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Abstract

Modular forms are functions of a complex variable which satisfy numerous symmetries.

They encode deep arithmetic information such as modulo ℓ solutions of algebraic equations,

representation numbers of quadratic forms, and cycles on Shimura varieties, packaged in

their Fourier expansion or periods. The symmetries of modular forms lead to relations

between their Fourier coefficients, providing insights into the underlying arithmetic objects.

This principle is enriched if, instead of considering a single modular form, we consider

families of them whose Fourier coefficients vary analytically.

In this thesis, we explore several instances of p-adic analytic families of modular forms

constructed from theta series and their relations to arithmetic:

1. The first chapter presents an explicit formula relating a generating series of Heegner

points on a Shimura curve to the derivative of a p-adic family of theta series of

half-integral weight. This new connection, proven entirely via p-adic methods,

provides an alternate proof of the Gross–Kohnen–Zagier theorem.

2. The second chapter is motivated by the search for a modular construction of Gross–

Stark units for totally real fields. Considering a p-adic family obtained from pullbacks

of the Eisenstein class of a torus bundle of rank n, we construct p-adic invariants

associated to totally real fields of degree n where p is inert. We conjecture that

such invariants are p-adic logarithms of elements in abelian extensions of totally

real fields. To support the conjecture, we relate the local traces of these invariants

to local traces of p-adic logarithms of Gross–Stark units.



Résumé

Les formes modulaires sont des fonctions d’une variable complexe qui satisfont de nom-

breuses symétries. Elles encodent plusieurs informations arithmétiques profondes, telle

que les solutions d’équations algébriques modulo ℓ, les nombres de représentations de

formes quadratiques, ou encore les cycles sur les variétés de Shimura, le tout encapsulé

dans leur développement en série de Fourier ou dans leurs périodes. L’étude des symétries

des formes modulaires permet de mieux comprendre les objets arithmétiques sous-jacents.

Ce principe gagne en richesse lorsqu’on considère, non plus une seule forme modulaire,

mais des familles de telles formes dont les coefficients de Fourier varient analytiquement.

Cette thèse explore plusieurs exemples de familles analytiques p-adiques de formes

modulaires construites à partir de séries thêta, ainsi que leurs liens avec l’arithmétique :

1. Le premier chapitre présente une formule explicite reliant une série génératrice de

points de Heegner sur une courbe de Shimura à la dérivée d’une famille p-adique

de séries thêta de poids demi-entier. Cette nouvelle connexion, établie entièrement

par des méthodes p-adiques, fournit une démonstration alternative du théorème de

Gross–Kohnen–Zagier.

2. Le deuxième chapitre est motivé par la recherche d’une construction modulaire

des unités de Gross–Stark pour les corps totalement réels. En considérant une

famille p-adique obtenue comme image réciproque de la classe d’Eisenstein d’un fibré

torique de rang n, nous construisons des invariants p-adiques associés à des corps

totalement réels de degré n où p est inerte. Nous conjecturons que ces invariants

sont les logarithmes p-adiques d’éléments appartenant à des extensions abéliennes de

ces corps. Pour étayer cette conjecture, nous mettons en relation les traces locales

de ces invariants avec celles des logarithmes p-adiques des unités de Gross–Stark.
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General Introduction

Modular forms are functions of a complex variable which satisfy numerous symmetries and

admit a Fourier expansion. Their Fourier coefficients encode deep arithmetic information,

such as the modulo ℓ point count of algebraic equations, representation numbers of

quadratic forms, and cycles on Shimura varieties. The symmetries of modular forms

lead to relations between their Fourier coefficients, providing insights into the underlying

arithmetic objects. The so-called Kudla program addresses the study of a central aspect

of these phenomena.

An illustrative example of this principle is the Jacobi theta series and its relation to the

problem of writing numbers as a sum of 2 squares. Let r(n) := #{(x, y) ∈ Z2 | x2+y2 = n}
and consider the function on the upper half-plane H

¹(Ä) :=
∑

ng0

r(n)qn, q = e2ÃiÄ .

Since ¹ is defined in terms of the variable q, it satisfies ¹(Ä + 1) = ¹(Ä). Moreover, it is a

consequence of the Poisson summation formula that ¹(Ä/(4Ä + 1)) = (4Ä + 1)¹(Ä). These

transformation properties make ¹ an instance of a modular form. The study of the space

of holomorphic functions satisfying these symmetries using complex analysis leads to the

conclusion that it is one-dimensional over C and generated by the function

E(Ä) := 1 + 4
∑

ng1


∑

d|n

Ç4(d)


 qn, where Ç4 : (Z/4Z)×

∼−−→ {±1}.

Hence ¹(Ä) = E(Ä), which yields the explicit formula r(n) = 4
∑
d|n Ç4(d). A similar

strategy can be used to prove that every nonnegative integer can be written as a sum of 4

squares, recovering a theorem by Lagrange.

This principle is enriched if, instead of considering a modular form, we consider

families of them whose Fourier coefficients vary analytically. Gross–Zagier and Gross–

Kohnen–Zagier ([GZ86], [GKZ87]) followed these ideas to relate Heegner points, solutions

of polynomial equations given by elliptic curves, to real-analytic families of modular forms:

for Fs a family of modular forms (obtained as the product of a theta series and a real



General Introduction 2

analytic family of Eisenstein series), F ′
s its derivative with respect to s, and prE (eholF

′
0) a

suitable component of the holomorphic part of F ′
0, a key identity of [GZ86] is

∑

ng1

ïP, TnP ðqn = prE (eholF
′
0) . (1)

The coefficients on the left-hand side denote the height pairing between two Heegner

points (P and its translate by a Hecke operator), which measures the complexity of these

solutions. In particular, (1) determines if Heegner points are non-torsion solutions in

terms of an analytic quantity.

This connection led to dramatic progress on the Birch and Swinnerton-Dyer (BSD)

Conjecture for elliptic curves of analytic rank 1. This conjecture predicts a description of

the rank of the group of solutions of an elliptic curve in terms of the order of vanishing of

an analytic function at s = 1.

Although we focused our attention on the Fourier coefficients of modular forms and

their families, modular forms also encode deep invariants not directly visible in their

Fourier expansions. For instance, integrating modular forms provides an approach to

constructing the previously mentioned Heegner points.

There are also p-adic (analytic) families of modular forms. These are families of

modular forms such that their Fourier coefficients are analytic functions with respect to a

p-adic metric. A prototypical example is the family of Eisenstein series

Ek(q) = (1− pk−1)
·(1− k)

2
+
∑

ng1


∑

p∤d|n

dk−1


 qn, (2)

indexed by the variable k. Indeed, as a consequence of Fermat’s little theorem, the

Fourier coefficients of Ek(q) vary continuously in k with respect to the p-adic metric in

(Z/(p− 1))× Zp. In fact, it can be verified that the Fourier coefficients define analytic

functions on k. As in the case of real-analytic families, there are deep connections between

p-adic families of modular forms and arithmetic — both in the study of their Fourier

coefficients and their periods. Some remarkable features of these connections are:

1. Due to the combinatorial nature inherent in the p-adic numbers, p-adic analysis is

sometimes more tractable than its real counterpart, leading to simpler proofs of

relations analogous to (1).

2. p-adic families of modular forms provide new connections to arithmetic which seem

absent for real-analytic families.

This thesis focuses on the study of a particular type of p-adic families of modular

forms, those arising from theta series:
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1. In Chapter I, we study the Fourier coefficients of such a family to derive a formula

similar to (1), or more precisely to those appearing in [GKZ87] involving modular

forms of weight 3/2. Concretely, let E be an elliptic curve defined over Q that

appears in the Jacobian of a Shimura curve. Similar to above, E is equipped with a

collection of rational solutions {PD}D, called Heegner points, where the indexing set

is over discriminants satisfying the so-called Heegner hypothesis. For p a rational

prime dividing the discriminant of the Shimura curve, we construct a p-adic family

of theta series Θk of weight 3/2 + k. The family satisfies that Θ0 = 0 and, if we

denote by Θ′
0 the value of the derivative of Θk with respect to k at k = 0, we obtain

a formula similar to (1)

∑

Dg1

logp(PD)qD = prE (eordΘ′
0) . (3)

In this expression, the height pairing of (1) is replaced by the so-called p-adic

logarithm logp : E(Qp) → Qp, and the holomorphic projector by the p-ordinary

projector eord. The formula yields a new proof of the Gross–Kohnen–Zagier theorem

for Shimura curves — originally established by Borcherds in [Bor99] — using p-adic

methods.

2. In Chapter II, we consider a higher-dimensional generalization of the family of

Eisenstein series in (2) and of their integrals along real quadratic geodesics in

H . For this, we use the Eisenstein class of a torus bundle, studied by Bergeron,

Charollois, and García in [BCG20]. The p-adic properties of this family imply that

their periods satisfy a p-adic coherence. This leads to consider a p-adic limit of such

values (and refinements of them), JEis[Ä ], attached to tori TF ¢ SLn(Q) of norm

1 elements of a totally real field F where p is inert. We conjecture that JEis[Ä ] is

the p-adic logarithm of an element in an abelian extension of F and provide partial

conceptual evidence for it. Notably, the quantities JEis[Ä ] appear as the values of a

modular-like object JEis at a special point Ä , in line with the theory of rigid cocycles

developed by Darmon and Vonk [DV21].

The quantities JEis[Ä ] were already considered by Darmon, Pozzi, and Vonk in

[DPV24] for the case of real quadratic fields. Moreover, invariants of a similar

flavour were constructed by Dasgupta in [Das08] and Dasgupta and Kakde proved

that they serve to generate the maximal abelian extension of a totally real field in

[DK23], solving Hilbert’s twelfth problem via p-adic methods in this setting.

Thus, each of the two main chapters of the thesis illustrates a distinct feature of p-adic

families discussed above. The thesis concludes with Chapter III. This shorter chapter
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discusses, in a more informal tone, future research directions. We place special emphasis

on the following question:

Do the p-adic invariants JEis[Ä ] appear naturally as Fourier coefficients of derivatives

of p-adic families of modular forms?

Informally, this question asks for a formula similar to (15.2), where the Fourier

coefficients of the left-hand side, given by logarithms of Heegner points in (15.2), are

replaced by the values JEis[Ä ] and generalizations of them. A positive answer to this

question could shed light on the arithmetic significance of the invariants JEis[Ä ]. For

instance, Darmon, Pozzi, and Vonk answered the question positively for the case of real

quadratic fields in [DPV24], and used the connection between p-adic families of modular

forms and deformations of Galois representations to prove that the invariant JEis[Ä ] belongs

to an abelian extension of a real quadratic field.



Chapter I

The Gross–Kohnen–Zagier theorem

via p-adic uniformization



Section 1

Introduction

It is conjectured that generating series of special cycles on orthogonal Shimura varieties are

modular forms. (See [Kud04] for example.) One of the first instances of this phenomenon

was discovered by Gross, Kohnen and Zagier, who proved in [GKZ87] that generating

series of Heegner points on the Jacobians of modular curves are modular forms of weight

3/2. The purpose of this chapter is to study the analogous statement for generating series

of Heegner points on Shimura curves. We will present a new proof of the modularity of

these generating series — originally established by Borcherds in [Bor99] — using p-adic

methods.

1.1 Statement of the Gross–Kohnen–Zagier theorem

We proceed to explain the theorem in more detail, in a framework that encompasses

both modular and Shimura curves. Let S be a finite set of places of Q of odd cardinality

containing ∞ and let N+ be a square-free positive integer which is not divisible by any

finite place in S. This datum gives rise to a modular or Shimura curve X defined over Q,

which is an instance of an orthogonal Shimura variety. Its set X(C) of complex points

can be described in terms of an Eichler Z-order R of level N+ in a quaternion algebra

B over Q ramified exactly at S − {∞}. Namely, the set V of trace zero elements in B

equipped with the quadratic form Q induced by the reduced norm is a quadratic space

of signature (1, 2), and is anisotropic at all the places v ∈ S − {∞}. The action of B×

on V via conjugation identifies B× with the group GSpin(V ) of spinor similitudes of

V . It naturally acts on the conic CV ¦ P(V ) whose rational points over a field E of

characteristic 0 are given by

CV (E) := {ℓ ∈ P(VE) | Q(ℓ) = {0}} . (1.1)
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Here and from now on, if M is an abelian group, and A is a commutative ring, write MA

for the A-module M ¹Z A. The group Γ of units of R modulo {±1} acts discretely on

the symmetric space

K := CV (C)− CV (R)

associated to the orthogonal group of V . The set X(C) of complex points of X is identified

with the quotient Γ\K . A comparison with a more classical description of Shimura

curves can be found in the Appendix of [Kud04].

Let v ∈ V be a vector for which Q(v) > 0. Its orthogonal complement is thus a

two-dimensional negative definite space, whose base change to C is a hyperbolic plane.

Hence, there are exactly two points in K represented by a vector orthogonal to v. Let

∆(v) ¢ K be the divisor consisting of these two points. Each positive integer D in

DS := {D ∈ Z>0 | ∃v ∈ V such that Q(v) = D}

gives rise to a zero-cycle on X by setting

∆(D) :=
∑

v∈Γ\R0,
Q(v)=D

1

#StabΓ (v)
∆(v) ∈ Div(X(C))Q, (1.2)

where R0 ¦ V is the Z-lattice R ∩ V . The divisor ∆(D), which is supported on a finite

set of CM points on X, is a simple instance of a Heegner divisor on this Shimura curve.

The Gross–Kohnen–Zagier theorem asserts that the classes of ∆(D) in the Jacobian of

X can be packaged into a modular generating series of weight 3/2. Namely, let L be the

tautological line bundle of isotropic vectors whose spans are points of K . This bundle

is B×-equivariant and, therefore, descends to a line bundle on X(C), which is identified

with the cotangent bundle of X. In particular, it has a model over Q. Denote by [∆]

(resp. [L(]) the class in Pic(X)(Q) of a divisor ∆ (resp. of the dual L( of the line bundle

L) on X. Then, the formal generating series

G(q) := [L(] +
∑

D∈DS

[∆(D)]qD ∈ Pic(X)(Q)Q[[q]], (1.3)

is a modular form of weight 3/2 and level Γ0(4N), where N is the product of N+ with all

finite places in S. Remember that, given an abelian group A, a formal q-series f ∈ A[[q]]

with coefficients in A is called a modular form of weight 3/2 and level Γ0(4N) if for every

homomorphism φ : A→ C the generating series φ(f) ∈ C[[q]], obtained by applying φ to

each of the coefficients of f , is the q-expansion of a modular form of weight 3/2 and level

Γ0(4N).

The Gross–Kohnen–Zagier theorem was first proved in [GKZ87] in the case of modular

curves (i.e., where S = {∞}) by calculating the Arakelov intersection pairings of the
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divisors ∆(D) with a fixed CM divisor. It was extended by Borcherds [Bor99] to the

setting of orthogonal groups of real signature (n, 2), encompassing Shimura curves as a

special case where the underlying quadratic space is of signature (1, 2), as a consequence

of his theory of singular theta lifts. The work of Yuan, Zhang, and Zhang [YZZ09] proves

Theorem 1.1.1 in much greater generality, for certain orthogonal groups over totally real

fields. It should be noted that the theorem also holds if one replaces the lattice R0 by a

suitable weighted sum of lattice cosets or, equivalently, by a suitable Schwartz–Bruhat

function. In order to keep the exposition as simple as possible we refrain from stating the

most general version of the theorem in the introduction.

The goal of Chapter I is to describe a new proof of the Gross–Kohnen–Zagier theorem

in the case where S ̸= {∞}, i.e., when X is not a modular curve. To simplify the

exposition we will also assume that 2 ∤ N .

Theorem 1.1.1. The generating series G(q) ∈ Pic(X)(Q)Q[[q]] of (1.3) is a modular

form of weight 3/2 and level Γ0(4N).

1.2 Strategy for the proof and main formula

Our approach to this theorem rests on the fact that, at a finite place p ∈ S, the curve

X(Cp) admits a p-adic analytic uniformization. More precisely, X(Cp) can be described

as the quotient of the p-adic upper half-plane by the discrete action of the norm one

elements of an Eichler Z[1/p]-order R of level N+ in the (definite) quaternion algebra

ramified exactly at S − {p}. Furthermore, the Heegner divisors ∆(D) can be described

p-adically in terms of this uniformization. This immediately gives an expression of the

generating series of degrees

deg(G)(q) = deg(L() +
∑

D∈DS

deg(∆(D))qD

in terms of definite ternary theta series, recovering a well-known modularity result. (See

for example [HZ76, Chapter 2] and [Kud03, Theorem I].) Thus, it is enough to prove

modularity of the generating series TG(q) for Hecke operators of degree 0, for which

TG(q) takes values in the Q-rational points of the Jacobian J of X. The existence of

a basis of modular forms with rational coefficients then reduces the problem to proving

modularity of the generating series

logÉ(TG)(q) :=
∑

D∈DS

logÉ([T∆(D)])qD ∈ Qp[[q]] (1.4)

for every cotangent vector É of JQp with associated p-adic formal logarithm logÉ : J(Qp)→
Qp. For appropriate Hecke operators T , the p-adic description of the divisors T∆(D)
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leads to an expression of this series as the ordinary projection of an infinitesimal p-adic

deformation of a positive definite ternary theta series attached to the data (É,R, T ). More

precisely, these data give rise to a p-adic family of weighted theta series Θk of weight

k + 3/2, with k in the weight space (Z/(p− 1))× Zp, whose specialization at weight 3/2

vanishes. (See Chapter 7.3 for its definition.) It then follows that its derivative with

respect to k evaluated at k = 0, denoted Θ′
0, is a p-adic cusp form of weight 3/2. Let eord

be p-ordinary projector acting on this space. By a classicality result, eord(Θ′
0) is a cusp

form of weight 3/2 and level Γ0(4N). Let pr1 be the projector on the space of cusp forms

of weight 3/2 and level Γ0(4N) to the eigenspace of the Hecke operator Up2 of eigenvalue

1. The main contribution of this chapter is the following formula.

Theorem 1.2.1. We have

logÉ(TG) = pr1(eord(Θ′
0)).

To summarize, the fact that TG is a modular form is a consequence of the modularity

of definite theta series and classicality of ordinary p-adic modular forms of half-integral

weight.

Remark 1.2.2. As the proof of Theorem 1.1.1 is a purely p-adic analytic one, it seems likely

that it carries over to more general settings, e.g., to Shimura curves over totally real fields

which admit a p-adic uniformization. The assumption that N is odd and square-free stems

from using p-adic families of scalar-valued half-integral modular forms, which seem only

well-behaved in that case. Concretely, we study these p-adic families using the results of

[Niw77], [Koh82], and [MRV90], which have a similar condition on the level of the modular

forms. Generalizing to arbitrary level likely requires a theory of families of vector-valued

modular forms, which so far has only been developed in a few instances. (See [LN20].)

The strategy sketched above bypasses the global height pairings studied by Gross,

Kohnen, and Zagier, or the singular theta lifts that arise in the approach of Borcherds.

It can be envisaged as fitting into the broader framework of a p-adic Kudla program, in

which p-adic families of modular forms play much the same role as analytic families of

Eisenstein series in the archimedean setting. Insofar as the generating series G are among

the simplest instances of the modular generating series arising in the Kudla program, it is

hoped that the p-adic techniques described here will be more widely applicable, shedding

light on the connection between special cycles on orthogonal and unitary Shimura varieties,

p-adic Borcherds-type lifts, and p-adic families of theta series. A general framework is laid

out in the article [DGL23], which introduces the notion of rigid meromorphic cocycles for

orthogonal groups. In loc.cit. modularity statements for generating series of special divisors

on arithmetic quotients on higher-dimensional p-adic symmetric spaces are formulated. A
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crucial input in their proof is the injectivity of the first Chern class when the arithmetic

quotient has dimension 3 and higher. Theorem 1.1.1 complements the main theorem

of [DGL23] by extending it to the case of curves, where the kernel of the Chern class

map needs to be considered. Relating arithmetic data to Fourier coefficients of ordinary

projections of p-adic modular forms is one of the prevalent themes of the p-adic Kudla

program as demonstrated, for example, in [Daa23] and [DPV24].

1.3 Structure of Chapter I

The organization of this chapter is as follows. Section 2 explains the p-adic uniformization of

X and states the Gross–Kohnen–Zagier theorem in terms of this uniformization. Theorem

2.2.4 below describes the main result, which is somewhat more general than Theorem 1.1.1,

since the divisors ∆(D) are replaced by linear combinations of Heegner points weighted

by Schwartz–Bruhat functions. Section 3 gives a short proof of the modularity of deg(G).

Section 4 introduces the p-adic Abel–Jacobi map, which gives an explicit description of

the Jacobian of a Mumford curve. This description is used in Section 5 to construct

certain functionals on the Jacobian, whose values at Heegner points are computed in

Section 6. In particular, we give an explicit expression for the quantities logÉ([T∆(D)])

appearing in (1.4). In Section 7, we define the p-adic family Θk, prove a classicality result

regarding ordinary p-adic cusp forms of half-integral weight and prove the main Theorem

1.2.1, which implies the Gross–Kohnen–Zagier theorem. Finally, Section 8 illustrates the

construction of Θk by presenting a concrete example where S = {7, 13,∞} and p = 7. In

this case, the ordinary projection of Θ′
0 is computed numerically modulo p.



Section 2

The Cerednik–Drinfeld theorem

This section recalls the theorem of Cerednik–Drinfeld, which gives a rigid analytic uni-

formization of X at a finite prime p ∈ S that is fixed once and for all. Moreover, we

describe Heegner divisors in terms of this uniformization, which leads to a reformulation

of the Gross–Kohnen–Zagier theorem in this setting.

2.1 p-adic uniformization of X

The rigid analytic uniformization of X proceeds by replacing the place ∞ in the complex

uniformization of the introduction by the prime p ∈ S. To describe it, we need to introduce

some notation. Let B be the quaternion algebra over Q ramified exactly at the places

in S − {p}. Let R be an Eichler Z[1/p]-order in B of level N+ and denote by Γ the

multiplicative group of elements of reduced norm 1 in R modulo {±1}. Let Q be the

restriction of the reduced norm to the space

V = {b ∈ B | Tr(b) = 0}

of elements of reduced trace zero in B. It endows V with the structure of a quadratic

space of rank 3 over Q, which is of real signature (3, 0). Denote by ï·, ·ð the symmetric

bilinear form attached to Q, that is, ïv, wð := Q(v + w)−Q(v)−Q(w). As in the case

of the quadratic space V , the action of B× on V via conjugation identifies B× with the

group of spinor similitudes of V . The intersection R0 = R ∩ V is an even Z[1/p]-lattice in

V .

A p-adic symmetric space is associated to the orthogonal group of VQp as follows.

Similarly to (1.1) denote by CV ¦ P(V ) the conic over Q attached to V whose rational

points over a field E of characteristic 0 are given by

CV (E) = {ℓ ∈ P(VE) | Q(ℓ) = {0}} .
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This conic has no rational points, but can be identified with the projective line P over Qp

as follows: choose an isomorphism of BQp with the matrix ring M2(Qp). The conic is then

identified with the space of non-zero nilpotent 2× 2-matrices up to scaling. Mapping such

a matrix to its kernel yields the desired isomorphism. The action of B×
Qp is identified with

the action of GL2(Qp) on PQp via Möbius transformations.

Definition 2.1.1. The Drinfeld p-adic upper half plane is the Qp-rigid analytic space

Hp, whose E-rational points for any complete extension E/Qp is the set

Hp(E) := CV (E)− CV (Qp) ≃ P1(E)− P1(Qp).

We briefly explain the rigid analytic structure on Hp in terms of the reduction map to

the Bruhat–Tits tree. We refer the reader to [Dar04, Chapter 5] for further details. The

Bruhat–Tits tree, denoted T , is the graph whose set of vertices is the set of unimodular

Zp-lattices in VQp , that is, lattices which are self-dual with respect to the symmetric

bilinear form ï·, ·ð. Two unimodular Zp-lattices L1 and L2 are joined by an edge if they

are p-neighbours, that is,

[L1 : L1 ∩ L2] = [L2 : L1 ∩ L2] = p.

A choice of a vertex L gives a smooth Z(p)-integral structure CL to the conic CV , where

Z(p) denotes the localization of Z at the prime ideal generated by p. If L′ is adjacent to L,

then the image of L ∩ L′ in L/pL is a 2-dimensional non-regular subspace, hence contains

a unique isotropic subspace ℓL′ . Mapping the edge (L,L′) to ℓL′ yields a bijection between

the set of lattices adjacent to L and CL(Fp) ≃ P1(Fp). It follows that T is homogeneous

of degree p+ 1. The set of vertices and edges of T are denoted by T0 and T1 respectively,

and T shall be viewed as a disjoint union T = T0 ⊔ T1. Identifying the quadratic space

VQp with the set of trace zero endomorphisms of Q2
p endowed with the norm form gives

the more familiar description of the tree in terms of similarity classes of Zp-lattices in Q2
p.

Indeed, the assignment [Λ] 7→ Hom0(Λ,Λ) is a bijection between such similarity classes

and unimodular lattices in VQp . Moreover, two classes [Λ1], [Λ2] are joined by an edge if

they admit representatives Λ1 and Λ2 satisfying pΛ1 ¢ Λ2 ¢ Λ1. From this description one

easily deduces that T is indeed a tree. The identification of the two graphs is compatible

with the natural actions of B×
Qp and GL2(Qp). We define a notion of parity on the vertices

of T by requiring that every edge connects an even vertex with an odd one. There are

exactly two possible choices for this and we choose one of them. The action of the elements

of reduced norm one in BQp on T is parity-preserving.

We proceed by describing the well-known reduction map

red: Hp(Cp) −→ T
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in the language of quadratic forms. For that let OCp denote the ring of integers of Cp and

m ¦ OCp its maximal ideal. Every unimodular Zp-lattice L ¦ VQp induces a reduction

map

CV (Cp) = CL(OCp) −↠ CL(Fp).

1. Let L ¦ VQp be a unimodular Zp-lattice. Then red−1(L) is the complement of the

p+ 1 residue discs around the points in CL(Fp).

2. Let L,L′ ¦ VQp be two unimodular Zp-lattices that are p-neighbours and ℓL′ ∈ CL(Fp)

the corresponding isotropic line. The preimage of the edge (L,L′) under the reduction

map consists of those elements z ∈ CL(OCp) that are congruent to ℓL′ modulo m

but not modulo p.

One readily checks that the reduction map is B×
Qp-equivariant. A finite closed subgraph of

T is a finite set G ¢ T satisfying

(v1, v2) ∈ G ∩ T1 ⇒ v1, v2 ∈ G ∩ T0.

A standard affinoid subset of Hp is a set of the form red−1(G), where G is a finite closed

subgraph of T .

Definition 2.1.2. A function on Hp is said to be rigid analytic if its restriction to any

standard affinoid subset A ¢Hp can be written as a uniform limit of rational functions

having poles outside of A. A function on Hp is said to be rigid meromorphic if it is the

quotient of two rigid analytic functions, where the denominator is non-zero.

