MATH 323 - EXERCISES 6- SOLUTIONS

1. We have -
Gt)=E[t"] = tp(y)
y=0

so therefore differentiating the power series, we have that
G =>"yly—1)...(y—k+ 1)t Fp(y)
y=k

and hence G(¥)(0) = k!p(k). Hence we can recover the function p(y) by

ply) = y=0,1,2,....

Note that from this result, we have that

G -3 G(y).(o) i

= 7

This is a Taylor series expansion of G(t) at ¢t = 0 (this is called a Maclaurin series): it is a polyno-
mial in ¢. Now suppose G1(t) = Ga(t) for all |t| < 1. Consider G (t) — G2(t); we have that

Gi(t) — Ga(t) =0 forallt, -1 <t < 1.

We have from the definition that

i o0 @y _ W)
Gil) = Galt) = > (r(w) ~ palwyer = 3 A2 O
y=0 y=0 ’

Thus we must have that p;(y) = p2(y) for all y: this follows by noting that, using the same
method

k
S G0 ~ Ga0)} g = o1 (8) — pa(k) = 0
fork=0,1,2,....

2. By using the formulae given in lectures:

(a
(b
(c
(d
(e
(f

Binomial(1,1/2).

Discrete Uniform on {1, 2,3}, thatis p(y) = 1/3 for y = 1, 2, 3, zero otherwise.
Binomial(3,1/3)

p(0) =2/3,p(1) = 1/3, zero otherwise.

Poisson(2)

Discrete Uniform on {0,1,2,..., N}, thatis

~ ~— ~— ~— — ~—

ply) =c= —— y=0,1,2,..., N,

and zero otherwise.
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3. We have
Gt)=1—(1—t3)12

For —1 <t < 1, as in question 1, the function has the Maclaurin expansion

y=0

Certainly G(1) = 1: by the definition this is a fundamental requirement of a pgf. Therefore

y=0

and it only remains to show that G(*)(0) > 0 for all k as then we have that G(t) is the pgf for

p(y) = y=0,1,2....
Now, we have using the Maclaurin series expansion, or the binomial theorem for the exponent
1/2, that the required series expansion is

(1— t2)1/2 -1+ 1(_252) + (%) (_%) (—t2)2 + (%) (_5) (_%) (—t2)3 4o

2 2! 3!

1 1 3
=12 -t =5 ...

27 8 24

that is, the jth coefficient is

Therefore 1 ) 5
2 4 6
i - ¢t e
G(t) 275 + 8t + Y =+
and as all the coefficients are positive, we must have that G(¢) is a valid pgf.

If you have not encountered the binomial expansion for fractional exponents, you may proceed
as follows: we want the series expansion of (1 — ¢2), so write

1/2 Za .

Then squaring both sides, we have the identity
o0 ) o) o (e e} )
j=0 k=0 =0 k=0 1=0
and in general the th coefficient is
! 1 =0
Z aj_pap =< —1 =2
k=0 0 otherwise

Thus we have by direct computation that ap = 1, a1 =0, ag = —1/2, a3 = 0 etc.
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4. We consider the mgf: we have by definitions of expectation
mx (t) ) [etX] ) |:€t(aY+b)} _ ebt]E [eatY] _ ebth (at)

defined on the range of ¢ such that E [e™]

is finite. For the pgf, we have
Gx(t) =mx(Int) = " ™'my (alnt) = t®my (In(t?)) = t°Gx (t%).

5. By definition, assuming that the sum is finite,

m(t)=> e¥p(y) = ety%p‘y'*l(l —p).

y#0 y#0

We split the sum as
~1

Z 2 P Z ty P11 = p).

y=—00

The second term is merely (1/2) times the mgf for a Geometric random variable with success
probability ¢ =1 — p,

1 get

21— pet’
For the first term

Zetyl wl=1(1 — p) Ze—ty Pl —p) = L 4€
21— pe~
Yy=—00
by summing the geometric series. Thus
1 gel 1 get
m(t) = ——° 4 -1

21 —pet 21 —pet’

6. AsY only takes non-negative values, we have that P(Y < 0) = 0, and hence

00 00 oo y—1
ZPY<yty—ZPY<yty—tZPY<yty =t Y pli) p !
y=0 y=1 y=1 y=1 | j=0
Exchanging the order of summation, we have that
co y—1
S Y =3 3 sl
y=15=0 j=0y=j+1

But the final sum can be rewritten

D4 2. e =) —pl)
J=0 y=j+1 J=0

using the sum of the geometric series for the inner bracket. Hence

iPY<yty:tZ%p —Ztﬂ TG
y=0 7=0
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