, balls) to n boxes (cells): for example,
can we enumerate the number of ways of allocating 6 items to 4 boxes.

Figure 2: Allocating 6 balls to 4 boxes

To count the possible number of allocations, we consider the cases of DISTINGUISHABLE and INDIS-
TINGUISHABLE items separately.

• DISTINGUISHABLE ITEMS

ITEM 1 2 3 4 5 6
ALLOCATION 1 BOX LABEL SEQUENCE 2 4 4 1 4 1
ALLOCATION 2 BOX LABEL SEQUENCE 1 2 4 1 4 4

and, essentially, we have selected r box labels from n with replacement, where the box labels are
ordered. Hence the number of possible allocations is nr, by a previous result using the multipli-
cation theorem.
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Figure 3: Allocating 6 distinguishable balls to 4 boxes: Allocation 1
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Figure 4: Allocating 6 distinguishable balls to 4 boxes: Allocation 2

If we require
r1 items in BOX 1, r2 items in BOX 2, . . . , rn items in BOX n

then we must partition the box label sequence to contain r1 1s, r2 2s,...,rn ns. Hence the number
of possible allocations is given by the partition formula

r!

r1!r2!...rn!
where

n
∑

i=1

ri = r

• INDISTINGUISHABLE ITEMS

If the items are indistinguishable, that is, here completely identical, and we wish to consider
distinct allocation patterns, we must consider unordered arrangements; the two allocations in
Figure 3 and Figure 4 are regarded as identical, and identical to the allocation in Figure 2, as
the items are not labelled. For example, consider forming the allocation pattern by dropping the
items into the boxes in sequence:

ITEM 1 2 3 4 5 6
SEQUENCE (1) 2 1 2 4 1 4
SEQUENCE (2) 3 2 4 1 3 3
SEQUENCE (3) 2 4 4 1 1 2

Then, we have that the patterns obtained by sequences (1) and (3) are both of the form

Figure 5: Allocation patterns for sequences (1) and (3)

which is distinct from the pattern for (1) and (3).
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Figure 6: Allocation pattern for sequence (2)

To enumerate the number of possible allocation patterns, we utilize a binary sequence represen-
tation. We code an allocation pattern by reading from left to right, and writing a 1 for a box edge,
and 0 for an item, so that the pattern in Figure 5 is coded

1 0 0 1 0 0 1 1 0 0 1

and the pattern in Figure 6 is coded

1 0 1 0 1 0 0 0 1 0 1

The number of possible allocation patterns is equal to the number of binary sequences that cor-
respond to them, and these sequences are composed as follows; they contain n + 1 1s (for the
box edges) and r 0s (for the items), but also they begin with a 1, and end with a 1. The num-
ber of sequences like this is therefore equal to the number of ways of arranging a sequence of
(n + 1) + r − 2 = n + r − 1 binary digits containing precisely n − 1 1s and r 0s. This number is

(

n + r − 1

n − 1

)

=

(

n + r − 1

r

)

from combination/binomial coefficient definition, and this is therefore the total number of dis-
tinct allocation patterns.

EXAMPLE 1 If r identical dice are rolled, with n = 6 possible scores for each die, the total number of
distinct score patterns is

(

n + r − 1

r

)

=

(

6 + r − 1

r

)

=

(

5 + r

r

)

for example, with r = 4, we could have

DICE NUMBER SCORE PATTERN
1 2 3 4 1 2 3 4 5 6
6 1 6 2 1 1 0 0 0 2
3 2 3 4 0 1 2 1 0 0
6 2 1 6 1 1 0 0 0 2

and the number of distinct patterns is
(

9

4

)

= 126.

EXAMPLE 2 Allocate n items to n boxes. Evaluate the probability of event A that no box is empty.

SOLUTION: Probability is

P(A) =
nA

nS

=
n × (n − 1) × (n − 2) × ... × 3 × 2 × 1

n × n × n × ... × n × n × n
=

n!

nn

as we allocate by sampling n boxes with and without replacement for denominator and numerator
respectively (each of which are a product of n terms).
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EXAMPLE 3 Allocate r items to n boxes. Evaluate the probability of event A that no box is contains
more than one item.