The group Γ acts naturally on Hp by conjugation. This action is discrete because Γ

is a p-arithmetic subgroup of an algebraic group that is compact at ∞. It follows from

there that the quotient space Γ\Hp has a natural structure of a rigid analytic variety

over Qp. On the other hand, the analytification of X gives a rigid analytic space over Qp.

The Cerednik-Drinfeld theorem states that these two spaces can be identified after base

change to the unramified quadratic extension Qp2 of Qp. This identification depends on

choices. To make this precise, let us introduce the following notation: for a finite set Σ

of places of Q write AΣ ¢ ∏v/∈Σ Qv for the ring of finite adéles away from Σ. Moreover,

let Ẑ (resp. Ẑ(p)) be the maximal order of A∞ (resp. of Ap,∞). Given a finitely generated

Z[1/p]-module M , we put M̂ = M ¹ Ẑ(p). Fix an identification

VAp,∞ ≃ VAp,∞ (2.1)

sending the Ẑ(p)-lattice R̂0 to R̂0.
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Theorem 2.1.3 (Cerednik–Drinfeld). The identification (2.1) induces an isomorphism

X
∼−−→ Γ\Hp. (2.2)

of rigid analytic spaces over Qp2.

Proof. See [Cer76], [Dri76] and [BC91].

2.2 p-adic analytic description of Heegner divisors

In analogy with the cycles defined in the introduction, every non-zero element v ∈ V
yields a cycle ∆(v) on Hp: ∆(v) is the sum of those points in Hp that are orthogonal to

v. This cycle has degree 0 or 2 depending on whether the orthogonal complement of v

in VQp represents 0 or not. Observe that the orthogonal complement of v in VQp , being

2-dimensional, represents 0 if and only if the negative of its discriminant is a square in Qp.

Since the discriminant of VQp is a square, the discriminant of the orthogonal complement

of v is equal to the discriminant of v, which is Q(v), modulo squares. Hence, we deduce

∆(v) ̸= 0 if and only if
√
−Q(v) ̸∈ Qp. By the Hasse–Minkowski theorem the set DS from

the introduction is characterized locally. In particular, one gets the description

DS = {D ∈ Z | ∃v ∈ V − {0} such that Q(v) = D and ∆(v) ̸= 0} ,

where we used that B ramifies exactly at S − {p} while B ramifies exactly at S − {∞}.
Indeed, the quadratic spaces V and V are locally isomorphic at all places except at ∞
and p. This is why the condition D > 0 (or equivalently,

√
−D ̸∈ R) appearing in the

description of DS in the introduction is replaced by the condition ∆(v) ̸= 0 (or equivalently,√
−D ̸∈ Qp). Note that the first condition is automatic for the nonzero lengths of elements

of V , as B is ramified at ∞ and the second condition is automatic for nonzero lengths of

elements of V , as B is ramified at p.

Lemma 2.2.1. Let D be an element of DS and v ∈ V with Q(v) = D.

1. If ordp(D) = 0, there exists a unique unimodular Zp-lattice L in VQp containing v.

The support of ∆(v) is contained in red−1(L).

2. If ordp(D) = 1, there exist exactly two unimodular Zp-lattices L1, L2 in VQp contain-

ing v, which are p-neighbours. The support of ∆(v) is contained in red−1((L1, L2)).

Proof. Let W be the orthogonal complement of v in VQp . As W is anisotropic, it contains

a unique maximal Zp-lattice LW , on which Q takes values in Zp and it is characterized
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by the property that its discriminant module is an Fp-vector space. (See for example

[AN02, Corollary 11].) Remember that the discriminant module of a Zp-lattice L ¦ W

with Q(L) ¦ Zp is the quotient Lq/L where Lq ¦ W denotes the dual of L with respect

to the bilinear pairing ï·, ·ð. Suppose that L is a unimodular lattice containing v. By

[DGL23, Lemma 1.1], the discriminant module of L∩W is isomorphic to the discriminant

module of L ∩ Zpv. Thus, the discriminant module of L ∩W is an Fp-vector space, which

implies that L ∩W = LW . In particular, L must contain Zpv · LW .

If ordp(D) = 0, one easily checks that LW is unimodular. Thus, Zpv · LW is the

unique unimodular Zp-lattice containing v. If ordp(D) = 1, then LW is of index p in its

dual. Thus, the discriminant module M of Zpv · LW is a 2-dimensional Fp-vector space.

A quick calculation shows that Q induces a hyperbolic form on M . There exist exactly

two self-dual lattices containing Zpv · LW corresponding to the two isotropic lines in M .

Let Ãv be the unique simplex of T corresponding to v and Q(v) the Q-subalgebra of

B generated by v. Since Q(v)× fixes v, it follows that it also fixes Ãv. The statements

about the support of ∆(v) follow from the B×
Qp-invariance of the reduction map.

The space S (VAp,∞) of Z-valued Schwartz–Bruhat functions on VAp,∞ admits an action

of B×
Ap,∞ induced by the conjugation action on VAp,∞ . Attached to an R̂×-invariant function

Φ ∈ S (VAp,∞) and a non-zero rational number D is the zero-cycle

∆Φ,Γ(D) =
∑

v∈Γ\V, Q(v)=D

1

#StabΓ(v)
Φ(v)∆(v) ∈ Div(Γ\Hp)Q, (2.3)

on Γ\Hp. Note the formal similarities between (1.2) and (2.3) when Φ is the characteristic

function of R̂0, that will simply be denoted as 1R0 . We proceed to make them precise. By

the theory of complex multiplication, the Heegner points appearing in the divisors ∆(D)

of the introduction are defined over Q. Hence, after fixing an embedding Q ¢ Cp, these

divisors can be viewed as elements in Div(X(Cp)).

Proposition 2.2.2. Let D ∈ DS. The cycle ∆1R0
,Γ(D) of (2.3) viewed as an element of

Div(X(Cp)) via the Cerednik–Drinfeld uniformization theorem is equal to the cycle ∆(D)

of (1.2).

Proof. Since R0 is a Z[1/p]-lattice,

∆1R0
,Γ(D) = ∆1R0

,Γ(Dp2n)

for every n g 0. On the other hand, B is ramified at p, and, thus, the unique maximal

Zp-order of BQp is given by the elements whose reduced norm has non-negative p-adic

valuation. Therefore, multiplication by p gives a bijection between elements of length
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D and elements of length Dp2 in R0, which yields the equality ∆(D) = ∆(Dp2n), for

every n g 0. It is then enough to prove the identification when D ∈ DS is such that

ordp(D) ∈ {0, 1}. The case when ordp(D) = 0 is treated in Theorem 5.3 of [BD98] and

the case when ordp(D) = 1 follows from [LP18, Section 3.3] and [Mol12, Proposition

5.12].

Let È : Q\A→ C× be the standard character, that is, its local component Èℓ : Qℓ → C×

at a prime ℓ is given by

Èℓ(x) = e−2Ãiq for x ∈ q + Zℓ, q ∈ Q.

The Weil oscillator representation attached to V and È induces an action of the metaplectic

group S̃L2(Ap,∞) on S (VAp,∞)C that commutes with the B×
Ap,∞-action. (See, for example,

Section 2.3 of [Gel76] for its construction.) For M g 1, let K0(M)(p) be the subgroup of

SL2(Ap,∞) consisting of matrices in SL2(Ẑ(p)) with left lower entry divisible by M . Since

K0(4M)(p) splits the exact sequence

1 −→ {±1} −→ S̃L2(A
p,∞) −→ SL2(A

p,∞) −→ 1

defining the metaplectic group, it can be regarded as a subgroup of S̃L2(A
p,∞). (See

[Gel76], Proposition 2.14.) We similarly define K0(4M) and view it as a subgroup of

SL2(A
∞) and of S̃L2(A

∞).

Definition 2.2.3. A Schwartz–Bruhat function Φ ∈ S (VAp,∞) is called special if:

1. Φ is R̂×-invariant,

2. Φ is K0(4N)(p)-invariant, and

3. Φ(pv) = Φ(v) for all v ∈ VAp,∞ .

The characteristic function 1R0 is the prime example of a special Schwartz–Bruhat

function. Let Φ be a special Schwartz–Bruhat function. Property (2) implies that for

D ∈ Z(p) − {0} we have ∆Φ,Γ(D) = 0 unless D ∈ DS: indeed, by [Gel76], Theorem 2.22,

the matrix

uℓ =


1 1

0 1


 ∈ SL2(Zℓ)

for ℓ a prime different from p acts via the Weil representation by

(uℓΦ)(v) = Èℓ(Q(vℓ)) · Φ(v) ∀Φ ∈ S (VAp,∞)C, v = (vℓ)ℓ ̸=p ∈ VAp,∞ .
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Thus, if Φ is K0(4N)(p)-invariant, it follows that every element v in the support of Φ fulfils

Q(v) ∈ Ẑ(p). Furthermore, the equality

∆Φ,Γ(p2D) = ∆Φ,Γ(D) (2.4)

holds for all D ∈ DS by Property (3). The remainder of this work will solely be concerned

in proving the following p-adic analytic version of the Gross–Kohnen–Zagier theorem,

which implies Theorem 1.1.1 in view of Proposition 2.2.2 and the fact that 1R0 is special.

Theorem 2.2.4. Let Φ be a special Schwartz–Bruhat function. The generating series

GΦ,Γ(q) := Φ(0)[L(] +
∑

D∈DS

[∆Φ,Γ(D)]qD ∈ Pic(Γ\Hp)Q[[q]],

is a modular form of weight 3/2 and level Γ0(4N).

Remark 2.2.5. The divisors described above are compatible under pullback in the following

sense. Let Φ be a Schwartz–Bruhat function on VAp,∞ invariant under R̂×. Suppose that

R′ is an Eichler Z[1/p]-order contained in R, denote by Γ′ the group of reduced norm 1

units in R′ modulo {±1} and consider the projection map Ã : Γ′\Hp → Γ\Hp. Then it

can be seen in a similar way as in the proof of [Kud97, Proposition 5.10] that, for every

D ∈ DS,

Ã∗(∆Φ,Γ(D)) = ∆Φ,Γ′(D).

Using that Ã∗ ◦ Ã∗ is equal to multiplication by the degree of Ã on Div(Γ\Hp) and the

previous identity, we deduce that R can be replaced by R′ in the proof of Theorem 2.2.4.

In particular, we will assume from now on that Γ is torsion-free by choosing an appropriate

level N+. This will simplify some calculations as the group Γ will act freely on Hp and

T . In particular, it is a free group on finitely many generators. Moreover, under this

assumption the coefficients of the divisors ∆Φ,Γ(D) are integral.

2.3 Hecke action on divisors

Let TN be the integral Hecke algebra away from N , which is generated by the standard

generators {Tℓ}ℓ∤N . (See [JL95, Section 1.2] for its definition.) We conclude the section

describing the action of TN on the divisors as well as on the space of R̂×-invariant

Schwartz–Bruhat functions. Let ℓ be a prime not dividing N and fix ³ ∈ B× ∩ R an

element of reduced norm ℓ. Consider the maps

Γ\Hp
Ã1←− (³−1Γ³ ∩ Γ)\Hp

³−−→ (Γ ∩ ³Γ³−1)\Hp
Ã2−−→ Γ\Hp.
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Then, define the action of the Hecke operator Tℓ on divisors as

Tℓ(∆) := (Ã2,∗ ◦ ³ ◦ Ã∗
1)(∆) for ∆ ∈ Div(Γ\Hp).

On the other hand, the action of Tℓ on R̂×-invariant Schwartz–Bruhat functions is

determined as follows. If Γ = ⊔j(Γ ∩ ³Γ³−1)¶j for {¶j}j ¢ Γ we define

Tℓ(Φ) :=
∑

j

Φ · (³−1¶j),

where if ´ ∈ B×, Φ · ´(v) := Φ(´v´−1). Note that, since ℓ ∤ N , R ∩ ³R³−1 is an Eichler

Z[1/p]-order. Hence, by strong approximation ([Vig80, Ch. III, §4]), the double coset space(
R̂ ∩ ³R̂³−1

)× \B̂×/B× has precisely one element. Using this, together with the fact that

R ∩ ³R³−1 has an element of reduced norm p ([BD96, Lemma 1.5]), we deduce: for the

same {¶j}j ¢ Γ as above R̂× = ⊔j(R̂ ∩ ³R̂×³−1)¶j. Hence, R̂×³−1R̂× = ⊔jR̂×³−1¶j and

it follows from there that Tℓ(Φ) is R̂×-invariant. It follows from this description that the

Hecke action preserves the subspace of special Schwartz–Bruhat functions.

Lemma 2.3.1. Let Φ be a Schwartz–Bruhat function on VAp,∞ invariant under R̂×. The

following identity of divisors holds:

Tℓ(∆Φ,Γ(D)) = ∆Tℓ(Φ),Γ(D).

Proof. Using that Γ is torsion-free, the equalities

Tℓ(∆Φ,Γ(D)) = (Ã2,∗ ◦ ³ ◦ Ã∗
1) (∆Φ,Γ(D))

= (Ã2,∗ ◦ ³) (∆Φ,³−1Γ³∩Γ(D))

= Ã2,∗ ◦ ³∆Φ·³−1,Γ∩³Γ³−1(D)

= ∆Tℓ(Φ),Γ(D)

can be proven in the same way as [Kud97, Prop. 5.9 and Prop. 5.10].

When it is clear from context that we are viewing Φ as a Γ-invariant Schwartz–Bruhat

function, we simply write ∆Φ(D) (resp. GΦ) to denote ∆Φ,Γ(D) (resp. GΦ,Γ).



Section 3

Modularity of degrees of Heegner

divisors

Fix a special Schwartz–Bruhat function Φ. In this section, we prove that

deg(GΦ)(q) = Φ(0) deg(L() +
∑

D∈DS

deg(∆Φ(D))qD

is a modular form by comparing deg(GΦ) to a genus theta series attached to V .

3.1 Ternary theta series and Siegel–Weil theorem

Fix L0, . . . , Lr unimodular Zp-lattices in VQp that give a set of representatives of Γ\T0.

For every i consider the ternary theta series attached to the Schwartz–Bruhat function

Φ¹ 1Li on VA∞

Θi =
∑

v∈V

Φ(v)1Li(v)qQ(v).

Note that theta series Θi only depends on the class of Li in R×\T0. Since Φ is invariant

under K0(4N/p)(p) and Li is a unimodular Zp-lattice, Φ¹1Li is invariant under K0(4N/p).

It is well known that Θi is a modular form of weight 3/2 and level Γ0(4N/p) for every i.

(See for example Theorem 4.1 of [Bor98].) Define the modular form

EΦ :=
r∑

i=1

Θi.

The following lemma relates the degrees of those ∆Φ(D) with ordp(D) ∈ {0, 1} with the

corresponding Fourier coefficients of EΦ.

Lemma 3.1.1. Let D ∈ DS, then:

1. if ordp(D) = 0, then 2aD(EΦ) = deg(∆Φ(D)), and
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2. if ordp(D) = 1 then, aD(EΦ) = deg(∆Φ(D)).

Proof. Since Γ is torsion-free, it does not stabilize any vertex of T0. Thus, Lemma 2.2.1

implies that

r⊔

i=1

{v ∈ V ∩ Li | Q(v) = D} ∼−−→ {v ∈ Γ\V | Q(v) = D}

v 7−→ [v]

is bijective if ordp(D) = 0 and surjective and two-to-one if ordp(D) = 1, which implies

the assertion.

Let M ∈ Z>0 and k such that 2k ∈ Z>0. When k is a half-integer, we will always

assume that the level M is divisible by 4. Denote by Mk(Γ0(M)) (resp. Sk(Γ0(M))) the

space of modular forms (resp. cusp forms) forms of weight k and level Γ0(M). Consider

the subspaces Mk(Γ0(M),Z) (resp. Sk(Γ0(M),Z)) of forms whose q-expansion has integer

coefficients and, for any abelian group A, put

Mk(Γ0(M), A) := Mk(Γ0(M),Z)¹Z A and Sk(Γ0(M), A) := Sk(Γ0(M),Z)¹Z A.

We view these as subspaces of the group A[[q]] of formal q-series with coefficients in A.

By [SS77, Lemma 8] there exists a basis of Mk(Γ0(M)) consisting of forms with integer

coefficients. Hence, the natural homomorphisms

Mk(Γ0(M),C)
∼−−→Mk(Γ0(M)) and Sk(Γ0(M),C)

∼−−→ Sk(Γ0(M))

are bijective. We now introduce several operators acting on M3/2(Γ0(M), A). For that let

f =
∑

ng0

anq
n ∈ A[[q]]

be a formal q-series with coefficients in A. Following Shimura ([Shi73, Theorem 1.7]),

define

Tp2(f) :=
∑

ng0

(
ap2n +

(
−n
p

)
an + pan/p2

)
qn,

Up2(f) :=
∑

ng0

ap2nq
n,

and put Vp2f := Tp2f − Up2f . Now suppose that f ∈M3/2(Γ0(M), R) is a modular form.

Then Tp2f ∈M3/2(Γ0(M), R) if p ∤M and, in case p |M , we have Up2f ∈M3/2(Γ0(M), R).

Proposition 3.1.2. The modular form EΦ is an Eisenstein series of level Γ0(4N/p). In

particular, it satisfies Tp2(EΦ) = (p+ 1)EΦ.



3.2 p-stabilization of the Eisenstein series 21

Proof. Strong approximation implies that the modular form EΦ is the genus theta function

associated to the Schwartz–Bruhat function Φ¹ 1Li . Thus EΦ is an Eisenstein series by

the Siegel–Weil theorem ([Kud03, Theorem 4.1 (ii)]). A direct proof of this fact can be

found in [KK22, Corollary 4.3]. Moreover, since Φ is special, Theorem 4.2 of loc.cit. shows

that EΦ is an eigenvector of Tp2 with eigenvalue (p+ 1).

3.2 p-stabilization of the Eisenstein series

Since Φ is special, (2.4) implies that

Up2(GΦ(q)) = GΦ(q).

We proceed to modify EΦ so that it becomes invariant under Up2 as well. For that, put

E1
Φ := EΦ − Vp2(EΦ) ∈M3/2(Γ0(4N)).

Corollary 3.2.1. We have Up2(E1
Φ) = E1

Φ.

Proof. Since (Up2 ◦ Vp2)(EΦ) = pEΦ (which can be verified directly from the description

of Up2 and Vp2 given above), we have

Up2(E1
Φ) = Up2(EΦ)− pEΦ.

Using that Up2 = Tp2 − Vp2 and Proposition 3.1.2 yields the desired result.

We can finally prove the main result of this section.

Proposition 3.2.2. The equality deg(GΦ)(q) = E1
Φ holds. In particular, deg(GΦ)(q) is

an Eisenstein series of weight 3/2 and level Γ0(4N).

Proof. By Lemma 3.2.1, the equality Up2(E1
Φ) = E1

Φ holds. On the other hand, since Φ is

special we have deg(∆Φ(Dp2)) = deg(∆Φ(D)) for all D. Hence, it is enough to verify that

the Fourier coefficients of E1
Φ and of deg(GΦ) are equal in the following cases:

• If ordp(D) = 1, the second point of Lemma 3.1.1 implies

aD(E1
Φ) = aD(EΦ) = deg(∆Φ(D)).

• If ordp(D) = 0 and
(
−D
p

)
= −1, the first point of Lemma 3.1.1 gives

aD(E1
Φ) = 2aD(EΦ) = deg(∆Φ(D)).
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• If ordp(D) = 0 and
(
−D
p

)
= 1, one calculates

aD(E1
Φ) = aD(EΦ)− aD(EΦ) = 0.

On the other hand, we have that ∆Φ(D) = 0, as GΦ(q) is supported only on

non-negative integers that belong to DS.

• If D = 0, we have a0(E
1
Φ) = Φ(0)(1− p)r, where we recall that r = #(Γ\T0). Now,

since Γ is torsion-free, it follows that Γ\T is a (p + 1)-regular graph. Thus, we

readily compute its first Betti number

g(Γ\T ) = 1−#(Γ\T0) + #(Γ\T1) = 1− r +
p+ 1

2
r,

which by [FvdP04, Theorem 5.4.1] equals the genus g of X. The degree of the

cotangent bundle of X is equal to 2g − 2. This implies that

a0(E
1
Φ) = Φ(0)(1− p)r = Φ(0)(2− 2g) = Φ(0)deg(L().

Therefore, we obtain the desired equality deg(GΦ) = E1
Φ.



Section 4

The Abel–Jacobi map

Because the curve X is a Mumford curve over Qp2 , its Jacobian, denoted by J , has

purely toric reduction and admits a concrete description in terms of equivalence classes of

automorphy factors of rigid meromorphic functions in Hp. In this section, we explain how

the class in J of a degree zero divisor can be described explicitly in these terms. Then,

we introduce the notion of divisors of strong degree 0, for which there exists a preferred

choice of automorphy factor describing its class in J . Finally, we use this notion to reduce

Theorem 2.2.4 to the case where all divisors appearing as coefficients of the generating

series GΦ have strong degree 0.

4.1 Definition and properties of the Abel–Jacobi map

A formal divisor on Hp is a formal, possibly infinite Z-linear combination of points in Hp.

A formal divisor

D̂ =
∑

x∈Hp

mx(x)

is said to be discrete if the formal divisor

D̂ ∩ A :=
∑

x∈A

mx(x)

is an actual divisor, i.e., involves a finite sum for all standard affinoid subsets A ¢Hp.

The set of all discrete formal divisors on Hp is denoted by Div (Hp). Denote by Div(Hp)

(resp. Div0(Hp)) the subset of finite divisors (resp. finite divisors of degree 0). The quotient

map Ã : Hp → Γ\Hp induces pushforward and pullback maps

Ã∗ : Div(Hp) −→ Div(Γ\Hp), Ã∗ : Div(Γ\Hp) −→ Div (Hp),
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since Γ acts on Hp with discrete orbits. Given ∆ ∈ Div(X(Cp)), let D ∈ Div(Hp) and

D̂ ∈ Div (Hp) be (formal) divisors satisfying

Ã∗(D) = ∆, D̂ = Ã∗(∆). (4.1)

The divisor D is not unique, while the formal divisor D̂ is completely determined by ∆.

Given any degree zero divisor D on CV (Cp) ≃ P1(Cp), there is a rational function fD

on CV (Cp) having D as a divisor, which is unique up to a multiplicative constant. A

rational function f is extended multiplicatively to any divisor D =
∑
x∈CV (Cp) mx · (x) by

setting

f(D) :=
∏

x∈CV (Cp)

f(x)mx .

Definition 4.1.1. The Weil symbol attached to two degree zero divisors D0 and D1 on

CV (Cp) with disjoint supports is the quantity

[D0; D1] := fD0(D1) ∈ Cp.

The Weil symbol generalises the familiar cross-ratio which one recovers when D0 and

D1 are both differences of two points, and satisfies the following familiar properties:

1. It is bilinear: for all degree zero divisors D0, D1 and D2

[D0; D1 + D2] = [D0; D1]× [D0,D2], [D0 + D1; D2] = [D0; D2]× [D1; D2],

2. It is B×
Cp-equivariant:

[µD0; µD1] = [D0; D1] for all µ ∈ B×
Cp .

3. It is symmetric (Weil reciprocity):

[D0; D1] = [D1; D0].

4. Given any pair D0 and D1 of degree zero divisors on Hp for which the support of

D0 is disjoint from the Γ-orbit of the support of D1, the infinite product

[D0; D1]Γ :=
∏

µ∈Γ

[D0; µD1]

converges absolutely in C×
p . (See page 47 of [GvdP80].)
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The quantity [D0; D1]Γ is called the modular Weil symbol attached to the divisors D0

and D1 on Hp and to the discrete p-arithmetic group Γ. It can be used to describe the

Jacobian of X as follows: let L be a complete extension of Qp2 , D ∈ Div0(Hp(L)) a

divisor of degree 0 and choose ¸ ∈Hp(L) such that (¸) and ³D have disjoint support for

all ³ ∈ Γ. Then, define ¹D via

¹D(z) = [(z)− (¸); D ]Γ ∀z ∈Hp(L).

Note that for µ ∈ Γ one gets

¹D(µz)

¹D(z)
= [(µz)− (z); D ]Γ = [(µ¸)− (¸); D ]Γ ∈ L×, (4.2)

where in the second equality we used that the modular Weil symbol is invariant under the

action of Γ on any of the two divisors, and therefore [(µz)−(µ¸); D ]Γ = [(z)−(¸); D ]Γ, which

implies the desired equality by the linearity of the Weil symbol. Thus, the automorphy

factor in (4.2) is independent of z. We then denote

jD(µ) = [(µ¸)− (¸); D ]Γ. (4.3)

The function jD defines an element in Hom(Γ, L×) = Hom(Γab, L
×), where Γab is the

abelianization of Γ. Note that the group Γab is a finitely generated free abelian group

of rank equal to the genus g of the Shimura curve X. We need to introduce one more

ingredient, the so-called p-adic period pairing. Define

ïï·, ·ðð : Γ× Γ→ C×
p ,

by choosing arbitrary base points Ä1, Ä2 ∈Hp that are not Γ-equivalent and setting

ïïµ1, µ2ðð := [(µ1Ä1)− (Ä1); (µ2Ä2)− (Ä2)]Γ.

In a similar way as above, it can be seen that this expression does not depend on the

choice of Ä1 and Ä2, and is a homomorphism in each argument. Moreover, it descends

to a pairing ïï·, ·ðð : Γab × Γab → Q×
p , which gives an embedding (see VI.2 and VIII.3 of

[GvdP80])

j : Γab ↪−→ Hom(Γab,Q
×
p ) ≃ (Q×

p )g.

Now, for a given ∆ ∈ Div0(Γ\Hp(L)), choose D ∈ Div0(Hp(L)) such that Ã∗D = ∆

and define

AJ: Div0(Γ\Hp(L)) −→ Hom(Γab, L
×)/j(Γab), ∆ 7−→ [jD ].

It is a calculation to verify that the equivalence class of jD is independent of the choice

of lift of ∆, showing that the map AJ is well-defined. Remember that J denotes the

Jacobian of the curve X.
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Proposition 4.1.2. The map AJ defined above is trivial on the group of principal divisors

and, for every complete extension L of Qp2, it induces an identification

J(L) ≃ Hom(Γab, L
×)/j(Γab).

Moreover, if L/Qp2 is a Galois extension, the identification is Gal (L/Qp2)-equivariant.

Proof. See VI.2. and VIII.4 of [GvdP80].

In view of the previous proposition, AJ can be interpreted as a p-adic Abel–Jacobi map.

We also note that, by the positive definiteness of the pairing ordp◦ïï·, ·ðð (see VI.2 and VIII.3

of [GvdP80]), the natural homomorphism from Hom(Γab,Z
×
p2) to Hom(Γab,Q

×
p2)/j(Γab) is

an injection, whose image has finite index. This gives the explicit description

J(Qp2)Q ≃ H1(Γab,Z
×
p2)Q.

4.2 Divisors of strong degree 0

For any vertex L ∈ T0, consider the affinoid AL := red−1(L) ¢ Hp and the wide open

WL ¢Hp given as the preimage by red of the union of the vertex L and all the (open)

edges of T that have L as one of its endpoints.

