MATH 323 - EXERCISES 2 Not for Assessment.

ELEMENTARY PROBABILITY

1. A person selected from a population and subjected to screening for a particular disease is either a sufferer (*D*) or not (*D'*). The screening will either result in a positive test (*T*), or a negative (*T'*). If the result of the test is used to classify the person, write down the event "person misclassified".

Suppose now that an X-ray is also taken and either gives a positive (X), or a negative (X') indication, and also a doctor carries out an examination resulting in a positive (A), or negative (A') assessment. If a person is classified as a sufferer if and only if the doctor and at least one of the tests points in this direction, represent the event "correct classification made".

2. Given two events $A, B \subseteq S$, prove that the probability of *one and only one* of them occurring is

$$P(A) + P(B) - 2P(A \cap B).$$

3. Consider the following statements, which are claimed to be true for events A_1 , A_2 in a sample space S:

(a)	$P(A_1) = 0$	$\implies P(A_1 \cup A_2) = 0$
(b)	$P(A_1) = P(A_2')$	$\implies A_1' = A_2$
(c)	$A_1 \subseteq A_2$ and $P(A_1) = P(A'_2)$	$\implies P(A_1) \le 1/2$
(d)	$P(A_1') = x_1, P(A_2') = x_2$	$\implies P(A_1 \cup A_2) \ge 1 - x_1 - x_2$

In each case, either prove that the statement is true for all S, A_1 , A_2 , or provide a specific counterexample to show that there exists S, A_1 , A_2 for which it is false

- 4. Given two events $A, B \subseteq S$, prove that
 - (a) $P(A' \cap B) = P(B) P(A \cap B)$
 - (b) $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - (c) $A \subseteq B \Longrightarrow P(A) \le P(B)$
 - (d) $P(A \cap B) \ge P(A) + P(B) 1$

(d) is known as *Bonferroni's Inequality*.

- 5. Suppose that *A* and *B* are events such that P(A) = x, P(B) = y and $P(A \cap B) = z$. Express the following terms of *x*, *y* and *z*:
 - (a) $P(A' \cup B')$
 - (b) $P(A' \cap B)$
 - (c) $P(A' \cup B)$
 - (d) $P(A' \cap B')$.

6. Probability Axiom I can be equivalently stated as:

$$(\mathbf{I})^* : P(A) \le 1 \text{ for all } A \subseteq S,$$

Assuming that Axioms (I)^{*}, (II) and (III) hold, prove that $P(A) \ge 0$ for all $A \subseteq S$.

MATH 323 EXERCISES 2

- 7. Use *mathematical induction* to prove that, for any events A_1, A_2, \ldots, A_n in S:
 - (a) Boole's Inequality

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) \le P(A_1) + \ldots + P(A_n)$$

(b) General Addition Rule

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = \sum_i P(A_i) - \sum_{i \neq j} P(A_i \cap A_j)$$

+
$$\sum_{i \neq j \neq k} \sum_k P(A_i \cap A_j \cap A_k) -$$

$$\cdots + (-1)^{n-1} P(A_1 \cap A_2 \cap \ldots \cap A_n)$$

In (b), summations are over *distinct* sets of subscripts. For example, if n = 3, the result would correspond to

$$P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) - P(A_1 \cap A_2) - P(A_1 \cap A_3) - P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3).$$

If you have not met 'mathematical induction' formally, follow this strategy (which essentially summarizes the method):

- (i) Establish the result is true for the special cases n = 1 and n = 2.
- (ii) For $k \ge 1$, assume the result is true for n = k; in part (a), this means assuming that

 $P(A_1 \cup A_2 \cup \ldots \cup A_k) \le P(A_1) + \ldots + P(A_k)$

(iii) Using the assumption in (ii), deduce that the result is also true for n = k + 1.

Hint for (a) and (iii):

$$P(A_1 \cup A_2 \cup \ldots \cup A_k \cup A_{k+1}) \equiv P(B \cup A_{k+1})$$

where

 $B = A_1 \cup A_2 \cup \ldots \cup A_k.$