SOLUTION: Probability is

P(A) =
nA

nS

=
n × (n − 1) × (n − 2) × ... × (n − r + 1)

n × n × n × ... × n
=

n!/(n − r)!

nr
=

P n
r

nr

as we allocate by sampling r boxes with and without replacement for denominator and numerator
respectively (each of which are a product of r terms).

NOTE: we can re-write P(A) using a conditional probability/chain rule argument corresponding to a
sequence of selection probabilities:

P(A) = 1 ×

(

1 −
1

n

)

×

(

1 −
2

n

)

× ...

(

1 −
r − 1

n

)

where each term is the conditional probability of choosing a currently empty box, given the allocations
at that instant.

Note: The Birthday Problem can be viewed as an Occupancy Problem: in a group of r people, what is
the probability that no two people have the same birthday ? Assuming that all of the n = 365 days in
the year are equally likely to be a birthday, then we identify in EXAMPLE 2 the “boxes” as days, and
“items” as people, and evaluate the probability as

P n
r

nr
=

P 365
r

365r
.

EXAMPLE 4 Allocate r items to n boxes. Evaluate the probability of event A that box 1 contains
precisely k items.

SOLUTION: For 0 ≤ k ≤ r, probability is

P(A) =
nA

nS

=

(

r

k

)

(n − 1)r−k

nr
=

(

r

k

)

(

1

n

)k (

1 −
1

n

)r−k

For the numerator, we first select the k items from r (without replacement) to place in box 1, and then
select (r − k) boxes from the remaining (n − 1) (with replacement) to house the remaining (r − k)
items. For the denominator, we merely select r boxes from n with replacement.

POKER HANDS

To compute the configuration of hands in poker, where five cards are dealt from a standard deck of 52
cards. In the probability, the denominator is always

nS =

(

52

5

)

.

For the numerator, using generic notation let x, y be the “scoring" cards and a, b, c be the remaining
ones. In calculating the probabilities, list the scoring denominations in descending order, then for each
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in turn multiply the number of remaining ways of choosing the denomination by the number of ways
of choosing the suits for that denomination. For example, for Full House (xxxyy), you get

(

13

1

)(

4

3

)

×

(

12

1

)(

4

2

)

In the case of ties in the list of scoring denominations (i.e. two x and two y in the hand), remember that
you have to choose two different denominations so that for Two Pairs (xxyya) the number of ways of
choosing the scoring cards is

(

13

2

)(

4

2

)(

4

2

)

Hand Configuration nA Prob.

ONE PAIR xxabc

(

13

1

)(

4

2

)

×

(

12

3

)(

4

1

)(

4

1

)(

4

1

)

0.42

TWO PAIRS xxyya

(

13

2

)(

4

2

)(

4

2

)

×

(

11

1

)(

4

1

)

0.048

THREE OF A KIND xxxab

(

13

1

)(

4

3

)

×

(

12

2

)(

4

1

)(

4

1

)

0.021

STRAIGHT Run of five cards

(

10

1

)(

4

1

)5

−

(

10

1

)(

4

1

)

0.0039

FLUSH Five cards in same suit

(

13

5

)(

4

1

)

−

(

10

1

)(

4

1

)

0.0020

FULL HOUSE xxxyy

(

13

1

)(

4

3

)

×

(

12

1

)(

4

2

)

0.0014

FOUR OF A KIND xxxxa

(

13

1

)(

4

4

)

×

(

12

1

)(

4

1

)

0.00024

STRAIGHT FLUSH Run of five cards in same suit 10

(

4

1

)

−

(

4

1

)

0.000014

ROYAL FLUSH AKQJ10 in any suit 1

(

4

1

)

0.0000015

Table 1: Probabilities for different poker hands. For STRAIGHT and FLUSH, we must remember to
subtract the STRAIGHT FLUSHes (which are counted separately); similarly, for STRAIGHT FLUSH,
must remember to subtract ROYAL FLUSHes.
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