Definition 4.2.1. Let D be a finite divisor on Hp.

1. D is of strong degree 0 in the even sense if D ∩WL is of degree 0 for every even

vertex L ∈ T0, and D ∩ AL is of degree 0 for every odd vertex L ∈ T0.

2. D is of strong degree 0 in the odd sense if D ∩WL is of degree 0 for every odd vertex

L ∈ T0, and D ∩ AL is of degree 0 for every even vertex L ∈ T0.

A divisor ∆ ∈ Div(Γ\Hp) is of strong degree zero if the following equivalent conditions

hold:

1. There exists divisors De,Do ∈ Div(Hp) of strong degree 0 in an even and odd sense

respectively such that Ã∗(De) = Ã∗(Do) = ∆.

2. The formal divisor D̂ = Ã∗∆ satisfies that, for every L ∈ T0, the divisors D̂ ∩
WL and D̂ ∩ AL have degree 0.

We denote by Div0
s(Γ\Hp) the group of divisors of strong degree 0 on Γ\Hp. We also

denote Div0
s,e(Hp) (resp. Div0

s,o(Hp)) the group of divisors of strong degree 0 on Hp in an

even (resp. odd) sense. The motivation for these notions is explained in the next lemma.
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Lemma 4.2.2. Let ∆ be an element of Div0
s(Γ\Hp). The homomorphism jDe ∈ Hom(Γab,C

×
p )

does not depend on a choice of De ∈ Div0
s,e(Hp) with Ã∗(De) = ∆. In particular, the

morphism

Div0
s(Γ\Hp) −→ Hom(Γab,C

×
p ), ∆ 7−→ jDe ,

is a well-defined lift of the restriction of AJ to Div0
s(Γ\Hp). The same is true if one

replaces e by o everywhere.

Proof. Let D , D ′ ∈ Div0
s,e(Hp) be such that Ã∗D = Ã∗D

′ = ∆. By the strong degree 0

assumption there exist vertices L1, . . . , Lr ∈ T0 and a decomposition

D = D1 + · · ·+ Dr

such that for 1 f i f r the divisor Di is of degree 0 and supported on

1. WLi if Li is an even vertex, or

2. ALi if Li is an odd vertex.

Since jDj = jµDj
, for every µ ∈ Γ, we can suppose that the vertices L1, . . . , Lr are not

Γ-equivalent. Proceeding similarly for D ′, there exist lattices L′
1, . . . , L

′
r′ ∈ T0 and degree

0 divisors D ′
1, . . . ,D

′
r′ ∈ Div0(Hp) satisfying the same conditions as above. We have

D̂ =
r∑

i=1

∑

³∈Γ

³Di =
r′∑

i=1

∑

³∈Γ

³D
′
i .

For ³ ∈ Γ, the divisor ³Di has support in W³Li if Li is even and has support in A³Li if

Li is odd. Note that these supports are disjoint when i varies from 1 to r and ³ varies

over Γ, as Γ does not stabilize any vertex because it is torsion-free. Moreover, the same

holds for the divisors ³D ′
i . Thus, we conclude that r = r′ and there exist ³1, . . . , ³r ∈ Γ

such that

Di = ³iD
′
i

for every i (after rearranging terms, if needed). We therefore have that jDi = jD ′
i

for all i

and the equality jD = jD ′ follows.

If ∆ ∈ Div0
s(Γ\Hp) is a divisor supported on preimages of vertices by the reduction

map, both lifts De and Do are divisors of strong degree 0 in an even sense and in an odd

sense simultaneously. We will sometimes drop the subindices e and o in this case.



4.3 Reduction of theorem to convenient functions 28

4.3 Reduction of theorem to convenient functions

Recall the action of TN on R̂×-invariant Schwartz–Bruhat functions introduced in Section

2. We can similarly define an action of TN on the space Funct(Γ\T0,Z) of Γ-invariant

integral functions on T0.

Definition 4.3.1. A Schwartz–Bruhat function Φ on VAp,∞ is convenient if it is special,

Φ(0) = 0, and for every D ∈ DS the divisor ∆Φ(D) is of strong degree 0.

Lemma 4.3.2. Let Φ be a special Schwartz–Bruhat function and let T ∈ TN be a Hecke

operator that annihilates the space Funct(Γ\T0,Z). Then, the Schwartz–Bruhat function

T (Φ) is convenient.

Proof. For L ∈ T0, denote by ¶L the characteristic function of L. Define the homomorphism

degT0
: Div(Hp)→ Funct(T0,Z) by

degT0
((P )) =




¶L, if red(P ) = L ∈ T0,

¶L + ¶L′ if red(P ) = (L,L′) ∈ T1.

This morphism is B×-equivariant, hence induces a TN -equivariant morphism

degT0
: Div(Γ\Hp) −→ Funct(Γ\T0,Z).

We proceed to verify that ∆T (Φ)(D) is of strong degree 0 for a fixed D ∈ DS. From the

Hecke equivariance of degT0
, we have

degT0
(∆T (Φ)(D)) = degT0

(T (∆Φ(D))) = T (degT0
(∆Φ(D))) = 0,

where we used Lemma 2.3.1 in the first equality. Since ∆T (Φ)(D) is supported on preimages

of vertices (resp. edges) if ordp(D) is even (resp. odd), the fact that degT0
(∆T (Φ)(D)) = 0

implies that ∆T (Φ)(D) is of strong degree 0. Finally, from the fact that T sends the

constant functions on Funct(Γ\T0,Z) to 0, it follows that (T (Φ))(0) = 0.

Let GΦ(q) ∈ Pic(Γ\Hp)[[q]] be the generating series introduced in Theorem 2.2.4. We

now use the Jacquet–Langlands correspondence to justify that to prove Theorem 2.2.4 it

is enough to prove it for the particular case where Φ is convenient.

Proposition 4.3.3. The following statements are equivalent:

1. The generating series GΦ(q) is a modular form of weight 3/2 and level Γ0(4N) for

every special Schwartz–Bruhat function Φ.
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2. The generating series GΦ(q) is a cusp form of weight 3/2 and level Γ0(4N) for every

convenient Schwartz–Bruhat function Φ.

Proof. Clearly (1) implies (2). We justify the reverse implication. By Jacquet–Langlands,

we have:

• The action of TN on Funct(Γ\T0,Z) factors through the action of the Hecke algebra

(away from N) on M2(Γ0(N/p),Q).

• The action of TN on J(Cp)Q factors through the action of the Hecke algebra (away

from S) on the space of forms in S2(Γ0(N),Q) that are new at p.

Let ℓ be a prime such that ℓ ̸∈ S and denote by Tℓ ∈ TN the corresponding Hecke

operator. From the second point and the fact that the map Tℓ − ℓ− 1 is an isomorphism

on S2(Γ0(N),Q), as the eigenvalues of Tℓ acting on S2(Γ0(N),Q) have absolute value

less than or equal to 2
√
ℓ (see [Eic54], [Shi58], and [Igu59]), we deduce that we have an

isomorphism

Pic(X)(Cp)Q
∼−−→ J(Cp)Q ·Q, [∆] 7−→ ((Tℓ − ℓ− 1)∆, deg(∆)) .

Let Φ be a special Schwartz–Bruhat function. Since we proved that deg(GΦ) is a modular

form in Proposition 3.2.2, after replacing Φ by (Tℓ − ℓ− 1)(Φ) (and by Lemma 2.3.1) we

may suppose that GΦ(q) ∈ J(Cp)Q[[q]]. Now, choose T ∈ TN satisfying

• T annihilates Funct(Γ\T0,Z) and

• T : J(Cp)Q → J(Cp)Q is a bijection.

Such a T ∈ TN exists because there are Hecke operators acting on M2(Γ0(N),Q) which

are 0 on M2(Γ0(N/p),Q) and are isomorphisms on the subspace of cusp forms which

are new at p. By the first property and Lemma 4.3.2, T (Φ) is convenient and therefore

GT (Φ)(q) = T (GΦ(q)) is a modular form by hypothesis. Here T (GΦ(q)) denotes the

q-expansion obtained by applying T to each of the coefficients of GΦ(q). The fact that

GΦ(q) ∈ J(Cp)Q[[q]] is a modular form follows from the bijectivity of T on the Jacobian.

Let Φ be a convenient Schwartz–Bruhat function. For every D ∈ DS, fix DΦ(D)e ∈
Div0

s,e(Hp) and DΦ(D)o ∈ Div0
s,o(Hp) such that Ã∗DΦ(D)e = Ã∗DΦ(D)o = ∆Φ(D). Note

that, since the cycles ∆(v) for v ∈ V introduced in Section 2.2 are invariant under the

action of Aut(Cp/Qp), these lifts of ∆Φ(D) can be chosen such that they are invariant

under the action of Aut(Cp/Qp). It follows from there that the homomorphisms jDΦ(D)e

and jDΦ(D)o take values in Q×
p . Consider the generating series

G+
Φ(q) =

∑

D∈DS

jDΦ(D)e · jDΦ(D)oq
D ∈ Hom(Γab,Q

×
p )[[q]].
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Note that aD(G+
Φ(q)) = aDp2n(G+

Φ(q)) for all n g 0 since Φ is special.

Observe that by Lemma 4.2.2, if we apply the quotient map

Hom(Γab,Q
×
p ) −↠ Hom(Γab,Q

×
p )/j(Γ)

to each of the coefficients of G+
Φ(q) we obtain 2AJ(GΦ)(q). Here 2AJ(GΦ)(q) is the

generating series obtained by applying 2AJ to each of the coefficients of GΦ(q). Hence, by

Proposition 4.1.2 the modularity of G+
Φ(q) implies the modularity of GΦ(q). The remainder

of this section is dedicated to proving modularity of G+
Φ(q).

The advantage of working with G+
Φ(q) over AJ(GΦ)(q) is that the group of continuous

homomorphisms from Hom(Γab,Q
×
p ) to Qp can be described explicitly. Indeed, generators

of this space are given by homomorphisms of the form j 7→ logp(j(µ)) respectively

j 7→ ordp(j(µ)) with µ ∈ Γ, where logp is the branch of the p-adic logarithm for which

logp(p) = 0.



Section 5

Values of p-adic theta functions

The goal of this section is to give an explicit expression for the quantity jD(µ) when

µ ∈ Γ is hyperbolic at p and D is a divisor on Γ\Hp of strong degree 0. The formulas

we will present have a similar flavor to the ones for toric values of lifting obstructions of

rigid meromorphic cocycles given in [DV22, Section 5.3]. There, the orthogonal group of

signature (3, 0) is replaced by an orthogonal group of signature (1, 2).

Fix an element µ ∈ Γ that is hyperbolic at p. It has two distinct fixed points

À+, À− ∈ CV (Qp)

on the boundary of Hp. We order them in such a way that À+ and À− are the attractive

and repulsive fixed points of µ, i.e.,

lim
M→+∞

µMÄ = À+, lim
M→−∞

µMÄ = À−,

for all Ä ∈Hp.

Lemma 5.0.1. For every D ∈ Div0(Hp) the following equality holds:

jD(µ) =
∏

³∈µZ\Γ

[
(À+)− (À−);³D

]
.

Proof. Recall first from (4.3) that

jD(µ) =
∏

³∈Γ

[(³µÄ)− (³Ä); D ] ,

where Ä is an arbitrary base point in Hp. Since this infinite product converges absolutely,

it can be rearranged by grouping together the factors that belong to the same coset for

µZ in Γ

jD(µ) =
∏

³∈Γ/µZ




∞∏

i=−∞

[
(³µi+1Ä)− (³µiÄ); D

]

 .
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The innermost product on the right hand side is equal to

lim
M→∞

M∏

i=−M

[
(³µi+1Ä)− (³µiÄ); D

]
= lim

M→∞

[
(³µM+1Ä)− (³µ−MÄ); D

]

=
[
(³À+)− (³À−); D

]
.

It follows that

jD(µ) =
∏

³∈Γ/µZ

[
(³À+)− (³À−); D

]
=

∏

³∈µZ\Γ

[
(À+)− (À−);³D

]
,

where the last equation was obtained by substituting ³ for ³−1 and exploiting the fact

that the Weil Symbol is B×
Qp-equivariant.

5.1 The quotient µZ\T
We will rewrite the infinite product of Lemma 5.0.1 by making an explicit choice of coset

representatives for µZ in Γ, well adapted to the calculation at hand. To make this choice,

we will exploit the action of µZ on the Bruhat-Tits tree T . We explain some of the

properties of such action.

Since the element µ ∈ Γ is hyperbolic at p, and therefore its image in SL2(Qp)

diagonalizes by the fixed isomorphismBQp ≃ M2(Qp), we deduce that it acts by conjugation

on VQp with three distinct eigenvalues ϖ, 1, and ϖ−1, where ϖ is a global p-unit of norm 1

in the quadratic imaginary field that splits the characteristic polynomial of µ (relative to an

embedding of this quadratic imaginary field into Qp). The valuation ordp(ϖ) = 2t > 0 is

an even integer. Letting V [¼] denote the eigenspace in V on which µ acts as multiplication

by ¼, one obtains the decomposition

VQp = V [ϖ]· V [ϖ−1]· V [1].

The first two eigenspaces are isotropic and together generate a hyperbolic plane in VQp

whose orthogonal complement is V [1]. The fixed points À+ and À− of µ in CV (Qp)

correspond to the isotropic lines V [ϖ] and V [ϖ−1] respectively. Let w+ be a generator of

V [ϖ], let w− be a generator of V [ϖ−1], and e a generator of V [1]. It follows from this

discussion that we can scale these vectors so that

L0 := ïw+, w−, eð

is a unimodular Zp-lattice of VQp . Then, L0 admits an eigenspace decomposition under

the conjugation action of µ as a module over Zp. The same is true for the lattices

Lj := ïw+
j := pjw+, w−

j := p−jw−, eð, j ∈ Z.
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The unimodular lattices Lj and Lj+1 are p-neighbours, and the element µ sends Lj to

Lj+2t. The sequence of successive p-neighbours

gµ =
{
. . . , L−2, L−1, L0, L1, L2, L3, . . .

}

determines an infinite geodesic on T which is globally preserved by µ. We suppose that

the scaling of the eigenvectors w+, w− and e are chosen so that the lattice L0 is an even

vertex of T .

Definition 5.1.1. Let L ¦ VQp be a unimodular Zp-lattice in VQp . The lattice Li ∈ gµ
that is closest to L is called the parent of L. The distance from L to its parent Li is called

the depth of L with respect to µ.

A fundamental region for µZ\T0 can therefore be defined by setting

T0,µ :=
{
L ∈ T0 with Parent(L) ∈ {L0, L1, L2, . . . L2t−1}

}
.

The subset T0,µ ¢ T can be written as an increasing union of finite subsets

T0,µ =
⋃

ng0

T fn
0,µ , T fn

0,µ := {L ∈ T0,µ with depth(L) f n}.

Let Aµ respectively Afn
µ be the subsets of Hp given as the preimages of T0,µ respectively

T fn
0,µ under the reduction map. The set Aµ can thus be expressed as an increasing union

of affinoid subsets,

Aµ =
⋃

ng0

Afn
µ . (5.1)

Using T0,µ, we proceed to give several fundamental regions for µZ\T1. Define T1,µ,e to

be the set of edges in T1 such that its even vertex is in T0,µ . For a given vertex L ∈ T0, let

WL ¢ T1 be the set of open edges that have L as one of its endpoints. We then have,

T1,µ,e =
⋃

ng0

T fn
1,µ,e, T fn

1,µ,e :=
⋃

L even

L∈T fn
0,µ

WL.

Let Wµ,e and Wfn
µ,e be the preimage by red of T1,µ,e and T fn

1,µ,e, respectively. We then have

Wµ,e =
⋃

ng0

Wfn
µ,e . (5.2)

Observe that for every n the set Wfn
µ,e can be written as the disjoint union of sets of the

form WL − AL, where L runs over even vertices in T fn
0,µ . Similarly, define T1,µ,o, T fn

1,µ,o,

Wµ,o and Wfn
µ,o by replacing even by odd everywhere.
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5.2 Formula for jD(µ) for divisors of strong degree 0

With the notations given in the previous section in place, we can prove the following

formulas.

Proposition 5.2.1. Let D be a divisor on Hp of strong degree zero supported on preimages

of vertices of T under the reduction map. Let D̂ =
∑
³∈Γ ³D ∈ Div (Hp). Then,

jD(µ) = lim
n→∞

[
(À+)− (À−); D̂ ∩ Afn

µ

]
.

Proof. Since D is of strong degree 0 we can write D =
∑r
i=1 DLi , where DLi is a degree 0

divisor supported on ALi and the Li are vertices in T0. By Lemma 5.0.1, we have

jD(µ) =
∏

³∈µZ\Γ

[
(À+)− (À−);³D

]
=

r∏

i=1

∏

³∈µZ\Γ

[
(À+)− (À−);³DLi

]
. (5.3)

Now, it follows from the definition of T0,µ , that for every i ∈ {1, . . . , r} and for every class

[³] ∈ µZ\Γ, there is precisely one representative µki,³³ such that µki,³³DLi is supported

on Aµ. This implies that if we write

D̂ =
∑

³∈Γ

³D =
r∑

i=1

∑

³∈µZ\Γ

+∞∑

k=−∞

µk³DLi ,

we have

D̂ ∩ Aµ =
r∑

i=1

∑

³∈µZ\Γ

µki,³³DLi .

On the other hand, using (5.3) and that À+ and À− are fixed by µ we can write

jD(µ) =
r∏

i=1

∏

³∈µZ\Γ

[
(À+)− (À−); µki,³³DLi

]
.

Combining the last two equalities, and specifying the order of multiplication on the

last expression for jD(µ) given by the increasing union of (5.1), we obtain the desired

result.

We can obtain similar expressions for jD(µ) when D is a divisor of strong degree 0

supported on preimages of edges by the reduction map.

Proposition 5.2.2. Let D be a divisor on Hp supported on preimages of edges of T by

the reduction map. Let D̂ =
∑
³∈Γ ³D ∈ Div (Hp). We have:

1. If D = De is of strong degree 0 in an even sense, then

jDe(µ) = lim
n→+∞

[
(À+)− (À−); D̂ ∩Wfn

µ,e

]
.
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2. If D = Do is of strong degree 0 in an odd sense, then

jDo(µ) = lim
n→+∞

[
(À+)− (À−); D̂ ∩Wfn

µ,o

]
.

Proof. We only give the proof for the first case, the second being similar. Write D =
∑r
i=1 DLi , where DLi is a degree 0 divisor supported onWLi−ALi and the set {L1, . . . , Lr}

consists of even vertices of T0. Hence, we have

jD(µ) =
∏

³∈µZ\Γ

[
(À+)− (À−);³D

]
=

r∏

i=1

∏

³∈µZ\Γ

[
(À+)− (À−);³DLi

]
.

Now, for every class [³] ∈ µZ\Γ and Li even vertex as above, there exists precisely one

representative µki,³³ such that µki,³³Li ∈ T0,µ. It follows from there that the divisor

µki,³³DLi is supported on µki,³³WLi − µki,³³ALi = Wµki,³³Li
− Aµki,³³Li ¢ Wµ,e. This

implies that if

D̂ =
r∑

i=1

∑

³∈µZ\Γ

+∞∑

k=−∞

µk³DLi ,

we have

D̂ ∩Wµ,e =
r∑

i=1

∑

³∈µZ\Γ

µki,³³DLi .

On the other hand,

jD(µ) =
∏

³∈µZ\Γ

[
(À+)− (À−); µki,³³DLi

]
. (5.4)

Note that Wfn
µ,e can be written as a union of sets of the form WLi −ALi , where the union

is over even vertices in T fn
0,µ . Hence, D̂ ∩ Wfn

µ,e is a degree 0 divisor (because D is of

strong degree 0). Moreover, the increasing union over n of the sets Wfn
µ,e covers Wµ,e,

as we deduced in (5.2). This implies that we can use these sets to specify an order of

multiplication on (5.4) to obtain the desired expression.



Section 6

Abel–Jacobi images of Heegner

divisors

We use the results of Section 5 to compute Abel–Jacobi images of the Heegner divisors

introduced in Section 2. More precisely, let Φ be a convenient Schwartz–Bruhat function

and fix D ∈ DS. Choose DΦ(D)e,DΦ(D)o divisors on Hp of strong degree 0 in an even and

odd sense respectively that lift ∆Φ(D) and let D̂Φ(D) = Ã∗∆Φ(D). If ∆Φ(D) is supported

on preimages of vertices under the reduction map, we suppose that DΦ(D)e = DΦ(D)o

and we will drop the subindices e and o. At last, let µ ∈ Γ be an element hyperbolic at p.

We will compute jDΦ(D)e · jDΦ(D)o(µ).

6.1 Values of theta functions of Heegner divisors

Since Φ is invariant under multiplication by p, we have ∆Φ(D) = ∆Φ(Dp2n) for every

n g 0. Therefore, we will assume here and for the rest of the section that D is an element

of DS with ordp(D) ∈ {0, 1}. In view of the notion of depth of a lattice with respect to µ,

which was introduced in Definition 5.1.1, the following definition will be relevant.

Definition 6.1.1. Let v ∈ V be a vector such that Q(v) = D. The depth of v with

respect to µ is

depth(v) := min
L∋v
{depth(L)},

where the minimum is taken over all unimodular Zp-lattices in VQp such that v ∈ L.

Note that by Lemma 2.2.1 there exist at most two unimodular Zp-lattices containing

v. If there is a unique unimodular lattice containing v, denote it by Lv ∈ T0. If there are

two unimodular lattices containing v, denote by ev ∈ T1 the edge connecting them.
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We now present the computation of jDΦ(D)e · jDΦ(D)o(µ), which is slightly different

according to the p-adic valuation of D. Let n g 1. If ordp(D) = 0, consider

D̂Φ(D) ∩ Afn
µ =

∑

Q(v)=D,

Lv∈T
fn

0,µ

Φ(v)∆(v),

where the sum is over the vectors v ∈ V . Since this divisor is of degree zero, as Φ is

convenient, the function on CV given by

À 7−→
∏

Q(v)=D,

Lv∈T
fn

0,µ

ïÀ̃, vðΦ(v),

where À̃ is any vector in the isotropic line generated by À in VCp , is well-defined and has

divisor equal to D̂Φ(D) ∩ Afn
µ . Therefore, if À̃+ and À̃− are vectors in VCp generating the

Cp-lines À+ and À− introduced in Section 5, Proposition 5.2.1 implies

jDΦ(D)(µ) = lim
n→∞

∏

Q(v)=D,

Lv∈T fn
0,µ

(
ïÀ̃+, vð
ïÀ̃−, vð

)Φ(v)

= lim
n→∞

∏

v∈µZ\V
Q(v)=D,

depth(v)fn

(
ïÀ̃+, vð
ïÀ̃−, vð

)Φ(v)

. (6.1)

Here, the second equality follows from the fact that the terms appearing in the expression

of the middle do not change if we replace v by µv. If ordp(D) = 1, we can proceed

similarly. In that case, the function on CV (Cp) given by

À 7−→
∏

Q(v)=D

ev∈T fn
1,µ,e

ïÀ, vðΦ(v)
∏

Q(v)=D

ev∈T
fn

1,µ,o

ïÀ, vðΦ(v)

has divisor equal to

D̂Φ(D) ∩Wfn
µ,e + D̂Φ(D) ∩Wfn

µ,o .

It then follows from Proposition 5.2.2 that

jDΦ(D)e · jDΦ(D)o(µ) = lim
n→+∞

∏

Q(v)=D

ev∈T fn
1,µ,e

(
ïÀ̃+, vð
ïÀ̃−, vð

)Φ(v) ∏

Q(v)=D

ev∈T
fn

1,µ,o

(
ïÀ̃+, vð
ïÀ̃−, vð

)Φ(v)

= lim
n→+∞

∏

v∈µZ\V
Q(v)=D

depth(v)fn−1

(
ïÀ̃+, vð
ïÀ̃−, vð

)Φ(v) ∏

v∈µZ\V
Q(v)=D

depth(v)fn

(
ïÀ̃+, vð
ïÀ̃−, vð

)Φ(v)

,

(6.2)

where the second equality is obtained by rearranging the terms of the products in the

following way. Recall that T fn
1,µ,e is the union of edges that have an endpoint in T0,µ which is
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even and at distance less than or equal to n from the geodesic gµ . Similarly, T fn
1,µ,o is given

by replacing even by odd in the definition above. It follows from this description that,

up to µZ-equivariance, the double product in the first equality considers vectors v ∈ V
such that ev is at distance less than or equal than n− 1 twice (as ev, or a µZ-translate of

it, belongs to both T fn
1,µ,e and T fn

1,µ,o). On the other hand, the double product of the first

equality considers v ∈ V such that ev is at distance equal to n exactly once (as ev belongs

to either T fn
1,µ,e and T fn

1,µ,o). The equality can be deduced from there and from the fact that

the expression ïÀ̃+, vðΦ(v)
/ïÀ̃−, vðΦ(v)

does not change if v is replaced by µv.

6.2 Vectors of length D in µZ\V
Recall that D ∈ DS is such that ordp(D) ∈ {0, 1}. We give a concrete choice of represen-

tatives of the quotient

{
v ∈ µZ\V

∣∣∣ Q(v) = D, depth(v) f n
}
. (6.3)

This will lead to a relation between jDΦ(D)(µ) and Fourier coefficients of theta series in

the next section. We begin by recalling some of the notation introduced in Section 5.1.

Recall that the conjugation action of µ on VQp diagonalizes, with eigenvalues {ϖ,ϖ−1, 1},
and that ordp(ϖ) = 2t ∈ 2Z. Let w+, w−, e be the corresponding eigenvectors, scaled so

that L0 = ïw+, w−, eð is a unimodular Zp-lattice of VQp . For j ∈ Z, let

w+
j := pjw+, w−

j := p−jw−

and consider the Zp-lattice Lj = ïw+
j , w

−
j , eð. Then, as discussed in Section 5, L0, L1, . . . , L2t−1

form a set of representatives modulo µZ of the vertices in the geodesic of T stabilized by

µ.

Define

L+
j [n] :=

{
v ∈ Lj ∩ V

∣∣∣ Q(v) = Dp2n and ïv, w+
j ð ∈ Z×

p

}

and define L−
j [n] in a similar way as above but replacing the symbol + by the symbol −

everywhere. The motivation for the definition of L+
j [n] and L−

j [n] is the following. Let

T +
j [n] be the subset of T = T0 ∪ T1 of elements x ∈ T that are at distance equal to n

from Lj and satisfy that:

1. If x = L is a vertex and Parent(L) = Lk, then k g j.

2. If x is an edge, for any of its endpoints L we have that if Parent(L) = Lk, then

k g j.
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Define T −
j [n] in a similar way but replacing the symbol g by the symbol f everywhere.

It then follows from the description of the action of µZ in T that the disjoint union
2t−1⋃

j=0

{
v ∈ V

∣∣∣ Q(v) = D, red(∆(v)) ¢ T +
j [n]

}

gives a set of representatives of (6.3). Similarly, the same holds if we replace the symbol

+ by the symbol −.

