
MATH 323 - EXERCISES 8- SOLUTIONS

1. From first principles

• U1 = 2Y − 1, so U1 = [−1, 1]

FU1(u) = P (U1 ≤ u) = P (2Y − 1 ≤ u) = P (Y ≤ (1 + u)/2) = FY ((1 + u)/2)

so
fU1(u) =

1

2
fY ((1 + u)/2) = (1− u)/2 − 1 ≤ u ≤ 1

and zero otherwise.

• U2 = 1− 2Y , so U2 = [−1, 1]

FU2(u) = P (U2 ≤ u) = P (1− 2Y ≤ u) = P (Y ≥ (1− u)/2) = 1− FY ((1− u)/2)

so
fU2(u) =

1

2
fY ((1− u)/2) = (1 + u)/2 − 1 ≤ u ≤ 1

and zero otherwise.

• U3 = Y 2, so U3 = [0, 1]

FU3(u) = P (U3 ≤ u) = P (Y 2 ≤ u) = P (−
√
u ≤ Y ≤

√
u) = FY (

√
u)− FY (−

√
u)

so

fU3(u) =
1

2
√
u
(fY (

√
u) + fY (−

√
u)) =

1

2
√
u
fY (

√
u ) = (1−

√
u)/

√
u 0 ≤ u ≤ 1

and zero otherwise, as fY (y) = 0 for y < 0.

We could also use the general transformation formula for the first two calculations, as the trans-
formations are 1-1

g(t) = 2t− 1 ⇐⇒ g−1(t) = (1 + t)/2 g(t) = 1− 2t ⇐⇒ g−1(t) = (1− t)/2

then use

fU (u) = fY (g
−1(u))

∣∣∣∣ ddu {
g−1(u)

}∣∣∣∣ .
2. Using the general result for expectations of functions with g(Y ) = 2

(
1− e−2Y

)
, with λ = 1/β,

E[g(Y )] =

∫ ∞

−∞
g(y)fY (y) dy =

∫ ∞

0
2
(
1− e−2y

)
λe−λy dy

= 2λ

∫ ∞

0

(
e−λy − e−(2+λ)y

)
dy

= 2λ

(
1

λ
− 1

2 + λ

)
=

4

2 + λ
=

1

2
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3. fY (y) = 1/2, for 1 ≤ y ≤ 1 and zero otherwise. From first principles, U = |Y | so U = [0, 1]

FU (u) = P (U ≤ u) = P (|Y | ≤ u) = P (−u ≤ Y ≤ u) = FY (y)− FY (−y)

so
fU (u) = fY (u) + fY (−u) = 1 0 ≤ u ≤ 1

and zero otherwise. Also Z = Y 2, so Z = [0, 1], and

FZ(z) = P (Z ≤ z) = P (X2 ≤ z) = P (−
√
z ≤ X ≤

√
z) = FX(

√
z)− FX(−

√
z)

so therefore
fZ(z) =

1

2
√
z
(fX(

√
z) + fX(−

√
z)) =

1

2
√
z

0 ≤ z ≤ 1

and zero otherwise.

4. From first principles, if Y has cdf FY , then as Y is continuous, FY is 1-1 and monotone increasing.
If U = FY (Y ) then U = [0, 1]

FU (u) = P (U ≤ u) = P (FY (Y ) ≤ u) = P [Y ≤ F−1
Y (u)) = FY (F

−1
Y (u)) = u 0 ≤ u ≤ 1.

so U ∼ Uniform(0, 1). Next Z = − lnFX(X) = − lnU , then Z = R+, so

FZ(z) = P (Z ≤ z) = P (− lnU ≤ z) = P (U ≥ e−z) = 1− FU (e
−z) = 1− e−z z > 0

so Y ∼ Exponential(1).

5. From first principles, if Y has a Weibull distribution, then U = Y α, so U = R+

FU (u) = P (U ≤ y) = P (Y α ≤ u) = P (Y ≤ u1/α) = FY (u
1/α) = 1− e−βu u > 0

so U ∼ Exponential(1/β).

