MATH 323 - EXERCISES 8 Not for assessment. Transformations

1. Suppose that *Y* is a continuous random variable with range $\mathcal{Y} = [0, 1]$, and pdf f_Y specified by

 $f_Y(y) = 2(1-y) \quad 0 \le y \le 1$

and zero otherwise. Find the probability distributions of random variables U_1 , U_2 and U_3 defined respectively by

 $U_1 = 2Y - 1$ $U_2 = 1 - 2Y$ $U_3 = Y^2$

In each case, find the range of values that the new variable can take, and its pdf or cdf.

2. The annual profit (in millions of dollars) of a manufacturing company is a function of product demand. If *Y* is the continuous random variable corresponding to the demand in a given year, then the annual profit is also a continuous random variable, *U* say, where $U = 2(1 - e^{-2Y})$.

If *Y* has an Exponential distribution with parameter $\beta = 1/6$, find the expected annual profit.

3. The random variable *Y* has a continuous uniform distribution on the interval [-1, 1]. Find the pdfs of the transformed random variables

$$U = |Y| \qquad Z = Y^2$$

- 4. If Y is **any** continuous random variable with distribution function F_Y , show that
 - (a) $U = F_Y(Y)$ has a continuous Uniform distribution on [0, 1], and
 - (b) $Z = -\ln U$ has an Exponential distribution.
- 5. If *Y* is a continuous random variable with pdf specified by

$$f_Y(y) = \alpha \beta y^{\alpha - 1} e^{-\beta y^{\alpha}} \qquad y > 0$$

and zero otherwise, for parameters $\alpha, \beta > 0$, then *Y* has a *Weibull* distribution. Show that $U = Y^{\alpha}$ has an Exponential distribution.

- 6. Suppose that random variable *Y* has a standard normal distribution.
 - (a) Find the cdf of random variable $X = Y^2$ in terms of the standard normal cdf, denoted Φ . Recall that for the cdf of X, we have

$$P(X \le x) = P(Y^2 \le x) = P(|Y| \le \sqrt{x})$$

- (b) Find the pdf of X, f_X .
- (c) Identify (by name) the probability distribution of *X*.
- 7. Suppose that Y_1 and Y_2 are independent and identically distributed random variables, each having a standard normal distribution. Let random variable V be defined by

$$V = Y_1^2 + Y_2^2$$

Find the mgf and hence the pdf of V.

MATH 323 EXERCISES 8