Lemma 6.2.1. The map

L+
j [n]

∼−−→
{
v ∈ V

∣∣∣ Q(v) = D, red(∆(v)) ¢ T +
j [n]

}
, u 7−→ u/pn

is bijective. The same result holds if we replace the symbol + by the symbol − everywhere.

Proof. We start proving that the map is well-defined. Let u ∈ L+
j [n] and let v = u/pn.

Since u is primitive, Lv (resp. ev) is at distance n from Lj if ordp(D) = 0 (resp. ordp(D) =

1). Moreover, the condition ïu,w+
j ð ∈ Z×

p implies that if for any unimodular lattice L

containing v we denote Parent(L) = Lk, we have k g j. Hence, red(∆(v)) ¢ T +
j [n].

The injectivity of the map is clear, so we are left to prove surjectivity. For that, let

v ∈ V be such that Q(v) = D and red(∆(v)) ¢ T +
j [n]. Since there is a unimodular

Zp-lattice in VQp containing v at distance n from Lj, we have that pnv ∈ Lj. Note that

ïpnv, w+
j ð ̸= 0. Indeed, for the sake of contradiction suppose that ïpnv, w+

j ð = 0. This

implies that

pnv = aw+
j + be,

for a, b ∈ Zp. Then,

µ · (pnv) = aϖw+
j + be.

Subtracting these two equations, we get that µv − v ∈ V is either 0 or it is an eigenvector

for the Q-linear action of µ on V of eigenvalue ϖ. Since µv − v ∈ V and ϖ ̸∈ Q, the only

possibility is that µv − v = 0. This implies that v ∈ ïeð, giving a contradiction with the

fact that
√
−D ̸∈ Qp. We can therefore choose i f j such that pnv ∈ L+

i [n]. Now, the

fact that the map is well-defined applied to the index i, together with the observation

that the sets T +
i [n] and T +

j [n] are disjoint if i ≠ j proves that i = j and we are done.

We can combine the information of Lemma 6.2.1 for j = 0, . . . , 2t− 1 to obtain the

following result.

Proposition 6.2.2. Let n g 0, we have a bijection

L+
0 [n] ∪ · · · ∪ L+

2t−1[n]
∼−−→

{
v ∈ µZ\V

∣∣∣ Q(v) = D, depth(v) f n
}

given by v 7→ [p−nv], where [p−nv] denotes the class of p−nv ∈ V modulo µZ. Moreover,

the same result is true if we replace the symbol + by the symbol −.
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Proof. By Lemma 6.2.1 we have that the map

L+
0 [n] ∪ · · · ∪ L+

2t−1[n]
∼−−→

2t−1⋃

j=0

{
v ∈ V

∣∣∣ Q(v) = D, red(∆(v)) ¢ T +
j [n]

}
, u 7−→ u/pn

is bijective. We conclude the proof by recalling that the right hand side gives a set of

representatives of {
v ∈ µZ\V

∣∣∣ Q(v) = D, depth(v) f n
}
.

As a consequence, we obtain the following expression for jDΦ(D)e · jDΦ(D)o(µ).

Theorem 6.2.3. Consider the same notation as above.

1. If ordp(D) = 0, we have

jDΦ(D)(µ) = lim
n→+∞

2t−1∏

j=0

∏
v∈L+

j
[n]ïw+

0 , vðΦ(v)

∏
v∈L−

j
[n]ïw−

0 , vðΦ(v)
.

2. If ordp(D) = 1, we have

jDΦ(D)e · jDΦ(D)o(µ) = lim
n→+∞

2t−1∏

j=0

∏
v∈L+

j
[n]∪L+

j
[n+1]ïw+

0 , vðΦ(v)

∏
v∈L−

j
[n]∪L−

j
[n+1]ïw−

0 , vðΦ(v)
.

Proof. Suppose that ordp(D) = 0. By (6.1) and Proposition 6.2.2, we have

jDΦ(D)(µ) = lim
n→+∞

2t−1∏

j=0

∏
v∈L+

j
[n]ïw+

0 , vp
−nðΦ(v)

∏
v∈L−

j
[n]ïw−

0 , vp
−nðΦ(v)

.

Here we used that w+
0 (resp. w−

0 ) generates the line À+ (resp. À−) and that Φ(pv) = Φ(v)

for every v ∈ V . Since the divisor DΦ(D) is of degree 0, the product of the factors p−nΦ(v)

is equal to 1, leading to the desired expression. The case when ordp(D) = 1 is proven in

an analogous way, but using (6.2), instead of (6.1).

6.3 Computation of p-adic valuations

We end the section by using the previous calculations to compute the p-adic valuation of

jDΦ(D)e · jDΦ(D)o(µ).

Proposition 6.3.1. Let Φ be a convenient Schwartz–Bruhat function. Then

ordp(jDΦ(D)e · jDΦ(D)o(µ)) = 0

for all µ ∈ Γ. In particular, we have

G+
Φ(q) ∈ Hom(Γ,Z×

p )[[q]].
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Proof. Using Theorem 6.2.3, together with the fact that ordp(ïw+
0 , vð) = −j if v ∈ L+

j [n],

and ordp(ïw−
0 , vð) = j if v ∈ L−

j [n], we deduce that it is enough to show that, for every

j ∈ {0, . . . , 2t− 1} and for every n g 0, we have

∑

v∈L+
j

[n]

Φ(v) +
∑

v∈L+
j

[n+1]

Φ(v) = 0

and that the same statement replacing the symbol + with − everywhere holds (which is

proven analogously). Note that the quantity on the left hand side can be interpreted as

follows. Denote by A+
j [n] the preimage of T +

j [n] under the reduction map. Then,

D̂Φ(D) ∩
(
A+
j [n] ∪ A+

j [n+ 1]
)

=
∑

v∈V
Q(v)=D

red(∆(v))¢T +
j

[n]

Φ(v)∆(v) +
∑

v∈V
Q(v)=D

red(∆(v))¢T +
j

[n+1]

Φ(v)∆(v),

and

deg
(
D̂Φ(D) ∩

(
A+
j [n] ∪ A+

j [n+ 1]
))

=
∑

v∈V
Q(v)=D

red(∆(v))¢T +
j

[n]

2Φ(v) +
∑

v∈V
Q(v)=D

red(∆(v))¢T +
j

[n+1]

2Φ(v)

=
∑

v∈L+
j

[n]

2Φ(v) +
∑

v∈L+
j

[n+1]

2Φ(v),

where in the last equality we used Lemma 6.2.1 together with the fact that Φ is invariant

under multiplication by p. Recall that for a given lattice L we defined the wide open

WL ¢Hp in Section 4.2. Since we have the disjoint union

A+
j [n] ∪ A+

j [n+ 1] =
⋃

L∈T +
j

[n+1]∩T0

WL ∪
⋃

L∈T +
j

[n]∩T0

AL

and ∆Φ(D) is of strong degree 0, the result follows.



Section 7

First order p-adic deformations of

ternary theta series

Fix a convenient Schwartz–Bruhat function Φ. By Proposition 6.3.1 above we know that

G+
Φ(q) belongs to Hom(Γab,Z

×
p )[[q]]. In order to prove modularity of G+

Φ(q) it is therefore

enough to prove that

logµ(G
+
Φ)(q) :=

∑

D∈DS

logp(jDΦ(D)e · jDΦ(D)o(µ))qD ∈ Qp[[q]]

is a modular form for every µ ∈ Γ hyperbolic at p, which we fix from now on. Here logp

denotes the branch of the p-adic logarithm such that logp(p) = 0. In this section, we

use µ and Φ to construct a p-adic family of theta series Θk, of weight k + 3/2 and level

Γ0(4N), satisfying the following two properties. First, Θ0 = 0. Second, if we denote

by Θ′
0 the derivative with respect to the p-adic variable k evaluated at k = 0, and eord

the so-called p-ordinary projector, then eord(Θ′
0) ∈ S3/2(Γ0(4N),Qp). Furthermore, the

generating series logµ(G
+
Φ)(q) is the projection to the Up2 = 1 eigenspace of 2eordΘ′

0. In

particular, it is a cusp form of weight 3/2 and level Γ0(4N), which proves Theorem 2.2.4.

7.1 Ordinary subspaces

Let k be a non-negative integer. For ℓ ∤ 2N denote by Tℓ2 the associated Hecke operator

acting on Sk+3/2(Γ0(4N),Z) and if ℓ | N denote by Uℓ2 the associated Hecke operator

acting on Sk+3/2(Γ0(4N),Z). We similarly consider the Hecke operators Tℓ if ℓ ∤ N , and

Uℓ if ℓ | N acting on S2k+2(Γ0(2N),Z). The following key theorem relates these spaces of

modular forms.

Theorem 7.1.1. For k g 0, we have an isomorphism

S : Sk+3/2(Γ0(4N),Q)
∼−−→ S2k+2(Γ0(2N),Q)
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which is Hecke-equivariant, i.e.

S ◦ Tℓ2 = Tℓ ◦S ∀ℓ ∤ 2N,

S ◦ Uℓ2 = Uℓ ◦S ∀ℓ | N.

Proof. The result follows from the work of Niwa [Niw77, §1 and Remark 4], the fact that

the C-span of Sk+3/2(Γ0(4N),Q) is equal to the space of cusp forms of weight k + 3/2

and level Γ0(4N) by the theorem of Serre and Stark in [SS77], together with the fact that

Hecke operators preserve Sk+3/2(Γ0(4N),Q). Although the calculations in [Niw77] are

done for k g 1, they are also valid for k = 0 as pointed out by Kohnen on page 59 of

[Koh82].

Consider the space Zp[[q]]¹Zp Qp equipped with the norm
∣∣∣∣
∑

ng0

anq
n

∣∣∣∣ = maxn{|an|}.

Since the eigenvalues of Up2 acting on Sk+3/2(Γ0(4N),Q) are algebraic integers, the

operator

eord : Sk+3/2(Γ0(4N),Zp) −→ Sk+3/2(Γ0(4N),Zp), f 7−→ lim
m→+∞

Um!
p2 (f)

is well-defined. Denote by Sord
k+3/2(Γ0(4N),Zp) the image of this map, and similarly define

Sord
k+3/2(Γ0(4N),Qp). We also consider the analogous definition for integral weight cusp

forms and use similar notation.

Proposition 7.1.2. The rank of the finitely generated modules Sord
k+3/2(Γ0(4N),Zp) is

constant as long as k varies over non-negative integers such that k ≡ 0 mod (p− 1)/2.

Proof. It is enough to prove that dimQpS
ord
k+3/2(Γ0(4N),Qp) is constant as long as k ∈ Zg0

and k ≡ 0 mod (p− 1)/2. It follows from Theorem 7.1.1 that we have an isomorphism

Sord
k+3/2(Γ0(4N),Qp)

∼−−→ Sord
2k+2(Γ0(2N),Qp).

But the dimensions of the right hand side are constant as long as k ≡ 0 mod (p − 1).

(See the proof of Theorem 3 in Section 7.2 of [Hid93].) The result follows.

7.2 Λ-adic forms of half-integral weight

We study the space of Λ-adic modular forms of half-integral weight and prove a classicality

result in this setting. We follow [Hid93] and [Hid95].
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Let Λ := Zp[[T ]] denote the Iwasawa algebra over Zp and put u = 1 + p ∈ 1 + pZp. A

Λ-adic cusp form of half-integral weight is a formal power series

F =
∑

ng1

Anq
n ∈ Λ[[q]]

such that there exists k0 (dependent on F ) satisfying that for all k g k0 and k ≡
0 mod (p− 1), the so-called weight k specialization

Fk := F (uk − 1) :=
∑

ng1

An(uk − 1)qn ∈ Zp[[q]],

belongs to Sk+3/2(Γ0(4N),Zp). We denote the space of such forms by P. We define

ordinary Λ-adic cusp forms of half-integral weight in the same way as above but replacing

Sk+3/2(Γ0(4N),Zp) by Sord
k+3/2(Γ0(4N),Zp), and we denote this space by Pord.

A key input to study the space Pord is the fact that rord = rankZpS
ord
k+3/2(Γ0(4N),Zp)

is constant as long as k g 0 and k ≡ 0 mod (p− 1), proven in Proposition 7.1.2.

Theorem 7.2.1. Pord is free of finite rank over Λ. In particular, rankΛ(Pord) f rord.

Proof. A proof of this statement can be found in Proposition 4 of [Hid95]. There, Hida

considers different level structures than the ones considered here, but the same reasoning

works in this case.

For every k g 0, we can define a map

φk : Pord/PkP
ord −→ Zp[[q]], F 7−→ Fk,

where Pk = T − (uk − 1) ∈ Zp[[T ]], which is injective. The image of this map is a

submodule of Zp[[q]]. We can also view Sord
k+3/2(Γ0(4N),Zp) as a submodule of Zp[[q]]. The

relation between these two submodules is the so-called control theorem, which is again a

consequence of Proposition 7.1.2.

Theorem 7.2.2. Let k g 0 such that k ≡ 0 mod (p− 1). Then, the map φk induces an

isomorphism

φk : Pord/PkP
ord ∼−−→ Sord

k+3/2(Γ0(4N),Zp).

Proof. The analogous statement for ordinary cuspidal Λ-adic forms of integral weight is

known. A proof can be found in Theorem 3, Section 7.3 of [Hid93]. The same proof given

there works for the case of half-integral weight forms once we have Proposition 7.1.2.

Indeed, it can be proven that every element f ∈ Sord
k+3/2(Γ0(4N),Zp) is in the image

φk as in the case of integral weight forms. For example, this is done in Proposition 5 of
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[Hid95]. Since Pord is free of finite rank, this already implies the result for k large enough.

To obtain the result for all k note that

Sord
k+3/2(Γ0(4N),Zp) ¢ Im(φk) ¢ Zp[[q]]. (7.1)

This implies

rord f rankZp(Im(φk)).

Since rankZp(Im(φk)) f rankΛ(Pord), the previous inequality and Proposition 7.2.1 imply

rord = rankZp(Im(φk)). Hence, it follows from (7.1) that Im(φk) = Sord
k+3/2(Γ0(4N),Zp)

and we are done.

Fix a Λ-basis {B1, . . . , Br} of Pord and write

Bi =
∑

ng1

Ai,nq
n ∈ Λ[[q]].

By Theorem 7.2.2, the set {B1(0), . . . , Br(0)} forms a Zp-basis of Sord
3/2(Γ0(4N),Zp). Thus,

there exist n1, . . . , nr such that

det
(
(Ai,nj(0))1fi,jfr

)
̸= 0.

Since det((Ai,nj(T ))1fi,jfr) ∈ Λ, it follows by continuity that there exists k0 such that if

k g k0 and k ≡ 0 mod (p− 1), then

det
(
(Ai,nj(u

k − 1))1fi,jfr

)
̸= 0. (7.2)

Now define

bi =
∑

ng1

ai,nq
n,

where ai,n : Zp → Zp is the analytic function determined by ai,n(k) = Ai,n(u
k − 1) for

every k g 0 such that k ≡ 0 mod (p− 1).

We will now prove that certain first order derivatives of Λ-adic modular forms of

half-integral weight are modular forms themselves. Let F be a Λ-adic modular form of

half-integral weight such that F0 = 0. Let

F ′ :=
d

dk
Fk|k=0 = lim

k→0

Fk
k
∈ Zp[[q]]

be the first derivative of F with respect to k evaluated at k = 0. It is a weight 3/2 analogue

of a p-adic modular form in the sense of Serre. Here the limit is taken in Zp[[q]]¹Qp with

respect to the norm introduced above. Recall that Up2 has the following expression at the

level of q-expansions:
∑

ng0

anq
n 7−→

∑

ng1

anp2qn.



7.3 p-adic families of theta series 46

Since |U2
pf | f |f | for any f ∈ Zp[[q]]¹Qp and Up2 is linear, it follows that we can define

the p-adic modular form of weight 3/2

eord(F ′) := lim
k→0

eord

(
Fk
k

)
.

Moreover, it is a calculation to verify that the limit

lim
m→+∞

Um!
p2 (F ′)

exists in Zp[[q]]¹Qp and is equal to eord(F ′).

Corollary 7.2.3. For every F ∈ P with F0 = 0 the p-adic modular form eord(F ′
0) is

classical. More precisely, it belongs to Sord
3/2(Γ0(4N),Qp).

Proof. By definition,

eord(F ′) = lim
k→0

eord

(
Fk
k

)
.

Now, Theorem 7.2.2 implies that, for every k > 0 and k ≡ 0 mod (p− 1), we can write

eord

(
Fk
k

)
=

r∑

i=1

xi(k)bi(k),

where xi(k) ∈ Qp for every i. Let n1, . . . , nr be as above, and note that (xi(k))i is the

solution of the linear system of equations

(
ai,nj(k)

)
j,i

(xi(k))i =
(
anj

(
Fk
k

))

j
.

Moreover, since the determinant of the matrix defining this system is an analytic function,

which is non-zero if k g k0 and k ≡ 0 mod (p− 1) by (7.2) and the discussion above it,

we deduce that for every i the limit limk→0 xi(k) exists in Qp. Denote it by xi(0). Then,

eord(F ′) = lim
k→+∞

eord

(
F

k

)
=

r∑

i=1

xi(0)bi(0)

and it follows from Theorem 7.2.2 in the particular case that k = 0 that the right hand

side belongs to Sord
k+3/2(Γ0(4N),Qp), which concludes the proof.

7.3 p-adic families of theta series

Recall that the element µ ∈ Γ determines a collection of Zp-lattices Lj of depth zero, and

let w+
j , w−

j and e be as in Section 5.1, so that Lj = ïw+
j , w

−
j , eð. Note that w+

j , w
−
j can

be viewed both as elements of VQ(µ) and VQp , using the embedding Q(µ) ↪→ Qp satisfying
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that ordp(ϖ) = 2t > 0. These data, together with Φ, can be used to define the following

Schwartz–Bruhat functions

Φ+
j = Φ¹ 1{v∈Lj | ïv,w+

j
ð∈Z×

p }, and Φ−
j = Φ¹ 1{v∈Lj | ïv,w−

j
ð∈Z×

p }

on VA∞ for every j ∈ {0, . . . , 2t− 1}. We have that Φ is invariant under K0(4N/p)
(p) by

assumption. Moreover,

1{v∈Lj | ïv,w+
j
ð∈Z×

p } = 1Lj − 1Lj∩Lj−1
, 1{v∈Lj | ïv,w−

j
ð∈Z×

p } = 1Lj − 1Lj∩Lj+1
(7.3)

and Lj is unimodular, while Lj∩Lj−1 has level p for every j. It follows that Φ±
j is invariant

under K0(4N) for every j. Since w+
j and w−

j are isotropic, the functions v 7→ ïw±
j , vðk are

harmonic polynomials on VQ(µ) for all integers k g 0. Hence, the q-series

Θk :=
2t−1∑

j=0

∑

v∈V

Φ+
j (v)ïw+

j , vðkqQ(v) −
2t−1∑

j=0

∑

v∈V

Φ−
j (v)ïw−

j , vðkqQ(v) (7.4)

is a linear combination of classical theta-series with coefficients in the quadratic imaginary

field Q(µ) of weight k+3/2 and level Γ0(4N) by [Bor98, Theorem 4.1]. Via the embedding

Q(µ) ↪→ Qp, we can also view the Fourier coefficients of Θk as elements in Zp. Moreover,

since the non-zero terms in the infinite sum defining Θk solely involve elements of V for

which ïw+
j , vð (resp. ïw−

j , vð) are p-adic units, it follows that the Fourier coefficients of Θk

vary analytically as functions of the variable k ∈ (Z/(p − 1)Z) × Zp. We can therefore

define Θk for k ∈ (Z/(p− 1)Z)× Zp. It gives a prototypical instance of a Λ-adic modular

form of half-integral weight, in the sense that there exists a F ∈ P such that Fk = Θk for

every k ≡ 0 mod (p− 1).

Lemma 7.3.1. The weight 3/2 specialization Θ0 is identically zero.

Proof. By (7.3), we have

Θ0 =
2t−1∑

j=0

∑

v∈V

Φ(v)
(
1Lj − 1Lj∩Lj−1

)
(v)qQ(v) −

2t−1∑

j=0

∑

v∈V

Φ(v)
(
1Lj − 1Lj∩Lj+1

)
(v)qQ(v)

= −
∑

v∈V

Φ(v)1L0∩L−1(v)qQ(v) +
∑

v∈V

Φ(v)1L2t−1∩L2t(v)qQ(v) = 0,

where in the last equality we used that µ(L0 ∩ L−1) = L2t ∩ L2t−1 and that the functions

Φ and v 7→ Q(v) are invariant under the action of µZ.

Lemma 7.3.1 together with Corollary 7.2.3 immediately imply the following:

Corollary 7.3.2. The p-adic modular form eord(Θ′
0) is classical. More precisely, it belongs

to Sord
3/2(Γ0(4N),Qp).
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We now relate eord(Θ′
0) with the generating series logµ(G

+
Φ)(q).

Lemma 7.3.3. For every D ∈ DS and every n g 0 the following equality holds:

aDp2n

(
logµ(G

+
Φ)(q)

)
= aDp2n (eord ((1 + Up2)Θ′

0)) .

Note that, since aDp2n(logµ(G
+
Φ)(q)) = aD(logµ(G

+
Φ)(q)) for all n g 0, the right hand side

does not depend on n.

Proof. It is enough to prove the formula when ordp(D) ∈ {0, 1}. Using (7.4), we can

compute

aDp2m(Θ′
0) =

2t−1∑

j=0

∑

v∈L+
j

[m]

Φ(v) logp(ïw+
j , vð)−

2t−1∑

j=0

∑

v∈L−
j

[m]

Φ(v) logp(ïw−
j , vð).

Hence, it follows from Theorem 6.2.3 that

aD
(
logµ(G

+
Φ)(q))

)
= lim

m→+∞
aDp2m(Θ′

0) + aDp2(m+1)(Θ′
0). (7.5)

and that the limit on the right hand side exists. Indeed, the case when ordp(D) = 1 follows

directly from the second part of Theorem 6.2.3. The case ordp(D) = 0 can be deduced by

noting that the first part of Theorem 6.2.3 implies logp(jDΦ(D)(µ)) = limm→+∞ aDp2m(Θ′
0)

(and therefore also logp(jDΦ(D)(µ)) = limm→+∞ aDp2(m+1)(Θ′
0)) and taking the sum of these

two equalities.

On the other hand, from the expression of the ordinary projection given above, we

have that for every n g 0

aDp2n(eord(Θ′
0 + Up2(Θ′

0))) = lim
m→+∞

aDp2(n+m!)(Θ′
0) + aDp2(n+m!+1)(Θ′

0).

Since the right hand side of the previous equation is a subsequence of the right hand side

of (7.5), we deduce that

aD
(
logµ(G

+
Φ)(q))

)
= aDp2n(eord(Θ′

0 + Up2(Θ′
0))),

which proves the desired equality.

The action of Up2 on Sord
3/2(Γ0(4N),Qp) diagonalizes. This can be justified, for example,

using Theorem 7.1.1 and the fact that the analogous statement for weight 2 forms of level

Γ0(2N) is well-known. In particular, we can consider

pr1 : Sord
3/2(Γ0(4N),Qp) −→ Sord

3/2(Γ0(4N),Qp)

to be the projection to the Up2 = 1 eigenspace. Its image consists of p-newforms. Again,

this follows from Theorem 7.1.1 and the corresponding statement for weight 2 forms,

which is a consequence of the Weil conjectures for abelian varieties. We prove the main

identity of this work, which implies Theorem 2.2.4.
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Theorem 7.3.4. The identity

logµ(G
+
Φ)(q) = 2pr1(eord(Θ′

0))

of formal power series holds. In particular, logµ(G
+
Φ)(q) is an element of Sord

3/2(Γ0(4N),Qp).

Proof. Since Up2 and eord commute, it is enough to prove that if

f = eord(Θ′
0 + Up2Θ′

0) =
∑

ng1

an(f)qn,

we have logµ(G
+
Φ)(q) = pr1(f). Note that by Theorem 7.3.3, we have that if D ∈ DS,

aDp2n(logµ(G
+
Φ)(q)) = aDp2n(f).

for every n g 0. Therefore, the equality of the theorem follows from proving that, if

D ∈ Zg0 is such that ordp(D) ∈ {0, 1} and N g 0, then:

1. If
(
−D
p

)
= 1, aDp2n(pr1(f)) = 0.

2. If
(
−D
p

)
∈ {0,−1}, aDp2n(pr1(f)) = aDp2n(f).

We start by proving the first point. Since pr1(f) is a p-newform, Theorem 1 of [MRV90]

implies that the Atkin–Lehner involution at p acts by multiplication with −1 on pr1(f).

Then, (1) follows from the description of the eigenspaces of the Atkin–Lehner involution

given in [MRV90], Remark 2. (See also [Koh82], Proposition 4.) We proceed to prove the

second point. Write f as a sum of eigenvectors for Up2 , namely

f =
r∑

i=1

fi,

where fi ∈ Sord
3/2(Γ0(4N), L) and there exists ³i such that Up2fi = ³ifi for every i. Here L

is a finite extension of Qp containing all the elements ³i. We can suppose without loss

of generality that ³i ≠ ³j if i ̸= j and that ³1 = 1. In particular, f1 = pr1(f) (which is

possibly zero). Let D be such that it satisfies the conditions of (2). For every n g 0, we

can consider the Dp2n-th Fourier coefficient of each side of the previous equality to obtain

aD(f) = aD(f1) +
r∑

i=2

³ni aD(fi),

where we used that aD(f) = aDp2n(f) for every n g 0, which holds by Theorem 7.3.3.

Considering this equality for n = 0, . . . , r − 1 and using that the Vandermonde matrix

associated to {1, ³2, . . . , ³r} is non-singular we deduce that we must have aD(f) = aD(f1),

implying the desired equality. Once we have logµ(G
+
Φ)(q) = 2pr1(eord(Θ′

0)), the fact that

logµ(G
+
Φ)(q) ∈ S3/2(Γ0(4N),Qp) follows from Corollary 7.3.2.



Section 8

Numerical example

We conclude by presenting a concrete example where we numerically compute the p-adic

family Θk and the reduction modulo p of eord(Θ′
0/p). In future work, we aim to present a

complete numerical computation of eord(Θ′
0/p). However, in this section, we focus on its

reduction modulo p, as these computations are technically simpler and already illustrate

interesting phenomena.

Let S = {7, 13,∞}, let p = 7 and consider B be the quaternion algebra over Q ramified

exactly at {13,∞}. It can be viewed as the algebra over Q generated by i, j, k where

i2 = −2, j2 = −13, ij = −ji = k.

Let R̃ be the maximal Z[1/p]-order of B given by ï1/2 + j/2 + k/2, i/4 + j/2 + k/4, j, kð,
let ³ = 1 + i ∈ B×, which has reduced norm ℓ = 3 ̸∈ S, and consider the Eichler

Z[1/p]-order R = R̃ ∩ ³R̃³−1 of level 3. Denote by Γ the group of norm one units in R

modulo {±1}. The quotient Γ\Hp is isomorphic to the Cp-points of the Shimura curve

X.