6. Y ∼ Normal(0, 1), and thus if Φ and ϕ are the standard normal cdf and pdf respectively, we have
immediately that X = Y 2 implies X = R+.

(a) We have

FX(x) = P [X ≤ x) = P [ Y 2 ≤ x ] = P (−
√
x ≤ Y ≤

√
x ] = Φ(

√
x)− Φ(−

√
x).

(b) By differentiation, we have

fX(x) =
1

2
√
x
(ϕ(

√
x) + ϕ(

√
x)) =

(
1

2π

)1/2

x−1/2 e−x/2 0 ≤ x ≤ ∞

(c) By inspection, we have that X ∼ Gamma (1/2, 2) ≡ χ2
1

7. Convolution: We may use the convolution result directly based on the result from Q6 (b). If
X1 = Y 2

1 and X2 = Y 2
2 , then we have that X1 ∼ Gamma(1/2, 2) and X2 ∼ Gamma(1/2, 2) with

X1 and X2 independent. Then by the convolution result

fV (v) =

∫ v

0
fX1(x1)fX2(v − x1) dx1
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as both X1 and X2 are non-negative. We have from Q6(b)

fV (v) =

∫ v

0

(
1

2π

)1/2

x
−1/2
1 e−x1/2

(
1

2π

)1/2

(v − x1)
−1/2 e−(v−x1)/2 dx1

=
1

2π
e−v/2

∫ v

0
x
−1/2
1 (v − x1)

−1/2 dx1

=
1

2π
e−v/2

∫ 1

0
t−1/2(1− t)−1/2 dt (t = x1/v).

The integral does not depend on v, so the pdf is proportional to e−v/2 for v > 0. Therefore we can
conclude that V ∼ Exponential(2). Note that we have from this result that for the Beta function

B(1/2, 1/2) =
Γ(1/2)Γ(1/2)

Γ(1)
=

∫ 1

0
t−1/2(1− t)−1/2 = π

and as Γ(1) = 1, we deduce that Γ(1/2) =
√
π

From first principles: By using a joint pdf approach, we could also write

FV (v) = P (V ≤ v) = P
(
Y 2
1 + Y 2

2 ≤ v
)
=

∫∫
Av

fY1(y1)fY2(y2) dy1dy2

where Av =
{
(y1, y2) : y21 + y22 ≤ v

}
that is, the integral over the region Av of the joint density

function of Y1 and Y2. Now, should reparameterize into polar coordinates in the double integral;
let y1 = r cos θ and y2 = r sin θ. Then

FV (v) =

∫∫
Av

fY1(y1)fY2(y2) dy1dy2 =

∫∫
Av

1

2π
e−(y21+y22)/2 dy1dy2

=

∫ √
v

r=0

∫ 2π

0

1

2π
e−r2/2r dθdr

=

∫ √
v

r=0
re−r2/2 dr = 1− e−v/2 z > 0

so V ∼ Exponential(2) ≡ χ2
2.

Using mgfs: If Y ∼ Normal(0, 1) then X = Y 2 ∼ Gamma(1/2, 2) and hence

mX(t) =

∫ ∞

0
ety

(
1

2π

)1/2

y−1/2 e−y/2 dy =

(
1

2π

)1/2 ∫ ∞

0
y−1/2 e−y(2−t)/2 dy =

(
1

2π

)1/2 (2π)1/2

(2− t)1/2

for 2 > t, as the integrand is proportional to a Gamma(1/2, 2/(2− t)) pdf. Hence

mX(t) =

(
1

1− 2t

)1/2

Now, let U1 = X2
1 and U2 = X2

2 , so that U1 and U2 are independent Gamma(1/2, 2) variables.
Now we have from a key mgf result

V = U1 + U2 =⇒ mV (t) = mU1(t)mU2(t) =

(
1

1− 2t

)1/2( 1

2− t

)1/2

=

(
1

1− 2t

)
and hence, noting that this is the mgf of a Gamma random variable with parameters 1 and 2, we
conclude that

V ∼ Gamma (1, 2) = Gamma

(
2

2
, 2

)
≡ χ2

2
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