8.1 Construction of the p-adic family Θk

Recall the definition of the p-adic family Θk given in (7.4). This family depends on a choice

of a Schwartz–Bruhat function Φ, an element µ ∈ Γ hyperbolic at p and the eigenvectors

of the action of µ on VQp . We proceed to fix these data. Let R̃0 be the subgroup of

elements of R̃ of reduced norm zero. As before, write 1R̃0
for the characteristic function

of R̃0 ¹ Ẑ(p). Consider the R̂× ×K0(4 · 13)(p)-invariant Schwartz–Bruhat function

Φ = 1R̃0
− 1R̃0

· ³−1.

Since we have the factorization of ideals (7) = (7, x+ 3)(7, x+ 4) in the ring of integers of

Q[x]/(x2 + 5), the element (x + 3)/(−x + 3) = 3x/7 + 2/7 is a p-unit in Q[x]/(x2 + 5).
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Its image in B with respect to the embedding

Q[x]/(x2 + 5) ↪−→ B, x 7−→ i

4
+
j

2
+
k

4
,

is equal to

µ =
2

7
+

3i

28
+

3j

14
+

3k

28
,

and it can be verified that µ ∈ Γ. Let p be the prime ideal spanned by 7 and x+ 4 and

fix the embedding

Q[x]/(x2 + 5) ↪−→ Qp (8.1)

such that ordp((p)) = 1. Using that µ is hyperbolic at p, we deduce that its action on

V ¹Q[x]/(x2 + 5) (and therefore on VQp) diagonalizes. The eigenvectors of µ are

w+ = i+
(

4x

39
− 2

39

)
j +

(
−4x

39
− 1

39

)
k

e = i+ 2j + k

w− = i+
(
−4x

39
− 2

39

)
j +

(
4x

39
− 1

39

)
k

with eigenvalues ϖ = −12x/49− 41/49, 1 and ϖ−1 respectively. Since vp(ϖ) = 2, we have

that t = 1. Note that ïw+, w−ð ∈ Z×
p , which implies that {w+, w−} generate a hyperbolic

plane. Finally, consider the unimodular Zp-lattices

L0 = ïw+, e, w−ð = ïi, j, kð

L1 = ïpw+, e, w−/pð =

〈
i+ 2j + k, 14i− 28j

39
− 14k

39
,
i

7
+ j +

8k

7

〉
.

We can therefore consider the p-adic family Θk given in (7.4) attached to the data Φ,

µ and {w+, e, w−}.

8.2 Calculation of Θ0 and eord(Θ′0)

Consider the same notation as above. For every M f 421 ·p2 we can run over the following

sets:
{
v ∈ V

∣∣∣ ïv, vð = M, 1R̃0
(v) · 1L0(v) = 1, ïv, w+ð or ïv, w−ð ∈ Z×

p

}
,

{
v ∈ V

∣∣∣ ïv, vð = M, 1R̃0
(v) · 1L1(v) = 1, ïv, pw+ð or ïv, p−1w−ð ∈ Z×

p

}
,

{
v ∈ V

∣∣∣ ïv, vð = M, 1³·R̃0
(v) · 1L0(v) = 1, ïv, w+ð or ïv, w−ð ∈ Z×

p

}
,

{
v ∈ V

∣∣∣ ïv, vð = M, 1³·R̃0
(v) · 1L1(v) = 1, ïv, pw+ð or ïv, p−1w−ð ∈ Z×

p

}
.
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From there, it is possible to compute the first 421 · p2 Fourier coefficients of Θk, for k ∈ Z,

as well as of Θ′
0. The necessity to calculate exactly this number of Fourier coefficients

comes from the Sturm bound, which is used in the proof of Proposition 8.2.1 below. In

particular, define

Θ+
R̃0,j

:=
∑

v∈V
ïv,p+jw+ð∈Z×

p

1R̃0
(v) · 1Lj(v)qQ(v)

and define Θ−
R̃0,j

with the same expression but replacing the symbol + by the symbol −
everywhere. Define also Θ+

³·R̃0,j
and Θ−

³·R̃0,j
analogously. Then,

Θ0 =
(
Θ+
R̃0,L0

+ Θ+
R̃0,L1

−Θ−
R̃0,L0

−Θ−
R̃0,L1

)
−
(
Θ+
³·R̃0,L0

+ Θ+
³·R̃0,L1

−Θ−
³·R̃0,L0

−Θ−
³·R̃0,L1

)

and we verify that the first 421 · p2 Fourier coefficients are 0. For example, the first 4

terms that appear in the previous expression are given below.

Theta series q-expansion
2 5 6 7 8 11 13 15 18 19 20 21 24 26 28 31 32

Θ+
R̃0,L0

2 2 4 4 6 8 2 8 6 6 8 8 8 6 6 10 14
Θ−
R̃0,L0

2 0 4 2 6 8 0 8 6 4 8 8 12 6 6 8 14
Θ+
R̃0,L1

2 0 4 2 6 8 0 8 6 4 8 8 12 6 6 8 14
Θ−
R̃0,L1

2 2 4 4 6 8 2 8 6 6 8 8 8 6 6 10 14

Table 8.1 First Fourier coefficients of the theta series Θ±
R̃0,Lj

.

The coefficients of qn for n < 32 that do not appear in the table are 0, as theta series

attached to lattices in V have non-zero Fourier coefficients only if −D is not a square

modulo 13. We will follow a similar convention from now on. The forms on the previous

table belong to M3/2(Γ0(4 · 91),Q), a space of dimension 32, and these coefficients fully

determine them.

From (7.4), we see that the derivative of Θk with respect to k evaluated at k = 0 is

equal to

Θ′
0 =

2t−1∑

j=0

∑

v∈V

Φ+
j (v) logpïpjw+, vðqQ(v) −

2t−1∑

j=0

∑

v∈V

Φ−
j (v) logpïp−jw−, vðqQ(v). (8.2)

Note that the dot products ïv, w±ð belong to Q[x]/(x2 + 5) and have p-adic valuation 0.

Using the embedding (8.1), we can view them as elements in Z×
p . Therefore, the p-adic

logarithm of these numbers lies in pZp. We can then consider Θ′
0/p as an element in

Zp[[q]] and study its reduction modulo p.
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Similarly as above, we can calculate the first 421 ·p2 Fourier coefficients of Θ′
0/p modulo

p. The first ones are

Θ′
0

p
= 2q2 + 3q5 + 2q6 + 4q7 + 5q8 + 4q11 + 3q13 + 3q15 + 2q18 + 3q20 + 6q21 + · · · .

Since it is possible to calculate the first 421 · p2 Fourier coefficients of Θ′
0/p mod p, we

obtain the first 421 Fourier coefficients of Up2(Θ′
0/p) modulo p. The first ones are

Up2(Θ′
0/p) = 3q2 + 3q5 + 5q6 + 2q7 + 3q11 + 6q13 + 3q15 + 5q18 + q19 + 2q20 + 2q21

+ 2q24 + 3q26 + q28 + 6q31 + q32 + q33 + 4q34 + q37 + 3q39 + q44 + · · · .

The following proposition, which is verified experimentally using the calculations mentioned

above and Magma, is key for the next calculations.

Proposition 8.2.1. There exists a cusp form in S3/2(Γ0(4 ·91),Z) whose reduction modulo

p is equal to Up2(Θ′
0/p) mod p.

Proof. Since Θ0 = 0, we deduce from the expressions of Θ′
0 in (8.2) and of Θk in (7.4)

that
Θ′

0

p
≡ Θp−1

p(p− 1)
mod p = 7.

In particular, Up2(Θ′
0/p) is the reduction mod p of an element g1 ∈ S3/2+6(Γ0(4 · 91),Z).

We can then verify experimentally using Magma that the first 421 Fourier coefficients

of g1 are congruent modulo p to the first 421 Fourier coefficients of a modular form

g2 ∈ S3/2(Γ0(4 · 91),Z).

We claim that this implies g1 ≡ g2 mod p. Indeed, let g̃2 ∈ S3/2+6(Γ0(4 · 91),Z) be

such that g2 ≡ g̃2 mod p. Then, the modular form g1 − g̃2 ∈ S3/2+6(Γ0(4 · 91),Z) has the

first 421 Fourier coefficients equal to 0 modulo p. This implies that the first 4 · 421 Fourier

coefficients of (g1 − g̃2)
4 ∈ S30(Γ0(4 · 91),Z) are congruent to 0 modulo p. Since

421 · 4 > 30 · [SL2(Z) : Γ0(4 · 91)]

12
= 1680 = 420 · 4,

it follows from the Sturm bound ([Stu87, Theorem 1]) that g1 − g̃2 ≡ 0 mod p, implying

the desired result.

Using a basis of S3/2(Γ0(4 · 91),Z) given by Magma, and using Proposition 8.2.1, we

can then compute U2
p2(Θ′

0/p) and verify the following:

1. 1
2
(Up2 + U2

p2)(Θ′
0/p) mod p is an eigenvector for Up2 of eigenvalue 1.

2. 1
2
(Up2 − U2

p2)(Θ′
0/p) mod p is an eigenvector for Up2 of eigenvalue −1.
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It follows from there that, modulo p,

eord

(
Θ′

0

p

)
= lim

n→+∞
Un!
p2

Θ′
0

p
= lim

n→+∞
Un!−1
p2 Up2

(
Θ′

0

p

)

= lim
n→+∞

Un!−1
p2

(
1

2
(Up2 + U2

p2)(Θ′
0/p) +

1

2
(Up2 − U2

p2)(Θ′
0/p)

)

=
1

2
(Up2 + U2

p2)(Θ′
0/p)−

1

2
(Up2 − U2

p2)(Θ′
0/p) = U2

p2 (Θ′
0/p) .

Based on this decomposition of eord (Θ′
0/p), we will write

pr1(eord(Θ′
0/p)) = (Up2(Θ′

0/p) + U2
p2(Θ′

0/p))/2,

pr−1(eord(Θ′
0/p)) = −(Up2(Θ′

0/p)− U2
p2(Θ′

0/p))/2.

The results of the calculation are summarized in the following table.

Modular form q-expansion

mod p = 7 2 5 6 7 8 11 13 15 18 19 20 21 24 26 28

Θ′
0/p 2 3 2 4 5 4 3 3 2 0 3 6 0 3 4

Up2(Θ′
0/p) 3 3 5 2 0 3 6 3 5 1 2 2 2 3 1

U2
p2(Θ′

0/p) 3 4 2 4 0 3 1 3 5 6 5 6 5 4 4

(Up2 + U2
p2)(Θ′

0/p)/2 3 0 0 3 0 3 0 3 5 0 0 4 0 0 6

(Up2 − U2
p2)(Θ′

0/p)/2 0 3 5 6 0 0 1 0 0 1 2 5 2 3 2

eordΘ′
0/p 3 4 2 4 0 3 1 3 5 6 5 6 5 4 4

Table 8.2 Dth Fourier coefficients of linear combinations of Un
p2(Θ′

0/p) for D such that(
−D
13

)
≠ 1. For every D, we consider the color code blue:

(
−D
p

)
= −1, grey:

(
−D
p

)
= 1,

red:
(
−D
p

)
= 0.

Remark 8.2.2. In the decomposition eord(Θ′
0/p) = pr1(eord(Θ′

0/p)) + pr−1(eord(Θ′
0/p)) both

summands are non-zero. The first summand is related to the Gross–Kohnen–Zagier

generating series, as proved in Theorem 7.3.4. It would be interesting to find an arithmetic

interpretation of the second summand, namely pr−1(eord(Θ′
0/p)).

8.3 Shimura lift and Hecke equivariance

The space Snew
2 (Γ0(7 · 13)) has dimension 7, and there is a unique (up to scalars) cuspidal

form such that U7 acts by 1 and has odd analytic rank (so in particular, the Hecke operator

U13 acts also by 1). Its Fourier expansion is given by

f = q − 2q3 − 2q4 − 3q5 + q7 + q9 + 4q12 + q13 + 6q15 + 4q16 − 6q17 − 7q19 + . . .

≡ q + 5q3 + 5q4 + 4q5 + q7 + q9 + 4q12 + q13 + 6q15 + 4q16 + q17 . . . mod p = 7.
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Recall the Shimura lift

SD := SD,0,91 : S3/2(Γ0(4 · 91),Q) −→ S2(Γ0(2 · 91),Q)

defined in Section 7.1, where D is a square-free integer such that −D > 0. We computed

the Shimura lift of eord(Θ′
0/p) for different values of D and obtained the following identities

modulo p

S−2 (pr1(eord(Θ′
0/p))) ≡ 6f mod p,

S−11 (pr1(eord(Θ′
0/p))) ≡ 3f + U2f mod p,

S−15 (pr1(eord(Θ′
0/p))) ≡ 3f + 6(U2f) mod p.

(8.3)

In particular, we see that pr1eord(Θ′
0/p) is a Hecke eigenvector (mod p) with Hecke

eigenvalues congruent to those of f .

The Schwartz–Bruhat function Φ is convenient. Indeed, since Φ is the difference of

characteristic functions of the trace zero elements of two maximal orders, we deduce

that ∆Φ(D) is of degree 0 for every D. Moreover, degT0
(Φ) lands in the subspace of

Funct(Γ\T0,Z) corresponding to weight two cusp forms of level Γ0(13 · 3) that are old at

3. Since S2(Γ0(13),Q) = 0, we deduce degT0
(Φ) = 0 implying the desired claim by the

proof of Lemma 4.3.2. Applying Theorem 7.3.4 to the Schwartz–Bruhat function Φ one

obtains the equality

logµ(G
+
Φ)(q) = 2pr1(eord(Θ′

0)).

In particular, (1/p) logp(G
+
Φ(µ)) mod p is a Hecke cuspidal eigenform of weight 3/2 with

the same Hecke eigenvalues as the cusp form f of weight 2 and level Γ0(91).

On the other hand, consider GΦ(q) ∈ J(Qp2)Q[[q]] and observe:

• The classes [∆Φ(D)] are invariant under the action of R× for every D ∈ DS.

• The projection of the class [∆Φ(D)] to a Hecke eigenspace is non-zero only if the

eigenspace corresponds to an eigenform of rank 1 by the Gross–Zagier formula.

• Via Jacquet–Langlands the Hecke action of TN on J(Qp2) factors through the action

on S91−new
2 (Γ0(91 · 3),Qp2).

• Since the divisors ∆Φ(D) on X are obtained via pullback from divisors of a Shimura

curve X̃ that is p-adically uniformized by Γ̃\Hp, with Γ̃ the norm 1 units of R̃, it

follows that the classes [∆Φ(D)] belong to the subspace corresponding to forms that

are old at 3.
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Hence, the functionals φ : J(Qp2) −→ Qp2 such that φ(GΦ(q)) is non-zero are generated

by projections to eigenspaces where TN acts with the same eigenvalues as it acts on

eigenforms on Snew
2 (Γ0(91)) which have rank 1 and U7 = 1. As we discussed above, there

is a unique (up to scaling) such eigenform in Snew
2 (Γ0(91)), which is f . Uniqueness implies

that GΦ(q) ∈ J(Qp2)Q[[q]] is a non-zero multiple of logµ(G
+
Φ)(q), which has the same

Hecke eigenvalues of f modulo p. Hence, the calculation we presented gives an example

(modulo p) of the Hecke equivariance property of the geometric theta lift provided by the

Gross–Kohnen–Zagier generating series.
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Interlude

In Chapter I, we studied Heegner points of a Shimura curve X via its p-adic uniformization

Γ\Hp. From there, we deduced that certain generating series of Heegner classes are

modular forms of weight 3/2. A key tool for the proof was the study of the p-adic

Abel–Jacobi map, introduced in Section 4,

AJ: Div0(Γ\Hp) −→ H1(Γ,C×
p )/Λ,

where Λ = j(Γ) is a Z-lattice of rank equal to the rank of Γab. The map was described

as an infinite product involving Weil symbols, and it also admits an interpretation via

integration, analogous to the classical Abel–Jacobi map.

Recall that H1(Γ,C×
p )/Λ can be identified with the Jacobian of Γ\Hp. Suppose E is

an elliptic curve appearing as a quotient of this Jacobian, with E(Cp) ≃ C×
p /q

Z, where

q ∈ pZp is the Tate period of E. Following Chapter 5 of [Dar04] and Section 2.3 of [Das04],

we will use integration to describe the composition

Φ: Div0(Γ\Hp)
AJ−−→ H1(Γ,C×

p )/Λ −↠ C×
p /q

Z logq−−→ Cp,

where logq : C×
p → Cp is the branch of the p-adic logarithm satisfying logq(q) = 0. Let f

be the weight 2 eigenform on Hp of level Γ corresponding to E. Being a rigid analytic

function on Hp, f can be encoded in a Γ-invariant measure of total mass zero on P1(Qp),

the boundary of Hp. Denote such measure by µf ∈ D0(P
1(Qp),Zp); it determines f via

the following formula

f(z) =
∫

P1(Qp)

1

z − xdµf .

Then, the map Φ is given by

Φ: (Ä1)− (Ä2) ∈ Div0(Γ\Hp) 7−→
∫

P1(Qp)
logq

(
Ä1 − x
Ä2 − x

)
dµf .

Observe that the definition is similar to the classical Abel–Jacobi map via the following

formal equalities:
∫ Ä2

Ä1

f(z)dz =
∫ Ä2

Ä1

∫

P1(Qp)

1

z − xdµfdz =
∫

P1(Qp)

∫ Ä2

Ä1

1

z − xdzdµf =
∫

P1(Qp)
logq

(
Ä1 − x
Ä2 − x

)
dµf .
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In particular, if Ä1, Ä2 ∈Hp are CM points, the expression

∫

P1(Qp)
logq

(
Ä1 − x
Ä2 − x

)
dµf (8.4)

provides an explicit formula for the logarithm of a Heegner point in E(Cp).

There have been generalizations of the expression (8.4) to different settings. Their

importance lies in the fact that they provide conjectural formulas for arithmetic objects

that seem evasive via archimedean techniques. For example, in [Dar01], Darmon replaced

the role of the rigid eigenform f on the Shimura curve X by a weight 2 eigenform for

Γ0(p). This led to the definition of the so-called Stark–Hegner points on the elliptic

curve E corresponding to f . These are local points on E conjecturally defined over

abelian extensions of real quadratic fields. Later, Darmon and Dasgupta followed a similar

strategy but replaced the role of the cusp form with the Eisenstein series for Γ0(p) in

[DD06]. Their recipe yields elements in abelian extensions of real quadratic fields, more

precisely Gross–Stark units. An informal comparison of the ingredients involved in each

construction is given below.

Heegner points Stark–Heegner points Gross–Stark units
B× SL2(Q) SL2(Q)
Γ Γp = SL2(Z[1/p]) Γp = SL2(Z[1/p])
f eigenform for Γ f eigenform for Γ0(p) E Eis. series for Γ0(p)
µf ∈ D0(P

1(Qp),Zp)
Γ µf ∈ H1(Γp,D0(P

1(Qp),Zp)) µE ∈ H1(Γp,D0(P
1(Qp),Zp))

Im. quad. Ä ∈Hp Real quad. Ä ∈Hp Real quad. Ä ∈Hp

Table i Ingredients for the p-adic constructions of Heegner points, Stark–Heegner points,
and Gross-Stark units.

In Chapter II, we follow these ideas to conjecture an explicit expression for p-adic

logarithms Gross–Stark units in abelian extensions of totally real fields of degree n where

p is inert, partially generalizing the third column of Table i. The expressions have a

similar flavor to (8.4) ∫

X
logp(Ä

t · x)dµEis(cUF ). (8.5)

An informal dictionary between the two explicit formulas is summarized below.

• Γ is replaced by SLn(Z).

• P1(Qp) is replaced by X := Znp − pZnp .

• µf ∈ H0(Γ,D0(P1(Qp),Zp)) is replaced by µEis ∈ Hn−1(SLn(Z),D0(X,Zp)).
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• The CM points Äi in Hp are replaced by points in Drinfeld’s symmetric domain

Xp ¢ Pn−1(Cp) represented by a vector Ä ∈ Cn
p whose components generate a

fractional ideal of a totally real field of degree n where p is inert.

• cUF is a generator of Hn−1(UF ,Z) ≃ Z, where UF ¢ SLn(Z) is the stabilizer of the

vector Ä in Pn−1(Cp).

Already in the construction of Stark–Heegner points and Gross–Stark units for real

quadratic fields, it is useful to lift measures from P1(Qp) to Z2
p − pZ2

p to obtain finer

invariants. The constructions presented in Chapter II are related to these lifts. On the

other hand, there is room to explore the complete analogy between the objects appearing

in Table i and the conjectural formula (8.5).

Finally, it is worth mentioning that the cases considered in Table i can be seen as

particular instances of a general setting. Darmon, Gehrmann, and Lipnowski recently

developed in [DGL23] the theory of rigid classes for orthogonal groups. Then, these

formulas for Heegner points, Stark–Heegner points, and Gross–Stark units (for real

quadratic fields) should appear as the values of rigid cocycles attached to orthogonal

groups via the accidental isomorphisms between B× and orthogonal groups of signature

(3, 0), and SL2(Q) and an orthogonal group of signature (2, 1). Similarly, in Chapter II

we will interpret our conjectural formulas for Gross–Stark units for totally real fields as

values of rigid classes for SLn(Q).



Chapter II

The Eisenstein class of a torus bundle

and a log-rigid class for SLn(Z)



Section 9

Introduction

The values of modular units at CM points, called elliptic units, have rich arithmetic

significance. Notably, they generate abelian extensions of imaginary quadratic fields. In

[DD06], Darmon and Dasgupta proposed a conjectural construction of elliptic units for

real quadratic fields and predicted that they behave similarly to elliptic units. Their

construction consists of a p-adic limiting process involving periods of logarithmic derivatives

of modular units along real quadratic geodesics.

Using different methods, Dasgupta extended this construction to the case of totally

real fields in [Das08] and together with Kakde proved that the recipe gives p-units in

abelian extensions of totally real fields [DK23]. More precisely, they proved that their

resulting objects are Gross–Stark units. Remarkably, their work provides a solution to

Hilbert’s twelfth problem for totally real fields via p-adic methods.

Darmon, Pozzi, and Vonk constructed analogs of modular functions, called rigid classes,

which can be evaluated at real quadratic points, and expressed the original construction of

[DD06] as the value of a rigid class in [DPV24]. Their work provides a modular approach

to the construction of Gross–Stark units and leads to a new proof of the conjecture of

[DD06] in the real quadratic setting.

In Chapter II, we construct a log-rigid analytic class for SLn(Z) and study its values at

points attached to totally real fields where p is inert. This represents a first step toward a

modular construction of Gross–Stark units for totally real fields, which would generalize

the results of [DD06] and [DPV24]. A key ingredient in our construction is the Eisenstein

class of a torus bundle of Bergeron, Charollois and García [BCG20], that replaces the role

of modular units. We provide partial evidence for our constructions by relating the local

traces of the values we construct with local traces of logarithms of Gross–Stark units.
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9.1 Siegel units and abelian extensions of quadratic

fields

We begin by explaining the construction of Siegel units and its relation with the classical

theory of complex multiplication for imaginary quadratic fields. Let E be an elliptic curve

defined over a scheme S, fix a positive integer c coprime to 6, and denote by N(c) the set

of positive integers coprime to c. We have the following proposition.

Proposition 9.1.1. Let E[c] be the kernel of multiplication by c on E, and denote by

O(E−E[c])× the space of meromorphic functions on E that are regular and non-vanishing

outside E[c]. There exists a unique function c¹E ∈ O(E − E[c])× satisfying:

1. The divisor of c¹E is E[c]− c2(0).

2. c¹E is invariant under pushforward induced by multiplication by a for all a ∈ N(c).

Let N g 3 be a positive integer coprime to c, denote by Γ(N) ¢ SL2(Z) the congruence

subgroup of full level N , and let H be the complex upper half-plane. We can then consider

the universal elliptic curve

E := Γ(N)\
(
(H × C)/Z2

)
−→ Y (N) := Γ(N)\H .

The proposition above yields the function c¹E ∈ O(E − E[c])×, which can be used to

construct modular units on Γ(N)\H in the following way. A vector v ∈ Q2/Z2 − {0}
of order N induces a torsion section v : Y (N) → E − E[c]. Then, the pullback cgv :=

v∗(c¹E) ∈ O(Y (N))× is called a Siegel unit and is an instance of a modular unit. It gives

rise to a Γ(N)-invariant function on H , that we will denote by the same symbol. The

theory of complex multiplication implies that the values of Siegel units at special points

have deep significance.

Theorem 9.1.2. Let Ä ∈H be a CM point attached to a quadratic imaginary field K,

i.e. Ä is stabilized by a subgroup of norm one elements K1 ¢ SL2(Q) of K. Then,

cgv(Ä) ∈ Kab ¢ Q̄.

An important question in algebraic number theory is to find an analog of this theorem

for general number fields. The case of real quadratic fields has been extensively studied

via different methods. We are particularly interested in the p-adic approach initiated by

Darmon and Dasgupta in [DD06] and followed, among others, by Darmon, Pozzi, and

Vonk in [DPV24]. We proceed to outline these works in a language suited to this chapter.
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Let F be a real quadratic field and p a rational prime. Observe that H does not

contain real quadratic points, i.e. there are no points stabilized by a torus of norm one

elements F 1 ¢ SL2(Q) of F . On the other hand, H has geodesics stabilized by these norm

one tori. Moreover, if (z, µz) ¢H is a segment of such geodesic, where µ ∈ F 1 ∩ Γ(pr),

and v ∈ Q2/Z2 − {0} is of exact order pr, we have the so-called Meyer’s Theorem

1

2Ãi

∫ µz

z
dlog(cgv) = ·c(F, [b], 0) ∈ Z. (9.1)

Here ·c(F, [b], 0) denotes the value at s = 0 of a c-smoothed partial zeta function attached

to F and an ideal class [b] in a narrow class group of conductor divisible pr, determined

by the inclusion F 1 ¢ SL2(Q) and v. In addition to encoding information about abelian

extensions of totally real fields, these zeta values possess notable p-adic properties and

serve for the construction of measures that yield p-adic partial zeta functions of F .

The search for a symmetric space containing real quadratic points, combined with

the p-adic properties of the partial zeta values considered above, leads to replacing H

by a p-adic symmetric space to generalize Theorem 9.1.2. More precisely, if we let

Hp := P1(Cp) − P1(Qp) be the p-adic upper half-plane and A its ring of rigid analytic

functions, we have:

• Hp contains points stabilized by F 1 ¢ SL2(Q) if and only if p is nonsplit in F .

• There is a GL2(Qp)-equivariant isomorphism between A×/C×
p and the space of

Z-valued measures on P1(Qp) of total mass zero (see [vdP82]), suggesting that A×

encodes information about p-adic zeta functions and refinements of their values.

In [DPV24], Darmon, Pozzi, and Vonk exploit the distribution relation of Siegel units

attached to vectors of arbitrary p-power order to construct a cohomology class

JDR ∈ H1(SL2(Z),A×).

This class can be viewed as a generalization of a modular function. Indeed, the space

of invariant functions H0(SL2(Z),A×) = C×
p is too simple, which suggests studying the

first cohomology group instead. Moreover, if Ä ∈ Hp is stabilized by F 1 ¢ SL2(Q) and

F 1 ∩ SL2(Z) = ï±µÄ ð, they define the value JDR[Ä ] := JDR(µÄ )(Ä) ∈ C×
p .

Theorem 9.1.3 (Darmon–Pozzi–Vonk). Let Ä ∈Hp be as above with stabilizer ï±µÄ ð ¢
SL2(Z) be attached to a real quadratic field F where p is inert. Then,

logp(JDR[Ä ]) = logp(uÄ ), uÄ = Gross–Stark unit ∈ F ab ¢ Q̄.

This theorem provides a level 1 version of Theorem 9.1.2 for real quadratic fields where

p is inert. Indeed, it produces nontrivial elements in abelian extensions of real quadratic

fields as values of JDR at special points in Hp.
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Remark 9.1.4. The class JDR is the unique lift via the quotient map A× → A×/C×
p of

the restriction to SL2(Z) of a class JDR ∈ H1(SL2(Z[1/p]),A×/C×
p ), also constructed in

[DPV24]. Rigorously, it is this second class that should be regarded as a modular object,

as the Hecke module H1(SL2(Z[1/p]),A×/C×
p )Q is isomorphic to the sum of H1(Γ0(p),Q)

and an Eisenstein line. On the other hand, the lift JDR is important to define the values

of JDR and it is the object we aim to generalize in Chapter II. Here and for the rest of the

chapter, the subindex Q denotes tensor product with Q over Z.

9.2 Construction of the log-rigid class for SLn(Z)

The work of Bergeron, Charollois, and García in [BCG20] provides a generalization of

logarithmic derivatives of Siegel units which is relevant for the study of totally real fields

of degree n: the Eisenstein class of a torus bundle. Let E → X be an oriented real vector

bundle of rank n over an oriented manifold X. Suppose that E contains a sub-bundle EZ

with fibers isomorphic to Zn. We can then construct the torus bundle T := E/EZ → X.

Consider the following class in singular cohomology with Z-coefficients

T [c]− cn{0} ∈ H0(T [c]) ≃ Hn(T, T − T [c]),

where the isomorphism above is the Thom isomorphism. The long exact sequence in

relative cohomology provides a map Hn−1(T − T [c])→ Hn(T, T − T [c]). The Eisenstein

class czT attached to T and c is constructed from the next theorem and is analogous to

the functions c¹E determined in Proposition 9.1.1.

Theorem 9.2.1 (Sullivan, Bergeron–Charollois–García). There exists a unique class

czT ∈ Hn−1(T − T [c],Z[1/c]) satisfying:

1. czT is a lift of T [c]− cn{0} ∈ Hn(T, T − T [c],Z[1/c]).

2. czT is invariant under pushforward induced by multiplication by a for all a ∈ N(c).

Let X := SLn(R)/SOn be the symmetric space attached to SLn(R), let vr ∈ Qn/Zn be

the column vector (1/pr, 0, . . . , 0)t and let Γr be its stabilizer in Γ := SLn(Z). Finally, fix

q an auxiliary integer such that the full level congruence subgroup Γ(q) is torsion-free and

[Γ : Γ(q)] is prime to p, which imposes that p is sufficiently large. Then, Γr(q) := Γr ∩Γ(q)

is torsion-free. We can apply the previous theorem to the universal family of tori

Tr := Γr(q)\(X × Rn/Zn) −→ Γr(q)\X

and obtain the Eisenstein class czTr , that we will simply denote by zr. The vector vr induces

a torsion section vr : Γr(q)\X → Tr − Tr[c] and we can consider the pullback v∗rzr, which
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defines a Γr-invariant cohomology class on Γr(q)\X . This class is a higher-dimensional

analog of dlogcgv.

The pullbacks of Eisenstein classes by arbitrary pr-torsion sections satisfy distribution

relations parallel to those of Siegel units. In particular, (v∗rzr)r are compatible with respect

to pushforward by the projection maps. Using these properties and Shapiro’s lemma, we

package the pullbacks of the Eisenstein classes by p-power torsion sections in a group

cohomology class for Γ

µ0 ∈ Hn−1(Γ,D0(X,Zp))
w=−1,

where D0(X,Zp) is the space of Zp-valued measures on X := Znp − pZnp of total mass zero,

and w denotes the involution given by the action of GLn(Z)/SLn(Z).

There are constructions of similar cohomology classes in the literature under the name

of Eisenstein cocycles. Notably, the work of Sczech [Scz93] together with its integral

refinement by Charollois and Dasgupta [CD14, Theorem 4], and the works of Charollois,

Dasgupta, Greenberg, and Spiess (see [CDG15] and [DS18]) using Shintani’s method give

explicit formulas for Eisenstein cocycles. These works yield cocycles for S-arithmetic

groups, on the other hand, they take values in measures on X together with some additional

data, such as a set of linear forms in n-variables (used for Q-summation), or the set of

rays in Rn not generated by a vector in Qn. Even closer to our setting, Beilinson, Kings

and Levin [BKL18] and Galanakis and Spiess [GS24] construct similar classes using the

polylogarithm sheaf.

The class µ0 valued in D0(X,Zp) is suitable for the construction of rigid classes on

Drinfeld’s p-adic symmetric domain via a Poisson kernel. Let Xp := Pn−1(Cp)−
⋃
H∈HH be

Drinfeld’s p-adic symmetric domain, whereH denotes the set of all Qp-rational hyperplanes.

Denote by AL the space of log-rigid analytic functions. Informally, AL consists of the

Cp-valued functions on Xp such that its restriction to any affinoid is of the form

(rigid analytic function) +
∑

H,H′∈H

cH,H′ logp (ℓH(z)/ℓH′(z)) ,

where cH,H′ ∈ Qp are all but finitely many 0, ℓH(z) denotes the equation of the hyperplane

H ∈ H, and logp : C×
p → Cp is the p-adic logarithm satisfying logp(p) = 0. Integration

over X leads to a Γ-equivariant lift

ST: D0(X,Zp) −→ AL, ¼ 7−→
(
z 7−→

∫

X
logp(z

t · x)d¼
)
. (9.2)

This lift is a particular instance of the theory of p-adic Poisson kernels, which relate

measures on the set of hyperplanes of Qn
p , or on Z×

p -bundles over them, to functions on Xp.

We refer the reader to the works of Schneider–Teitelbaum [ST97], van der Put [vdP82],

and Gekeler [Gek20] for more examples of this phenomenon and its generalizations.
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Finally, we define our desired log-rigid analytic class as

JEis := ST(µ0) ∈ Hn−1(Γ,AL).

The construction of the class JEis can be compared to that in [DPV24] when n = 2, leading

to the relation JEis = logp(JDR). In particular, this shows that the class logp(JDR) can be

constructed solely from logarithmic derivatives of Siegel units, rather than from the full

Siegel units.

Let F be a totally real field of degree n where p is inert, and let Ä ∈ F n be such that

its coordinates give an oriented Z-basis of a−1, for a an ideal of OF . Since p is inert, it

follows that Ä ∈Xp. Moreover, Ä is a special point in Xp in the sense that its stabilizer

in SLn(Q) is isomorphic to the norm 1 elements of F . In particular, its stabilizer in Γ

is a group of rank n − 1. Following a similar recipe to the case n = 2, we define the

evaluation of J ∈ Hn−1(Γ,AL) at Ä ∈Xp, giving J [Ä ] ∈ Cp. From our construction, one

readily deduces JEis[Ä ] ∈ Fp and the theorem below gives partial evidence regarding the

arithmetic significance of this value.

Theorem 9.2.2. For every n g 2, TrFp/QpJEis[Ä ] = TrFp/Qp logp(uÄ ), where uÄ ∈
OH [1/p]× ¹Q is a Gross–Stark unit in the narrow Hilbert class field H of F .

The proof of this result uses that the integral of v∗rzr along the (n− 1)-dimensional

submanifold of Γr(q)\X determined by the inclusion F 1 ¢ SLn(Q) is a special value of a

partial zeta function of F , generalizing (9.1). From there, we construct the p-adic partial

zeta function of F attached to a from µ0 and express TrFp/QpJEis[Ä ] as its derivative at

s = 0. Thus, Theorem 9.2.2 follows from the Gross–Stark conjecture in rank 1, proved in

[DDP11] and [Ven15]. We point out that using the groundbreaking work of Dasgupta,

Kakde, Silliman, and Wang [DKSW23], it should be possible to deduce that uÄ belongs

to OH [1/p]×.

The previous theorem, together with Theorem 9.1.3 involving real quadratic fields

suggests the following conjecture.

Conjecture 9.2.3. We have JEis[Ä ] = logp(uÄ ), where uÄ ∈ OH [1/p]× ¹Q is as above.

Answering this conjecture affirmatively would provide a new approach to constructing

Gross–Stark units and would constitute a first step towards their modular construction

via the theory of rigid classes. The conjecture above can also be viewed as a refinement of

the Gross–Stark conjecture, in which the quantity JEis[Ä ] replaces the derivative of the

p-adic L-function and yields a formula for the p-adic logarithm of uÄ rather than for its

trace. We refer the reader to Sections 2 and 3 of [Das08] for another explicit construction

of Gross–Stark units, as well as for the interpretation that these expressions refine the

Gross–Stark conjecture in the rank 1 setting.
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Remark 9.2.4. When n is odd, Gross–Stark units in the narrow Hilbert class field of F are

trivial. It seems that to construct meaningful invariants in this setting, we would need a

higher-level version of JEis, generalizing [Cha09] to totally real fields. For such construction,

we would expect that the corresponding invariants belong to abelian extensions of totally

real fields of larger conductor.

9.3 Structure of Chapter II

The organization of the chapter is as follows. Section 10 defines the Eisenstein class of

a torus bundle and proves a distribution relation involving the pullbacks of this class

by torsion sections. Section 11 explains the work of [BCG20] and introduces an explicit

differential form representing the Eisenstein class for a universal family of tori over locally

symmetric spaces attached to SLn(R). We conclude by proving that the sum of the

pullbacks of this form along the torsion sections of exact order p is 0. The content of these

two sections are combined in Section 12 to construct the class µ0 ∈ Hn−1(Γ,D0(X,Zp))
−.

Section 13 constructs the log-rigid class JEis from µ0 and defines its values at points

attached to totally real fields where p is inert. Finally, Section 14 proves Theorem 9.2.2,

relating the local trace of these values to local traces of p-adic logarithm of Gross–Stark

units.
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Eisenstein class of a torus bundle

In this section, we introduce the Eisenstein class of a torus bundle, as studied in [BCG20].

We focus specifically on the torus bundle

Γ′\(X × Rn/Zn) −→ Γ′\X ,

where X is the symmetric space attached to SLn(R) and Γ′ ¢ Γ := SLn(Z) is a congruence

subgroup that is torsion-free. We then prove several properties of this class, including

a distribution relation between its pullbacks by torsion sections, which parallels the

distribution relations satisfied by Siegel units.

10.1 Thom and Eisenstein classes of a torus bundle

Let Ã : E → X be an oriented real vector bundle of rank n over an oriented manifold X.

Since E is oriented, for every fiber Ex ¢ E over x ∈ X we have a preferred generator

uEx ∈ Hn(Ex, Ex − {0}) ≃ Z

satisfying a local compatibility condition (see [MS74, Page 96]). The Thom isomorphism

theorem asserts that there is a global class which restricts to the orientation to each fiber.

Theorem 10.1.1 (Thom isomorphism theorem). There is a unique class uE ∈ Hn(E,E−
{0}) such that its pullback to any fiber Ex of E is equal to uEx. Moreover, for every i ∈ Z,

we have an isomorphism

H i(X)
∼−−→ H i+n(E,E − {0}), y 7−→ Ã∗y ⌣ uE.

Proof. See Section 10, and in particular Theorem 10.4, of [MS74].
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Now suppose that E contains a sub-bundle EZ with fibers isomorphic to Zn. We can

then construct the torus bundle T := E/EZ → X. For every x ∈ X, the orientation on

Ex yields an orientation on Tx. Fix c ∈ Zg1 and consider the class

uTx,c ∈ Hn(Tx, Tx − Tx[c]) ≃
⊕

z∈Tx[c]

Hn(Tx, Tx − {z}),

which restricts to the generator of each Hn(Tx, Tx − {z}) determined by the orientation

of Tx at z, for every z ∈ Tx[c]. In a similar way than in Theorem 10.1.1, we will find a

unique class in Hn(T, T − T [c]) restricting to uTx,c for every x ∈ X.

Let D ¢ T be a tubular neighborhood of T [c]. By construction, D is diffeomorphic to

an oriented vector bundle of rank n over T [c]. Let ÃD : D → T [c] be the projection map.

We can apply Theorem 10.1.1 to obtain a unique class uD ∈ Hn(D,D − T [c]) restricting

to the orientation of each fiber and an isomorphism for every i ∈ Z

H i(T [c])
∼−−→ H i+n(D,D − T [c]), y 7−→ Ã∗

D(y) ⌣ uD.

Combining this map with the pullback of the inclusion º : (D,D − T [c]) ↪−→ (T, T − T [c]),

which is an isomorphism by the excision theorem, we obtain the isomorphism

H i(T [c])
∼−−→ H i+n(D,D − T [c])

(º∗)−1

−−−→ Hn(T, T − T [c]). (10.1)

Theorem 10.1.2. There is a unique class uT,c ∈ Hn(T, T − T [c]) such that its pullback

to any fiber Tx of T is equal to uTx,c. Moreover, for every i ∈ Z, the map (10.1) yields an

isomorphism

H i(T [c])
∼−−→ H i+n(T, T − T [c]).

Proof. By the description given above, it follows that the unique class with the desired

property is the class corresponding to uD via the isomorphism

º∗ : Hn(T, T − T [c])
∼−−→ Hn(D,D − T [c]).

The result follows from Theorem 10.1.1 and the discussion above (10.1).

Definition 10.1.3. The class uE is called the Thom class of the bundle E → X, and uT,c
is the Thom class of the torus bundle T → X relative to the c-torsion.

We now outline the definition of the Eisenstein class of the torus bundle T → X

relative to the c-torsion. For this, we assume that for all i ∈ Z, the singular cohomology

group with Z-coefficients H i(X) is finitely generated. Consider the following class in

singular cohomology

T [c]− cn{0} ∈ H0(T [c]).
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Denote by the same symbol the image of this class in Hn(T, T − T [c]) via the Thom

isomorphism given in Theorem 10.1.2. The long exact sequence in relative cohomology

gives

· · · −→ Hn−1(T ) −→ Hn−1(T − T [c]) −→ Hn(T, T − T [c]) −→ Hn(T ) −→ · · · . (10.2)

We then have the following theorem.

Theorem 10.1.4 (Sullivan, Bergeron–Charollois–García). There exists a unique class

czT ∈ Hn−1(T − T [c],Z[1/c]) satisfying:

1. It is a lift of T [c]− cn{0} ∈ Hn(T, T − T [c],Z[1/c]) by the map in (10.2).

2. It is invariant under pushforward induced by multiplication by a in T for all a ∈ N(c).

Proof. See Section 2 and Section 3 of [BCG20]. There, it is proven the existence of the

class czT with coefficients in Z[1/N ], for N divisible by c and prime to p (see the remarks

below Lemma 9 and Definition 10 of [BCG20]). This is sufficient for our purposes, but we

refer the reader to [Xu23, Page 14] for a proof that the coefficients can be taken to be

Z[1/c].

Definition 10.1.5. The class czT above is the Eisenstein class attached to T and c.

Throughout this work, we will construct invariants attached to totally real fields of

degree n from periods of Eisenstein classes of torus bundles of rank n.

Remark 10.1.6. Theorem 10.1.4 has the following visual interpretation. The first point is

equivalent to the fact that the image of T [c]− cn{0} in Hn(T,Z[1/c]) vanishes. Informally,

this means that there is a codimension n− 1 submanifold Σ ¢ T − T [c] such that

∂Σ = t(T [c]− cn{0}), t ∈ Z,

where ∂Σ denotes the boundary of Σ. On the other hand, the class of Σ is not unique,

and the second point of the theorem provides a preferred class, czT with this property.

In particular, czT allows defining linking numbers with T [c]− cn{0} as the intersection

number with the preferred choice of Σ.

Remark 10.1.7. Let a ∈ N(c). Consider inclusion

i : T − T [ac] ↪−→ T − T [c].

Multiplication by a induces a map

[a] : T − T [ac] −→ T − T [c].
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The map pushforward induced by multiplication by [a] on H i(T − T [c]) appearing in

Theorem 10.1.4 is defined as the composition

H i(T − T [c])
i∗−−→ H i(T − T [ac])

[a]∗−−→ H i(T − T [c]).

We similarly define [a]∗ : H i(T, T − T [c]) −→ H i(T, T − T [c]).

10.2 Eisenstein class of universal families of tori

Let n g 2 and denote by X := SLn(R)/SOn the symmetric space attached to SLn(R).

We are interested in the Eisenstein class of universal families of tori over quotients of X

by the following congruence subgroups.

Let p be an odd prime such that (p, c) = 1, for r g 0 consider the column vector

vr = (1/pr, 0, . . . , 0)t ∈ Qn/Zn,

and let Γr be its stabilizer in Γ := SLn(Z). Fix q ≠ p an auxiliary prime such that the

full level congruence subgroup Γ(q) ¢ Γ is torsion-free and has index prime to p. Observe

that these conditions impose that p is sufficiently large. Finally, define Γr(q) := Γr ∩ Γ(q)

and consider the torus bundle

Tr := Γr(q)\(X × Rn/Zn) −→ Γr(q)\X .

Definition 10.2.1. Denote by zr := czTr ∈ Hn−1(Tr − Tr[c],Z[1/c]) the Eisenstein class

attached to the torus bundle Tr and c.

Remark 10.2.2. We introduced the auxiliary prime q and the congruence subgroups Γr(q)

to ensure that their action on X is free, which holds as Γr(q) is torsion-free. Thus, the

fibers of Tr are n-tori.

For r g 1, the vector vr induces a section

vr : Γr(q)\X −→ Tr − Tr[c], [g] 7−→ [(g, vr)].

We can then consider the pullback v∗rzr ∈ Hn−1(Γr(q)\X ,Z[1/c]). We proceed to study

the behavior of v∗rzr with respect to two different actions. Observe that Γr(q) is a normal

subgroup of Γr. Thus, we can define an action of Γr on Γr(q)\X as follows. For µ ∈ Γr,

µ : Γr(q)\X −→ Γr(q)\X , [g] 7−→ [µg].

As a consequence, Γr acts on Hn−1(Γr(q)\X ,Z[1/c]) via pullback. Since Γr fixes vr, we

deduce that the class v∗rzr is fixed by this action. More precisely:
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Lemma 10.2.3. Consider the same notation as above. We have

v∗rzr ∈ Hn−1(Γr(q)\X ,Z[1/c])Γr .

Proof. Let µ ∈ Γr and define the map of torus bundles

µ̃ : Tr −→ Tr, [(g, v)] 7−→ [(µg, µv)].

We have µ̃∗Tr[c] = Tr[c] and µ̃∗{0} = {0} in H0(Tr[c]). Moreover, since µ̃∗uTr,c = uTr,c, as

µ̃ is orientation preserving, it follows that

µ̃∗(Tr[c]− cn{0}) = Tr[c]− cn{0} ∈ Hn(Tr, Tr − Tr[c]).

This implies that µ̃∗zr is a lift of Tr[c]− cn{0}. Moreover, for every a ∈ N(c), µ̃∗ commutes

with [a]∗. Indeed, define µ̃−1 in the same way as µ̃ but replacing µ by µ−1. Then, µ̃−1 is

the inverse of µ̃ and therefore µ̃∗ = µ̃−1
∗. The desired commutativity follows then from

taking the pushforward of the map [a] ◦ µ̃−1 = µ̃−1 ◦ [a]. From there, we deduce that µ̃∗zr

is invariant under [a]∗. As a consequence, Theorem 10.1.4 implies zr = µ̃∗zr. Pulling back

this equality by vr : Γr(q)\X → Tr − Tr[c] yields the desired expression.

Let w = diag(1,−1, 1, . . . , 1) ∈ GLn(Z). Since w normalizes Γr(q) and SOn, conjuga-

tion induces the following map

w : Γr(q)\X −→ Γr(q)\X , [g] 7−→ [wgw−1],

which induces an involution w on Hn−1(Γr(q)\X ,Z[1/c]) via pullback. Here and for the

rest of the chapter, we will denote with a superindex − the w = −1 eigenspace for w.

Lemma 10.2.4. For every r g 1 we have

v∗rzr ∈ Hn−1(Γr(q)\X ,Z[1/c])−.

Proof. The proof is analog to the proof of Lemma 10.2.3. Denote by w̃ the morphism of

torus bundles

w̃ : Tr −→ Tr, [([g], v)] 7−→ [(wgw−1, wv)].

Since w̃ reverses the orientation on the fibers (because the determinant of the matrix

defining w is −1), it follows that

w̃∗(Tr[c]− cn{0}) = − (Tr[c]− cn{0}) ∈ Hn(Tr, Tr − Tr[c]).

Indeed, w̃∗ fixes Tr[c] − cn{0} as a class in H0(Tr[c]), but maps the Thom form in

Hn(Tr, Tr − Tr[c]) to its negative. Similar as in Lemma 10.2.3, we can see w̃∗ commutes

with [a]∗ for every a ∈ N(c). From there, we deduce that w̃∗zr = −zr. The desired result

can be deduced by pulling back this equality by vr and observing wvr = vr.
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10.3 Distribution relations

We give some compatibility properties regarding the classes zr and their pullbacks by

torsion sections. In particular, we prove a distribution relation. We begin with the

following general lemma.

Lemma 10.3.1. Consider the commutative diagram of topological spaces, where all the

maps are continuous

Z Y

X S.

h1

f1

h2

f2

Suppose that the following two conditions hold:

1. h1 and h2 are r-sheeted covering maps, for r ∈ Zg1.

2. If x ∈ X and {zj}rj=1 are its distinct lifts by h1, the images {f1(zj)}rj=1 are distinct.

Then, for all i ∈ Zg0, we have

(h1)∗f
∗
1 = f ∗

2 (h2)∗ : H i(Y ) −→ H i(X).

Proof. For the proof of this lemma, we follow the same notation as in its statement. Let

φ ∈ Ci(Y,Z) be a degree i cochain and consider Ã : ∆i → X a continuous map from an

i-simplex ∆i to X. Fix a vertex u ∈ ∆i, and let x = Ã(u).

Since h1 is an r-sheeted covering map, there are Ã̃1, . . . , Ã̃r : ∆i → Z distinct lifts of Ã

by h1, characterized by the property Ã̃j(u) = zj. Then,

(h1)∗f
∗
1φ(Ã) =

∑

j

f ∗
1φ(Ã̃j) =

∑

j

φ(f1 ◦ Ã̃j).

Similarly, let y1, . . . , yr ∈ Y be the distinct lifts of f2(x), and consider É̃1, . . . , É̃r : ∆i → Y

the distinct lifts of f2 ◦ Ã by h2, characterized by the property É̃j(u) = yj. Then,

f ∗
2 (h2)∗φ(Ã) = (h2)∗φ(f2 ◦ Ã) =

∑

j

φ(É̃j).

We now observe that we have the equality of sets {f1 ◦ Ã̃j}j = {É̃j}j. Indeed, Condition

(2) in the statement of the lemma implies that the simplices {f1 ◦ Ã̃j}j are all distinct,

as their evaluations at u are {f1 ◦ Ã̃j(u) = f1(zj)}j, which are all distinct. Thus, both

sets have the same number of elements and to prove the equality it is enough to see the

inclusion {f1 ◦ Ã̃j} ¢ {É̃j}j. For that, observe that the commutativity of the diagram

implies that f1 ◦ Ã̃j is a lift of f2 ◦ Ã by h2.

From this equality of sets and the previous two calculations, we obtain the desired

equality (h1)∗f
∗
1 = f ∗

2 (h2)∗ of cochain maps, which induces the result in cohomology.
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Remark 10.3.2. Condition (2) of the lemma above holds if the commutative diagram is

Cartesian.

Proposition 10.3.3. Let r, r′ ∈ Z with r g r′ g 1, consider the projection map pr : Tr −
Tr[c]→ Tr′ − Tr′ [c], and denote by pr∗ the corresponding pullback in cohomology. Then,

pr∗zr′ = zr.

Proof. The structure of the proof is analog to the proof of Lemma 10.2.3, so we only

outline the key points. First, we observe

pr∗(Tr′ [c]− cn{0}) = Tr[c]− cn{0} ∈ Hn(Tr, Tr − Tr[c]).

Therefore, pr∗(zr′) is a lift of Tr[c]− cn{0}. Second, we claim that pr∗ commutes with [a]∗.

The key to prove this statement is to apply Lemma 10.3.1 to the diagram

Tr − Tr[ac] Tr′ − Tr′ [ac]

Tr − Tr[c] Tr′ − Tr′ [c].

pr

[a] [a]

pr

Therefore, zr = pr∗zr′ by Theorem 10.1.4.

From the previous proposition, we deduce that the classes v∗rzr satisfy the following

distribution relation.

Proposition 10.3.4. Let r g 1 and consider the pushforward attached to the finite

quotient map pr : Γr+1(q)\X → Γr(q)\X , namely

pr∗ : Hn−1(Γr+1(q)\X ,Z[1/c]) −→ Hn−1(Γr(q)\X ,Z[1/c]).

Then, pr∗(v
∗
r+1zr+1) = v∗rzr.

Proof. Consider the map

fr : Γr(q)\X −→ Tr − Tr[c] −→ T1 − T1[c],

where the first arrow is induced by vr and the second one is the quotient map. Also,

observe that since r g 1 we can define

fr+1 : Γr+1(q)\X −→ Tr+1 − Tr+1[pc] −→ T1 − T1[pc],

in a similar way as fr, but where we used that vr+1 is of exact pr+1 torsion, with pr+1 > p.

It is a consequence of Proposition 10.3.3 that, if º : T1 − T1[pc]→ T1 − T1[c],

v∗rzr = f ∗
r z1, v∗r+1zr+1 = f ∗

r+1º
∗z1.
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We will now deduce the desired statement from the invariance of z1 under multiplication by

p. With this aim, observe that we can apply Lemma 10.3.1 to the following commutative

diagram

Γr+1(q)\X T1 − T1[pc]

Γr(q)\X T1 − T1[c].

fr+1

pr [p]

fr

Indeed, since Γr(q) is torsion-free and the index [Γr(q) : Γr+1(q)] = pn, both horizontal

maps are pn-sheeted covering maps, implying the Condition (1) of the lemma. Moreover,

the fact that Γr(q) is torsion-free implies that the maps fr and fr+1 are injective, giving

Condition (2) of the lemma. Therefore,

pr∗f
∗
r+1 = f ∗

r [p]∗.

From there,

pr∗v
∗
r+1zr+1 = pr∗f

∗
r+1º

∗z1 = f ∗
r [p]∗º

∗z1 = f ∗
r z1 = v∗rzr,

where we used the invariance of z1 under multiplication by p on the second to last equality

(see Theorem 10.1.4 and Remark 10.1.7).



Section 11

Differential form representative of

the Eisenstein class

In [BCG20], Bergeron, Charollois, and García construct a closed differential form on Tr −
Tr[c] representing the Eisenstein class zr. Their construction departs from a transgression

form obtained from the Mathai–Quillen Thom form, studied in [MQ86]. Then, inspired

by the work of Bismut and Cheeger [BC92], they obtain a representative of the Eisenstein

class from a regularized average of the transgression form. In this section, we outline

this procedure and use the differential forms we obtain to prove some properties about

pullbacks of the Eisenstein class by torsion sections. The expressions given here will also

be used in the last section of this chapter to relate periods of the Eisenstein class to special

values of L-functions.

11.1 Mathai–Quillen form and the transgression form

Let S := GLn(R)/SOn and consider the real vector bundle E := S × Rn → S, which is

GLn(R)-equivariant for the left multiplication action on each of the components of E and

on S. Mathai and Quillen construct a closed GLn(R)-equivariant differential form

φ ∈ Ωn
rd(E)GLn(R)

which has rapid decay (Gaussian shape) and integral 1 along the fibers. In particular, φ

represents the Thom class of the oriented vector bundle E → S via the isomorphisms

Hn(Ω•
rd(E)) ≃ Hn(E,E − {0},R)

between the cohomology of the complex of forms on E with rapid decay along the fibers

Ω•
rd(E) and relative singular cohomology (see [MQ86, Page 98 and Page 99]).
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There is an explicit expression for the form φ, that we proceed to outline following

[BCG20, Theorem 13] and [MQ86]. The reader is referred to these sources for further

details on the construction of φ, as for our purposes it is sufficient to know the shape

of its expression. Using the Iwasawa decomposition of GLn(R), fix h : S → GLn(R) a

smooth section of the quotient map GLn(R)→ S. Then

φ = Ã−n/2e−|h−1x|2
∑

I¢{1,...,n}
|I| even

εI,I′Pf(ΩI/2)
(
d(h−1x) + ¹h−1x

)I′

, (11.1)

where:

• x ∈ Rn and |x| is its standard norm.

• ¹ is an n×n matrix of 1-forms on S, obtained as the pullback by h of the connection

of the principal SOn-bundle GLn(R)→ S given by ¹GLn(R) = (g−1dg − dgt(gt)−1)/2.

• Ω is an n×n matrix of 2-forms on S, obtained as the pullback by h of the curvature

d¹GLn(R) + ¹2
GLn(R). Then, Pf(ΩI/2) is an |I|-form given as the Pfaffian of the

submatrix of Ω/2 of size |I| involving the indices in I.

• I ′ denotes the complement of I ¢ {1, . . . , n}, εI,I′ ∈ {±1}, and for a vector v of size

n, vI
′
= vi1vi2 · · · vi|I′|

, where I ′ = {i1, . . . , i|I′|}.

Remark 11.1.1. We will not use the expressions for ¹ and Ω, aside from the fact that they

are forms of degree 1 and 2 on S.

For t ∈ R>0, let [t] : E → E be multiplication by t on the fibers. An important

property of φ is that for every t ∈ R>0, [t]∗φ also represents the Thom class. Indeed,

the Gaussian on the fibers gets dilated, but the value of the integral over the fibers is

preserved and equal to 1. In particular, observe that

[t]∗φ −→ ¶0, as t −→ +∞,

where ¶0 denotes the current of integration along the zero section of E, also represents

the Thom class (as a current). Recall that the Eisenstein class is a lift of Thom classes

of a torus bundle, by Theorem 10.1.4. The next proposition constructs a form ¸ whose

differential involves ¶0. The relevance of this form is that a (regularized) average of it will

give a representative of the Eisenstein class.

Definition 11.1.2. Let R :=
∑
i xi

∂
∂xi

be the radial vector field on E = S × Rn, where

{xi} denote the coordinates on Rn and define È := ºRφ ∈ Ωn−1
rd (E)GLn(R), which can be

verified to be GLn(R)-invariant.
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Proposition 11.1.3. Consider the differential form on E − S

¸ :=
∫ +∞

0
[t]∗È

dt

t
. (11.2)

Viewed as a current on E, it satisfies the transgression property

d¸ = ¶0 − [0]∗φ.

Proof. The main idea for the proof of this statement lies in the following computation

¶0 − [0]∗φ =
∫ +∞

0

d

dt
[t]∗φdt =

∫ +∞

0
d[t]∗ºRφ

dt

t
= d¸,

where the second equality follows from interpreting d
dt

[t]∗φ in terms of a Lie derivative

with respect to the vector field R and using Cartan magic formula. For more details, see

Section 7.2 and Section 7.3 of [BCG20] and Page 106 of [MQ86].

Using the explicit expression for φ given in (11.1), and following the same notation as

in that equation, we obtain

È = Ã−n/2e−|h−1x|2
∑

Iª{1,...,n}
|I| even


εI,I′Pf(ΩI/2)

|I′|∑

k=1

(−1)k+1(h−1x)ik
(
d(h−1x) + ¹h−1x

)I′−{ik}


 ,

¸ =
Ã−n/2

2

∑

Iª{1,...,n}
|I| even


εI,I′Pf(ΩI/2)

Γ(|I ′|/2)

|h−1x||I′|

|I′|∑

k=1

(−1)k+1(h−1x)ik
(
d(h−1x) + ¹h−1x

)I′−{ik}


 .

Here I ′ = {i1, . . . , i|I′|} is the complement of I ª {1, . . . , n}. The exact formulas will not

be necessary for us. On the other hand, it will be important to note:

• φ and È are linear combinations of products of an exponential and a polynomial. In

particular, they have rapid decay along the fibers.

• [0]∗È = 0.

• ¸ does not have rapid decay along the fibers.

11.2 Eisenstein transgression

We proceed to consider a regularized average of the form ¸ in (11.2) over a lattice to

obtain forms on torus bundles representing the Eisenstein class. For L ¢ Qn a Z-lattice

and ¼ ∈ L, let

tr¼ : E −→ E, (g, x) 7−→ (g, x+ ¼).
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Then, if t ∈ R>0, define

¹([t]∗È,L) :=
∑

¼∈L

tr∗¼[t]
∗È. (11.3)

The sum converges as the differential form t∗È has rapid decay on the fibers of E → S.

Theorem 11.2.1. View ¹([t]∗È,L) as a differential form on S × (Rn − L). For s ∈ C

with Re(s)k 0, the integral

EÈ(L, s) :=
∫ +∞

0
¹([t]∗È,L)ts

dt

t

converges. Furthermore, it admits a meromorphic continuation to all C, regular at s = 0,

and its value at every regular s ∈ C defines a differential form on S × (Rn − L).

Proof. This follows from Proposition 17 and Section 8.5 of [BCG20]. In particular, the fact

that the integral is regular at s = 0 follows from the fact that we are viewing ¹([t]∗È,L)

as a form on S × (Rn − L), and [t]∗È tends to 0 as t→ +∞ on S × (Rn − L).

The previous theorem implies that EÈ(L, s) is regular at s = 0 and

EÈ(L) := EÈ(L, 0)

defines a form on S × (Rn−L)/L. In fact, EÈ(L) descends to a form in X × (Rn−L)/L

by the calculation on (8.9) of [BCG20]. Moreover, if Γ′ ¢ SLn(R) is a subgroup contained

in the stabilizer of L, the form EÈ(L) is invariant under Γ′.

Remark 11.2.2. We outline how to view EÈ(L) as a regularized average of ¸. As we

pointed out at the end of Section 11.1, the form ¸ does not have rapid decay along the

fibers. Therefore, the sum
∑
¼∈L tr∗¼¸ does not converge. On the other hand, for s ∈ C

with Re(s)k 0 define

¸(s) :=
∫ +∞

0
[t]∗Èts

dt

t
.

Then, ¸(s) has the same expression as the one given for ¸ at the end of Section 11.1 where

the term Γ(|I ′|/2)/|h−1x||I′| is replaced by Γ((|I ′| + s)/2)/|h−1x||I′|+s. In particular, it

follows that if Re(s)k 0, the sum
∑
¼∈L tr∗¼¸(s) is absolutely convergent and

EÈ(L, s) =
∫ +∞

0
¹([t]∗È,L)ts

dt

t
=
∑

¼∈L

tr∗¼¸(s),

where we exchanged the integral with the sum (using that for Re(s)k 0, the sums are

absolutely convergent). Thus, EÈ(L) is equal to the value at s = 0 of the meromorphic

continuation of
∑
¼∈L tr∗¼¸(s).
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Recall the torus bundle

Tr = Γr(q)\(X × Rn/Zn) −→ Γr(q)\X

introduced in Section 10.2.

Definition 11.2.3. Consider the linear combination

cEÈ := EÈ(c−1Zn)− cnEÈ(Zn),

which we view as a differential form on Tr − Tr[c] for every r g 1.

Theorem 11.2.4. The form cEÈ is closed in Tr − Tr[c] and its cohomology class

cEÈ ∈ Hn−1
dR (Tr − Tr[c]) ≃ Hn−1(Tr − Tr[c],R)

is equal to the image of the Eisenstein class zr in Hn−1(Tr − Tr[c],R).

Proof. See Theorem 19, Proposition 20, and Theorem 21 of [BCG20]. There it is explained

that, since EÈ is a regularized average of ¸ (see Remark 11.2.2), Proposition 11.1.3 implies

that

d(cEÈ) = ¶T [c] − cn¶{0},

where ¶T [c] and ¶{0} denote currents of integration along T [c] and {0} (the contributions

[0]∗φ appearing in Proposition 11.1.3 vanish after the regularization). Moreover, [a]∗EÈ =

EÈ by Proposition 20 of [BCG20]. Thus, cEÈ is a closed form on Tr − Tr[c] satisfying the

characterizing properties of the Eisenstein class zr asserted in Theorem 10.1.4.

11.3 Pullbacks by torsion sections

We now use the differential forms introduced above to study the pullbacks of the form cEÈ

by torsion sections. For v ∈ Qn, denote also by v the corresponding section v : S → E.

Then, for s ∈ C with Re(s)k 0, consider the differential form on S

¸(v, s) :=
∫ +∞

0
v∗[t]∗Èts

dt

t
=
∫ +∞

0
(tv)∗Èts

dt

t
.

Since 0∗È = 0, which can be verified using the explicit expression given at the end of

Section 11.1, we have ¸(0, s) = 0. From this same expression and Remark 11.2.2, we

deduce that for v ̸= 0

¸(v, s) =

Ã−n/2

2

∑

Iª{1,...,n}
|I| even


εI,I′Pf(ΩI/2)

Γ((|I ′|+ s)/2)

|h−1v||I′|+s

|I′|∑

k=1

(−1)k+1(h−1v)ik
(
d(h−1)v + ¹h−1v

)I′−{ik}


 .

(11.4)
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Proposition 11.3.1. Let L ¢ Qn be a Z-lattice and v ∈ Qn − L. For s ∈ C with

Re(s)k 0,

v∗EÈ(L, s) =
∑

¼∈v+L

¸(¼, s).

In particular, the right-hand side has a meromorphic continuation regular at s = 0.

Proof. This follows from Theorem 11.2.1 and Remark 11.2.2.

Thus, if v ∈ Qn − (1/c)Zn,

v∗cEÈ = lim
s→0

∑

¼∈v+c−1Zn

¸(¼, s)− cn
∑

¼∈v+Zn
¸(¼, s), (11.5)

where here and from now on, lims→0 denotes evaluation of the meromorphic continuation.

In fact, the right hand side of the equation appearing in Proposition 11.3.1 defines a

differential form on S even if v ∈ L. More precisely,

∑

¼∈L

¸(¼, s)

converges for Re(s)k 0, and admits a meromorphic continuation to C which is regular

at s = 0. We proceed to prove a weaker version of this statement, as this will be enough

for our purposes.

Lemma 11.3.2. Let g ∈ S, consider tangent vectors Y1, . . . , Yn−1 ∈ TgS and denote

Y = (Y1, . . . , Yn−1). Then, for s ∈ C with Re(s)k 0,

s 7−→
∑

¼∈L

¸(¼, s)g(Y )

converges and admits a meromorphic continuation to C which is regular at s = 0.

Proof. It follows from the explicit expression of ¸(v, s) given in (11.4) that the sum

∑

¼∈L

¸(¼, s)g(Y )

is absolutely convergent for Re(s)k 0. From there, we deduce that if Re(s)k 0, we have

the equality
∑

¼∈L

¸(¼, s)g(Y ) =
∫ +∞

0

∑

¼∈L

((t¼)∗È)g (Y )ts
dt

t
,

as we can exchange the integral with the sum. Thus, it is enough to prove that the

right-hand side has a meromorphic continuation regular at s = 0. For that, define the

function

f : Rn −→ R, v 7−→ (v∗È)g(Y ).
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Since È is a differential form which has rapid decay along the fibers, it follows that f is a

Schwartz function. Hence, we need to prove that
∫ +∞

0

∑

¼∈L

f(t¼)ts
dt

t
(11.6)

has a meromorphic continuation to s ∈ C which is regular at s = 0. We split the integral

as a sum of integrals from 1 to +∞ and from 0 to 1. Observe that f(0) = 0, as 0∗È = 0.

The rapid decay of f , together with the fact that f(0) = 0, implies that the integral from

1 to +∞ converges absolutely and defines an entire function on s. To study the integral

from 0 to 1, we use Poisson summation formula
∫ 1

0

∑

¼∈L

f(t¼)ts
dt

t
=
∫ 1

0

∑

¼∈L(

f̂(¼/t)ts−n
dt

t
,

where f̂ denotes the Fourier transform of f and L( the dual lattice of L. For Re(s)k n,

the previous integral can be written as

f̂(0)

s− n +
∫ +∞

1

∑

¼∈L(−{0}

f̂(¼u)un−s
du

u
.

Since f̂ is a Schwartz function, the integral converges for all values of s ∈ C and defines

an entire function. Thus, this expression gives a meromorphic continuation of the integral

from 0 to 1 regular everywhere except maybe at s = n. The result follows from there.

Finally, we are ready to prove the following expression regarding pullbacks of the

Eisenstein class by torsion sections, which will be useful for the next section.

Proposition 11.3.3. For v ∈ Qn − c−1Zn, view v∗cEÈ as a differential form on X .

Then,
∑

v∈ 1
p
Zn/Zn−{0}

v∗cEÈ = 0.

Proof. By Proposition 11.3.1, and more precisely (11.5), we can write the sum of the

proposition as the evaluation at s = 0 of the following expression

∑

v∈ 1
p
Zn/Zn−{0}

∑

¼∈v+c−1Zn

¸(¼, s)− cn
∑

v∈ 1
p
Zn/Zn−{0}

∑

¼∈v+Zn
¸(¼, s).

We will verify that each of the two terms vanishes when evaluated at s = 0. Since the

proof is analogous in the two cases, we will show that

lim
s→0

∑

v∈ 1
p
Zn/Zn−{0}

∑

¼∈v+Zn
¸(¼, s) = 0.
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Let g ∈ S, consider tangent vectors Y1, . . . , Yn−1 ∈ TgS, and let Y = (Y1, . . . , Yn−1).

Then, it is enough to see

lim
s→0

∑

v∈ 1
p
Zn/Zn−{0}

∑

¼∈v+Zn
¸(¼, s)g(Y ) = 0.

Then, for s ∈ C with Re(s)k 0

∑

v∈ 1
p
Zn/Zn−{0}

∑

¼∈v+Zn
¸(¼, s)g(Y ) =

∑

v∈ 1
p
Zn−Zn

¸(¼, s)g(Y ) +
∑

¼∈Zn
¸(¼, s)g(Y )

−
∑

¼∈Zn
¸(¼, s)g(Y ),

where we added and subtracted a function which admits a meromorphic continuation to

all s ∈ C and is regular at s = 0 by Lemma 11.3.2. Collecting the first two terms of the

right hand side, we obtain that the previous expression is equal to

∑

¼∈Zn
¸(¼/p, s)g(Y )−

∑

¼∈Zn
¸(¼, s)g(Y ) = ps

∑

¼∈Zn
¸(¼, s)g(Y )−

∑

¼∈Zn
¸(¼, s)g(Y ).

Here we used that ¸(¼/p, s) = ps¸(¼, s), which can be verified from the definition of ¸(v, s).

Since the meromorphic continuation of
∑
¼∈Zn ¸(¼, s)g(Y ) is regular at s = 0 by Lemma

11.3.2, the evaluation of the meromorphic continuation of the expression above at s = 0 is

zero.



Section 12

The Eisenstein group cohomology

class

In this chapter, we package the pullbacks of the Eisenstein class by p-power torsion sections

in a group cohomology class for Γ := SLn(Z) valued in measures on X := Znp − pZnp . Then,

we discuss the process of lifting this class to a class valued in total mass zero measures of

X, which will be an important property for constructing rigid classes and p-adic invariants

attached to totally real fields.

12.1 From singular to group cohomology

Let m be the least common multiple of c and [Γ : Γ(q)]. Observe that m is prime to p, by

assumption on c and on the index [Γ : Γ(q)]. The group Γr(q) acts freely on X , as it is

torsion-free. Thus, we have a natural isomorphism

Hn−1(Γr(q)\X ,Z[1/m])
∼−−→ Hn−1(Γr(q),Z[1/m]). (12.1)

Since Γr(q) is normal in Γr, there are natural actions of Γr on both cohomology groups.

Indeed, the action of Γr on singular cohomology is described above Lemma 10.2.3, and the

action on group cohomology is induced by the conjugation action of Γr on Γr(q). These

actions are compatible with the isomorphism above leading to

Hn−1(Γr(q)\X ,Z[1/m])Γr ∼−−→ Hn−1(Γr(q),Z[1/m])Γr .

Finally, since [Γr : Γr(q)] divides [Γ : Γ(q)], and therefore it is invertible in Z[1/m],

restriction induces an isomorphism

Hn−1(Γr,Z[1/m])
∼−−→ Hn−1(Γr(q),Z[1/m])Γr .
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The inverse of this map is given by the corestriction map multiplied by [Γr : Γr(q)]
−1.

For every r g 1, in Section 10.2 we constructed the classes

v∗rzr ∈ Hn−1(Γr(q)\X ,Z[1/m])Γr .

and proved they were invariant under the action of Γr in Lemma 10.2.3.

Definition 12.1.1. For r g 1, let cr ∈ Hn−1(Γr,Z[1/m]) be the group cohomology class

corresponding to v∗rzr via the previous two isomorphisms. We will sometimes view cr as a

class with coefficients in Zp, Z/prZ or R via the natural maps from Z[1/m] to these rings.

The trace compatibility of the singular cohomology classes (v∗rzr)r leads to the com-

patibility of the group cohomology classes (cr)r with respect to corestriction maps.

Proposition 12.1.2. For r g 1 let cor : Hn−1(Γr+1,Z[1/m])→ Hn−1(Γr,Z[1/m]) be the

corestriction map. Then, cor(cr+1) = cr.

Proof. Denote by cr(q) ∈ Hn−1(Γr(q),Z[1/m]) the image of v∗rzr via the isomorphism

(12.1). Since this isomorphism is compatible with respect to pushforward and corestriction

(see [Bro82, Chapter III, Section 9 (E)]), it follows from Proposition 10.3.4 that if

corq : Hn−1(Γr+1(q),Z[1/m]) −→ Hn−1(Γr(q),Z[1/m]),

denotes corestriction in group cohomology, then corq(cr+1(q)) = cr(q). Now observe that

we have a commutative diagram

Hn−1(Γr+1(q),Z[1/m]) Hn−1(Γr+1,Z[1/m])

Hn−1(Γr(q),Z[1/m]) Hn−1(Γr,Z[1/m]),

corq cor

where all the maps denote corestriction maps. Since the image of cr(q) by the horizontal

map is [Γr : Γr(q)]cr, we deduce that

cor([Γr+1 : Γr+1(q)]cr+1) = [Γr : Γr(q)]cr.

Now, observing that [Γr+1 : Γr+1(q)] = [Γr : Γr(q)] and that this quantity is invertible in

Z[1/m], we obtain the desired equality in Hn−1(Γr,Z[1/m]).

12.2 Cohomology class with coefficients in Zp-measures

For r g 1, let Xr := (Z/prZ)n − (pZ/prZ)n and if A is an abelian group, denote

D(Xr, A) := Maps(Xr, A).
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It admits a left action of Γ given by (g · ¼)(x) = ¼(g−1x), for g ∈ Γ, ¼ ∈ D(Xr, A), and

x ∈ Xr. Let xr := (1, 0, . . . , 0)t ∈ Xr. Since the stabilizer of xr in Γ is Γr, we deduce that

we have a Γ-equivariant isomorphism

coIndΓ
Γr(A)

∼−−→ D(Xr, A), f 7−→ ¼f ,

where ¼f (x) = f(µ) for µ ∈ Γ such that µxr = x.

Definition 12.2.1. For every r g 1, define µr ∈ Hn−1(Γ,D(Xr,Z[1/m])) to be the image

of cr by the inverse of the isomorphism induced by Shapiro’s lemma

Hn−1(Γr,Z[1/m])
∼−−→ Hn−1(Γ,D(Xr,Z[1/m])).

Again, we will sometimes view µr as a class with coefficients in Zp, Z/prZ or R.

Consider the Γ-equivariant maps

ur+1 : D(Xr+1, A) −→ D(Xr, A), ur+1(f)(x) =
∑

x′∈Xr+1

x′≡x mod pr

f(x′). (12.2)

It follows from the compatibility of the classes (cr)r ∈ lim←−rH
n−1(Γr,Z[1/m]) proven in

Proposition 12.1.2, that we have a compatible system

(µr)r ∈ lim←−
r

Hn−1(Γ,D(Xr,Z[1/m])),

where the transition maps are given by ur for every r g 2. This statement can be proven

using Chapter III, Section 9 (A) of [Bro82], which leads to describe the corestriction maps

in terms of the map given by Shapiro’s lemma and ur.

Denote by D(X, A) the space of A-valued distributions on X. An element of ¼ ∈ D(X, A)

is determined by the values ¼(U) of the characteristic functions of compact open sets

U . In particular, it is determined by the images of the following compact open sets. For

x ∈ Xr, choose any lift of it in X, also denoted by x, and let

Ux/pr := x+ prZnp ¢ X. (12.3)

Endow D(X, A) with a left action of Γ given by (g · ¼)(U) = ¼(g−1U) and define

D(X, A) −↠ D(Xr, A), ¼ 7−→ ¼r,

where for x ∈ Xr, ¼r(x) = ¼(Ux/pr).
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Lemma 12.2.2. Let A be an abelian group. The maps

D(X, A)
∼−−→ lim←−

r

D(Xr, A), ¼ 7−→ (¼r)r,

D(X,Zp)
∼−−→ lim←−

r

D(Xr,Z/p
rZ), ¼ 7−→ (¼r mod pr)r,

are Γ-equivariant isomorphisms.

Proof. The first isomorphism follows from the fact that a measure ¼ ∈ D(X, A) is deter-

mined by {¼(Ux/pr)} for x ∈ Xr and r g 1. For the second one, observe that

lim←−
r

D(Xr,Z/p
rZ) −→ D(X,Zp), (¼r) 7−→ ¼,

where ¼ is defined by

¼(Ux/pr) =
( ∑

x′∈Xm
x′≡x mod pr

¼r(x
′)
)

mgr
∈ lim←−Z/pmZ = Zp

provides an inverse to the second morphism.

We now aim to combine the compatible system of classes (µr)r to a group cohomology

class valued on D(X,Zp). First, we need to recall the following fact regarding the

cohomology of congruence subgroups of Γ.

Lemma 12.2.3. For every r g 1 and i g 0, the cohomology group H i(Γr,Z/p
rZ) is finite.

Proof. By [BS73, Theorem 11.4], the group Γr is of type (WFL). In particular, it is of type

(VFL). By the Remark in Page 101 of Section 1.8 of [Ser71], it follows that H i(Γr,Z/p
rZ)

is finitely generated over Z. Since it is also a torsion group, we deduce that it is finite, as

desired. We refer the reader to Section 1.2 and Section 1.8 of [Ser71] for the definitions

and properties of groups of type (FL), (VFL) and (WFL).

Proposition 12.2.4. For every i ∈ Zg0, the map ¼ 7→ (¼r)r of Lemma 12.2.2 induces an

isomorphism

H i(Γ,D(X,Zp))
∼−−→ lim←−

r

H i(Γ,D(Xr,Zp)).

Proof. We begin proving that the second map of Lemma 12.2.2 induces an isomorphism

H i(Γ,D(X,Zp))
∼−−→ lim←−

r

H i(Γ,D(Xr,Z/p
rZ)). (12.4)

To simplify the notation, denote D := D(X,Zp) and Dr := D(Xr,Z/p
rZ). For a group G,

a G-module M , and j ∈ Zg0, let

Cj(G,M) := HomG(Z[Gj+1],M),
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where the action of G in Gj+1 is diagonal. The complex C•(G,M) with the usual

coboundary maps computes the group cohomology of G with coefficients in M .

The surjective morphisms ur mod pr−1 : Dr → Dr−1 obtained by taking the maps in

(12.2) modulo pr−1 induce a map

u = (ur) :
∏

rg1

Ci(Γ,Dr) −↠
∏

rg1

Ci(Γ,Dr).

Since ur is surjective for every r, u is surjective. It can be deduced from there and the

expression of u, that 1− u is also surjective, where 1 denotes the identity. In particular,

we have a short exact sequence of complexes

0 −→ C•(Γ,D) −→
∏

rg1

C•(Γ,Dr)
1−u−−→

∏

rg1

C•(Γ,Dr) −→ 0.

Note that to justify exactness in the middle, we used that D = lim←−r Dr by Lemma 12.2.2.

The corresponding long exact sequence in cohomology yields to the short exact sequence

0 −→ R1 lim←−
r

H i−1(Γ,Dr) −→ H i(Γ,D) −→ lim←−
r

H i(Γ,Dr) −→ 0, (12.5)

where we used that

R1 lim←−
r

H i−1(Γ,Dr) = coker


∏

rg1

H i−1(Γ,Dr)
1−u−−→

∏

rg1

H i−1(Γ,Dr)


 .

Finally, since H i−1(Γ,Dr) ≃ H i−1(Γr,Z/p
rZ) is finite for every i by Lemma 12.2.3, it fol-

lows that (H i−1(Γ,Dr))r satisfies the Mittag–Leffler condition. Thus, R1 lim←−rH
i−1(Γ,Dr) =

0 for every i proving the isomorphism (12.4).

We conclude the proof using (12.4). For that, observe that we have the commutative

diagram

R1 lim←−H
i−1(Γ,D(X,Zp)) Hn−1(Γ,D(X,Zp)) lim←−H

n−1(Γ,D(Xr,Zp))

0 Hn−1(Γ,D(X,Zp)) lim←−H
n−1(Γ,D(Xr,Z/p

rZ)),

Id

where the first row is obtained in the exact same way as above. The diagram implies that

R1 lim←−H
i−1(Γ,D(X,Zp)) = 0 and we are done.

Definition 12.2.5. Define

µ ∈ Hn−1(Γ,D(X,Zp))

to be the class corresponding to (µr)r via the isomorphism of Proposition 12.2.4.
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12.3 Cocycle with coefficients in R-distributions

Using the differential form cEÈ introduced in Section 11, which represents the Eisenstein

class, we give an explicit representative of the image of µr ∈ Hn−1(Γ,D(Xr,Z[1/m])) in

Hn−1(Γ,D(Xr,R)). This will be used to lift µ to a class valued in measures of total mass

zero and to compare our p-adic constructions to special values of L-functions.

Lemma 12.3.1. Let r g 1 and let z ∈X be an arbitrary point. The map

cv∗
r cEÈ : Γnr −→ R, (µ0, . . . , µn−1) 7−→

∫

∆(µ0z,...,µn−1z)
v∗r cEÈ,

where ∆(µ0z, . . . , µn−1z) denotes the geodesic simplex in X with vertices {µiz}i, defines a

group cocycle and represents the class cr ∈ Hn−1(Γr,R).

Proof. The form v∗r cEÈ on X is closed and invariant under the action of Γr. It follows

from there that cv∗
r cEÈ is a group cocycle and its cohomology class is independent of the

choice of point z ∈X .

We proceed to see that the class of cv∗
r cEÈ is cr. For this, note that Theorem 11.2.4

implies that v∗r cEÈ descends to a closed differential form on Γr(q)\X representing v∗rzr ∈
Hn−1(Γr(q)\X ,R). Thus the image of v∗rzr by the isomorphism (12.1) (with coefficients

in R) is represented by the restriction of cv∗
r cEÈ to Γr(q)

n. In particular, it follows from

the definition of cr that [cv∗
r cEÈ ] = cr.

Fix z ∈X an arbitrary point. Define a cocycle

µv∗
r cEÈ : Γn −→ D(Xr,R), (µ0, . . . , µn−1) 7−→

(
x̄ 7−→

∫

∆(µ0z,...,µn−1z)
(x/pr)∗cEÈ

)
,

where x ∈ Zn is a lift of x̄ ∈ Xr, z ∈ X denotes a fixed arbitrary base point, and

∆(µ0z, . . . , µn−1z) is defined as in the lemma above.

Proposition 12.3.2. We have [µv∗
r cEÈ ] = µr when viewed as classes in Hn−1(Γ,D(Xr,R)).

Proof. First observe that µv∗
r cEÈ is a group cocycle. This follows from the fact that cEÈ is

closed and invariant under Γ. Now, Shapiro’s lemma gives an isomorphism

Hn−1(Γ,D(Xr,R))
∼−−→ Hn−1(Γr,R), [φ] 7−→ [cφ]

defined as follows. If µ0, . . . , µn−1 ∈ Γr, and xr = (1, 0, . . . , 0)t ∈ Xr,

cφ(µ0, . . . , µn−1) = φ(µ0, . . . , µn−1)(xr).

Since the image of µv∗
r cEÈ by this map is cv∗

r cEÈ , it follows from Lemma 12.3.1 and the

definition of µr (see Definition 12.2.1) that [µv∗
r cEÈ ] = µr in Hn−1(Γ,D(Xr,R)).
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Consider the Γ-equivariant morphism given by taking the total mass of a distribution

D(X1,R) −→ R, ¼ 7−→
∑

x∈X1

¼(x).

Corollary 12.3.3. The corestriction map Hn−1(Γ1,R)→ Hn−1(Γ,R) maps c1 to 0. In

particular, the morphism induced by taking the total mass of a measure

Hn−1(Γ1,D(X1,R)) −→ Hn−1(Γ,R)

maps µ1 to 0.

Proof. The corestriction map can be written as

Hn−1(Γ1,R)
∼−−→ Hn−1(Γ,D(X1,R)) −→ Hn−1(Γ,R),

where the first map is given by the inverse of the map given by Shapiro’s lemma, and

the second one is the map induced by taking the total mass of a measure (see [Bro82,

Chapter III, Section 9 (A)]). In view of this observation and of Proposition 12.3.2, it is

enough to prove that the image of [µv∗
1cEÈ

] by the second map is trivial. For that, observe

that such image is represented by the cocycle

(µ0, . . . , µn−1) 7−→
∫

∆(µ0z,...,µn−1z)

∑

x∈X1

(x/p)∗cEÈ.

It follows from Proposition 11.3.3 that the sum of differential forms in the integral is equal

to zero, giving the desired result.

12.4 Lifting to measures of total mass zero

To construct rigid classes, it is useful to lift the class µ to a class with coefficients in

measures of total mass zero. To define such a lift, we first study the action of the involution

induced by w = diag(1,−1, 1, . . . , 1) ∈ GLn(Z) in group cohomology. Conjugation by w

induces the automorphism ³ : Γ→ Γ, ³(µ) = wµw. Then, for every GLn(Z)-module M ,

we can consider the morphism of complexes

C•(Γ,M) −→ C•(Γ,M), c 7−→ w ◦ c ◦ ³r,

which induces an involution w on H i(Γ,M). We will denote by H i(Γ,M)− the (−1)-

eigenspace for w. Observe that GLn(Z) acts on D(X, A) on the left via (g·µ)(U) = µ(g−1U).

In particular, we can consider the involution w on Hn−1(Γ,D(X,Zp)).

Proposition 12.4.1. Let µ ∈ Hn−1(Γ,D(X,Zp)) be the class constructed in Definition

12.2.5. Then, wµ = −µ in Hn−1(Γ,D(X,Zp)).
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Proof. Since w normalizes Γr for every r, it acts on the cohomology groups Hn−1(Γr,Zp).

From there, it follows that it also acts in the inverse limit lim←−rH
n−1(Γr,Zp). Moreover,

the isomorphism from Proposition 12.2.4

Hn−1(Γ,D(X,Zp))
∼−−→ lim←−

r

Hn−1(Γ,D(Xr,Zp))
∼−−→ lim←−

r

Hn−1(Γr,Zp)

is equivariant with respect to the involution w. Therefore, the result follows from Lemma

10.2.4.

Let D0 := D0(X,Zp) be the sub-module of D := D(X,Zp) consisting of measures

¼ ∈ D(X,Zp) such that ¼(X) = 0. Consider the short exact sequence

0 −→ D0(X,Zp) −→ D(X,Zp) −→ Zp −→ 0. (12.6)

Proposition 12.4.2. The image of µ by the map Hn−1(Γ,D)→ Hn−1(Γ,Zp) is torsion.

Proof. The result follows from Proposition 12.3.3.

As we explained above, w = diag(1,−1, 1, . . . , 1) ∈ GLn(Z) acts on the cohomology

groups H i(Γ,Zp), H i(Γ,D0), and H i(Γ,D). Moreover, (12.6) yields a long exact sequence

Hn−2(Γ,Qp)
− −→ Hn−1(Γ,D0)

−
Q −→ Hn−1(Γ,D)−Q −→ Hn−1(Γ,Qp)

−,

where the subindex denotes taking the tensor product with Q over Z. By the previous

proposition, µ lifts to a class in Hn−1(Γ,D0)−Q. The lift is well-defined up to Hn−2(Γ,Qp)
−,

but the following theorem asserts that this group is zero.

Theorem 12.4.3. The cohomology group Hn−2(Γ,Qp)
− is trivial.

Proof. This follows from the work of Li–Sun, [LS19]. More precisely, Example 1.10 of

[LS19] states

Hn−2(GLn(Z),R(det)) = 0.

Using Shapiro’s lemma, this is equivalent to Hn−2(Γ,R)− = 0. From there, the universal

coefficient theorem implies that Hn−2(Γ,Z)− is torsion. Moreover, H i(Γ,Z) is finitely

generated for every i, and therefore Hn−2(Γ,Z)− is finite. Another application of the

universal coefficient theorem implies that Hn−2(Γ,Qp)
− = 0.

Here and for the rest of the paper, we will fix

µ0 ∈ Hn−1(Γ,D0(X,Zp))
−
Q (12.7)

a lift of µ, which by the previous theorem, is unique up to a torsion subgroup.



Section 13

Drinfeld’s symmetric domain and

log-rigid classes

In this section, we introduce Drinfeld’s p-adic symmetric domain Xp. Then, we define

a lift from measures on X = Znp − pZnp of total mass zero to log-rigid analytic functions

on Xp. This leads to construct a log-rigid class JEis as the image of the class µ0 ∈
Hn−1(Γ,D0(X,Zp)) of the previous section by such lift. We conclude by defining the

evaluation of JEis at points Ä ∈Xp attached to totally real fields where p is inert.

13.1 Drinfeld’s domain and rigid functions

Drinfeld’s p-adic symmetric domain is defined as Xp := Pn−1(Cp) −
⋃
H∈HH, where H

is the set of all Qp-rational hyperplanes. It has a the structure of a rigid analytic space,

which we proceed to describe following [SS91].

For a given H ∈ H, let ℓH be an equation of H whose coefficients form a unimodular

vector in Cn
p ; that is, all coefficients lie in OCp , and at least one of them has p-adic norm

equal to 1. Also, if z ∈ Pn−1(Cp), we will always assume z = [(z0, . . . , zn−1)] is represented

by a unimodular vector. For m g 1, define

X
fm
p := {z ∈ Pn−1(Cp) | ordp(ℓH(z)) f m, for all H ∈ H}.

The family {X fm
p }m forms an admissible covering of Xp by open affinoid subdomains.

The ring of rigid functions on X fm
p can be described as follows. Let Hm be the set

of equivalence classes of H modulo pm. Also, fix H̄m a set of representatives for the

equivalence classes in Hm+1 containing the coordinate hyperplanes Hi = {zi = 0} for

every i = 0, . . . , n− 1. For H,H ′ ∈ H, define the function fH,H′ : Xp → Cp

fH,H′(z) :=
ℓH(z)

ℓH′(z)
.
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Then, observe that we can describe

X
fm
p = {z ∈Xp | ordp(fH,H′(z)) g −m for all H,H ′ ∈ H̄m}.

Let Am be the affinoid Qp-algebra obtained as the quotient of the free Tate algebra over

Qp in the indeterminates {TH,H′}H,H′∈H̄m
modulo the closed ideal generated by

TH,H − pm, for H ∈ H̄m

TH,H′TH′,H′′ − pmTH,H′′ , for H,H ′, H ′′ ∈ H̄m,

TH,Hj −
r−1∑

i=0

¼iTHi,Hj , if ℓH(z) =
n−1∑

i=0

¼izi for H ∈ H̄m and 0 f j f n− 1.

The previous descriptions of X fm
p and Am lead to the following result.

Proposition 13.1.1. Denote by Afm the ring of rigid analytic functions on X fm
p . Then,

we have an isomorphism of Qp-algebras

Am
∼−−→ Afm, TH,H′ 7−→ pmfH,H′ .

In particular, it induces an isomorphism of rigid spaces X fm
p

∼−−→ Sp(Am).

Proof. See proof of Proposition 4 of [SS91].

In particular, Afm is a Banach algebra with respect to the supremum norm.

Definition 13.1.2. The ring of rigid analytic functions on Xp, denoted by A, is the

space of functions f : Xp → Cp such that for every m, their restriction to X fm
p belongs

to Afm.

We will also consider a larger space of functions on Xp, called log-rigid analytic

functions. Let logp : C×
p → Cp be the branch of the p-adic logarithm satisfying logp(p) = 0.

A function f : X fm
p → Cp is log-rigid analytic on X fm

p if it can be written as

f = f0 +
∑

H,H′∈H

cH,H′ logp(fH,H′(z)),

where f0 ∈ Afm and cH,H′ ∈ Qp are all but finitely many equal to 0. Denote the space of

log-rigid analytic functions on X fm
p by Afm

L .

Definition 13.1.3. The space of log-rigid analytic functions on Xp, denoted by AL, is the

space of functions f : Xp → Cp such that for every m, their restriction to X fm
p belongs

to Afm
L .

The following lemma will be useful to study log-rigid functions in the next sections.
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Lemma 13.1.4. Let m g 1, and let H,H ′ ∈ H be hyperplanes with equations ℓH and ℓH′

which are congruent modulo pm+1. Then, the function

f : X
fm
p −→ Cp, z 7−→ logp (fH,H′(z))

is rigid analytic on X fm
p .

Proof. Observe that we can write

f(z) = logp

(
1− ℓH′(z)− ℓH(z)

ℓH′(z)

)
.

Moreover, since ℓH ≡ ℓH′ mod pm+1 and z ∈X fm
p , we have

ordp

(
ℓH′(z)− ℓH(z)

ℓH′(z)

)
g 1.

Therefore,

f(z) =
∑

kg1

1

k

(
ℓH′(z)− ℓH(z)

ℓH′(z)

)k
,

which is rigid analytic on X fm
p .

Observe that matrix multiplication induces a right action of SLn(Qp) on Xp given as

follows. For g ∈ SLn(Qp) and z ∈Xp represented by a vector in Cn
p , that we also denote

by z, we have

(z, g) := [gtz],

where gt ∈ SLn(Qp) denotes the transpose of g. This induces a left action of SLn(Qp)

on the space of Cp-valued functions on Xp. If g ∈ SLn(Qp), f is a function on Xp, and

z ∈Xp

(g · f)(z) := f(gtz).

This action preserves the subspaces A and AL.

13.2 Lifts from measures to functions on Xp

Recall that Xp consists of the points in Pn−1(Cp) that do not belong to a Qp-rational

hyperplane. On the other hand, a point in X = Znp−pZnp gives the equation of a Qp-rational

hyperplane. This suggests to consider the two variable function
(
Cn
p −

⋃

H∈H

H

)
× X −→ Cp, (z, x) 7−→ logp(z

t · x),

Integration with respect to the variable x ∈ X will induce a map from total mass zero

measures on X to functions on Xp.
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Lemma 13.2.1. Let ¼ ∈ D0(X,Zp). The function F : Xp −→ Cp given by

z 7−→ F (z) :=
∫

X
logp(z

t · x)d¼,

where z in the right hand side denotes an arbitrary representative in Cn
p of z ∈ Xp, is

well-defined and belongs to AL.

Proof. For every r g 1, fix Vr a set of representatives in Zn of Xr = (Z/prZ)n− (pZ/prZ)n

and define

fr : Xp −→ Cp, z 7−→
∑

v∈Vr

¼(Uv/pr) logp(z
t · v),

where Uv/pr ¢ X is as in (12.3). Observe that since ¼(X) = 0, fr(z) is independent of the

choice of representative of z in Cn
p , showing that fr is a well-defined function. For the rest

of the proof we will assume that the representative of z (also denoted z) is a unimodular

vector. We follow the next steps:

• F is a well-defined function on Xp. Indeed, for z ∈ Cn
p −

⋃
H∈HH, the function

x ∈ X 7→ logp(z
t · x) is continuous on the compact set X. Thus, the integral defining

F (z) converges and we have pointwise convergence

F (z) = lim
r→+∞

fr(z).

• The sequence (fr |X fm
p

) converges to F
|X fm

p
with respect to the sup norm for m g 1.

To simplify the notation, denote by (fr) and F the restrictions of these functions

to X fm
p . To prove that (fr)r converges to F with respect to the sup norm it is

enough to see that (fr)r is Cauchy with respect to this norm. Observe that, if we let

Ã : Vr+1 ↠ Vr be the lift of the reduction modulo pr map Xr+1 ↠ Xr and use that ¼

is a measure, we have

fr+1(z)− fr(z) =
∑

v∈Vr+1

¼(Uv/pr+1) logp

(
zt · v

zt · Ã(v)

)

=
∑

v∈Vr+1

¼(Uv/pr+1) logp

(
1 +

zt · (v − Ã(v))

zt · Ã(v)

)
.

Since v ≡ Ã(v) mod pr, we deduce that for every z ∈X fm
p

ordp

(
zt · (v − Ã(v))

zt · Ã(v)

)
g r −m,

Thus, if r > m, we can use the power series expansion of log(1 + x) to deduce that

ordp(fr+1(z)− fr(z)) g r −m for all z ∈X
fm
p

It follows from there that (fr)r is Cauchy.
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• F ∈ AL. Let m g 1 and denote by (fr) and F the restrictions of these functions to

X fm
p . It is enough to see that F belongs to Afm

L . With this aim, write

F =
(

lim
r→+∞

(fr − fm+1)
)

+ fm+1.

We claim that limr→+∞(fr− fm+1) is a rigid analytic function. Indeed, we can write

fr(z)− fm+1(z) =
∑

v∈Vr+1

¼(Uv/pr+1) logp

(
zt · v

zt · Ãr−(m+1)(v)

)
.

Since v ≡ Ãr−(m+1)(v) mod pm+1, it follows from Lemma 13.1.4, that fr − fm+1 is

rigid analytic on X fm
p . Then, since the sequence (fr− fm+1) converges with respect

to the sup norm by the previous point of this proof, and Afm is complete with

respect to this norm, we deduce the desired claim.

On the other hand, since ¼ has total mass zero, we have that fm+1 ∈ Afm
L , as it

can be written as a linear combination of logp(fH,H′(z)) for Qp-rational hyperplanes

H,H ′ ∈ H. Hence, we deduce that F ∈ Afm
L and we are done.

In view of the previous lemma, we can define a lift from measures of total mass zero

to log-rigid analytic functions on Xp.

Definition 13.2.2. Let ST be the morphism given by

ST: D0(X,Z) −→ AL, ¼ 7−→
(
z 7−→

∫

X
logp(z

t · x)d¼
)
.

The morphism ST is Γ-equivariant. Therefore, it induces a map in cohomology

ST: Hn−1(Γ,D0(X,Zp)) −→ Hn−1(Γ,AL).

Using this map, we obtain our desired log-rigid analytic class.

Definition 13.2.3. Let µ0 ∈ Hn−1(Γ,D0(X,Zp))Q be as in (12.7). Define

JEis := ST(µ0) ∈ Hn−1(Γ,AL)Q.

13.3 Evaluation at totally real fields where p is inert

Let F be a totally real field of degree n where p is inert and denote by Ã1, . . . , Ãn the

collection of embeddings of F into R. Let a be an integral ideal of F of norm coprime

to pc. Fix {Ä1, . . . , Än} an oriented Z-basis of a−1, in the sense that the square matrix
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(Ãi(Äj))i,j has positive determinant, and let Ä ∈ F n be the column vector whose ith entry

is equal to Äi. The vector Ä induces an isomorphism of Q-vector spaces

Qn ∼−−→ F, x 7−→ Ä t · x.

The action of multiplication by F× on F , which is Q-linear, gives an embedding

F ↪−→ Mn(Q), ³ 7−→ A³ (13.1)

determined by the following property: for ³ ∈ F and x ∈ Qn, ³(Ä t · x) = Ä t · (A³x).

Lemma 13.3.1. The element Ä ∈ Pn−1(Cp) belongs to Xp and is fixed by F 1 ↪−→ SLn(Q).

Proof. The coordinates of Ä give a Q-basis of F . Since p is inert in F , the coordinates of Ä

also form a Qp-basis of the completion of F at p. In particular, they are independent over

Qp. In other words, Ä ∈Xp. Finally, for every ³ ∈ F we have At³Ä = ³Ä by the property

stated below (14.2). In particular, Ä ∈Xp is fixed by the action of F 1 ↪−→ SLn(Q).

Let UF be the subgroup of totally positive units in O×
F . We view UF as a subgroup of

Γ. Consider the following morphism in cohomology induced by evaluation at Ä

Hn−1(Γ,AL)
evÄ−−→ Hn−1(UF ,Cp).

By Dirichlet’s unit theorem, UF ≃ Zn−1. Therefore, Hn−1(UF ,Z) ≃ Z, and we can fix a

generator of this group cUF ∈ Hn−1(UF ,Z).

Definition 13.3.2. Consider the same notation as above, and let J ∈ Hn−1(Γ,AL)Q.

Define the evaluation of J at [Ä ] ∈Xp by the cap product

J [Ä ] := cUF ⌢ evÄ (J) ∈ Cp.

Observe that, since JEis = ST(µ0), it follows from the description of the map ST

that JEis[Ä ] ∈ Fp. We also note that this definition depends, up to a sign, of the choice

of generator cUF ∈ Hn−1(UF ,Z). In the next section, we will make a precise choice of

generator when comparing the local trace of these values to the local trace of p-adic

logarithms of Gross–Stark units.



Section 14

Values of the log-rigid class and the

Gross–Stark Conjecture

Let F be a totally real field where p is inert, let a be an integral ideal of F coprime to

pc, and fix Ä ∈ F n a vector whose entries give an oriented Z-basis of a−1, which yields a

point Ä ∈ Xp. Recall the log-rigid analytic class JEis constructed in the previous section

and its value JEis[Ä ] ∈ Fp at Ä . In this section, we prove

TrFp/QpJEis[Ä ] = −L′
p(1[a]p , 0),

where Lp(1[a]p , s) denotes a p-adic partial zeta function attached to the ideal class of a in the

narrow Hilbert class field of F . From this expression and the rank 1 Gross–Stark conjecture,

proved in [DDP11] and [Ven15], we obtain the equality TrFp/QpJEis[Ä ] = TrFp/Qp logp(uÄ ),

for uÄ ∈ OH [1/p]× ¹ Q a Gross-Stark unit in the narrow Hilbert class field H of F

attached to the ideal class of a. We conclude conjecturing JEis[Ä ] = logp(uÄ ) and provide

an observation that leads to this conjecture.

14.1 Gross–Stark conjecture

We state the Gross–Stark conjecture in a simple setting. For more details we refer the

reader to Section 2 of [Das08]. We begin introducing the following notation. For an

integral ideal f of F , denote by Gf the ray class group attached to f. It is obtained by

taking the quotient of the set of integral ideals in F which are prime to f by the relation

b ∼f c if and only if bc−1 = (¼)

for some ¼ ∈ 1 + fc−1 totally positive. Then, if ε is a Q̄-valued function on Gf, we set

L(ε, s) :=
∑

(b,f)=1

ε(b)Nb−s,
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where the sum is over integral ideals which are coprime to f. This sum converges for s ∈ C

such that Re(s) > 1 and it can be extended via analytic continuation to a meromorphic

function at C with at most a pole at s = 1, that we will still denote by L(ε, s).

Let c be a positive integer prime to p and denote by εc the function on Gf given by

εc(b) = ε(bc). For k ∈ Zg1, consider

∆c(ε, 1− k) := L(ε, 1− k)− cnkL(εc, 1− k).

It is result of Klingen and Siegel that ∆c(ε, 1− k) ∈ Q(ε), where Q(ε) denotes the field

generated by the values of ε. Deligne–Ribet and Cassou–Noguès refined this statement

by asserting that these values are p-integral and satisfy numerous congruences modulo

powers of p. To state their result, fix here and from now on an embedding Q̄ ¢ Q̄p. In this

way, we will view ε as a function taking values on Q̄p and the elements ∆c(ε, 1− k) ∈ Q̄p.

Theorem 14.1.1. Consider the same notation as above and suppose ε : Gf → Zp takes

values in Zp. Let k ∈ Zg1. Then:

1. We have ∆c(ε, 1− k) ∈ Zp.

2. Suppose f is divisible by pm and ¸ : Gf → Zp is such that ¸ ≡ Nk−1 mod pm, the

two functions considered as functions on the set of prime to f ideals. Then,

∆c(ε, 1− k) ≡ ∆c(ε¸, 0) mod pm.

Proof. See Theorem (2.1) of [Rib79].

Let 1[a],p : Gp → Z be the characteristic function of the preimage of [a] ∈ G1 by the

natural map Gp → G1. From the congruences stated above, it can be deduced that there

exists a p-adic analytic function Lp(1[a],p, s) defined on Zp characterized by the following

interpolation property. For every integer k g 1 such that k ≡ 1 mod [F (µ2p) : F ],

Lp(1[a],p, 1− k) = ∆c(1[a],p, 1− k). (14.1)

We refer the reader to [DR80] for details on the construction of the p-adic L-function

Lp(1[a],p, s).

Observe that L(1[a],p, s) is a partial zeta function with the Euler factor corresponding

to p removed. This implies that L(1[a],p, 0) = 0, and therefore ∆c(1[a],p, 0) = 0. By (14.1),

Lp(1[a],p, 0) = 0 as well. The Gross–Stark conjecture gives an arithmetic interpretation

for the value of derivative L′
p(1[a],p, 0) with respect to s at s = 0. For that, let H be the

narrow Hilbert class field of F and consider the following subgroup of p-units in H

Up := {u ∈ H× | |x|Q = 1 ∀Q ∤ p},
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where Q runs over all archimedean and nonarchimedean places of H not dividing p. Fix

P a prime of H dividing p.

Proposition 14.1.2. There exists a unique element u ∈ Up ¹Q satisfying

ordP(uÃa) = L(1[a], 0) for all a coprime to p,

where 1[a] denotes the characteristic function of [a] on G1 and Ãa ∈ Gal (H/F ) denotes

the Frobenius element associated to a.

Since p splits completely on H, we have H ¢ HP ≃ Fp.

Theorem 14.1.3 (Gross–Stark conjecture). Let u be as in Proposition 14.1.2. We have

L′
p(1[a],p, 0) = −(1− cn) logp(NFp/Qpu

Ãa) for all a coprime to p.

Proof. See [DDP11] and [Ven15].

14.2 Periods of the Eisenstein class along tori at-

tached to totally real fields

We use the differential forms representing the Eisenstein class introduced in Section 11

to prove that pullbacks of the Eisenstein class by torsion sections encode special values

of zeta functions attached to totally real fields. This was proven in [BCG20, Section 12]

in more generality using an adelic framework, and we specialize their results and outline

the proof below for the cases that will be relevant for us. Our calculations are similar to

those in Section 4.2 of [BCG23].

Recall that F is a totally real field of degree n where p is inert, a is an integral ideal

of F prime to pc, and Ä ∈ F n a column vector whose entries give a positively oriented

Z-basis of a−1. As we saw in the previous section, Ä induces a Q-linear isomorphism

´ : Qn ∼−−→ F, x 7−→ Ä t · x.

The action of multiplication by F× on F , which is Q-linear, gives an embedding

F ↪−→ Mn(Q), ³ 7−→ A³ (14.2)

determined by the following property: for all ³ ∈ F and x ∈ Qn, ³(Ä t · x) = Ä t · (A³x).

Let (F ¹ R)1
+ be the subset of totally positive elements of norm 1. The embedding (14.2)

induces an oriented map (see Section 12.4 of [BCG20] for more details on the orientation)

iÄ : (F ¹ R)1
+ −→X .
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Denote by UF the subgroup of totally positive units in O×
F . Since UF has rank n− 1 by

Dirichlet’s unit theorem, it follows that

X(F ) := UF\(F ¹ R)1
+ (14.3)

is a compact oriented manifold of dimension n−1. Let r g 1, consider Ç : (Z/prZ)× → Q̄×

a finite-order character and recall Xr := (Z/prZ)n− (pZ/prZ)n. We give a combination of

pullbacks of the differential form cEÈ that we will integrate along the fundamental class

of X(F ).

Definition 14.2.1. Consider the same notation as above. Define

EÄ,Ç := Ç(N(ca))
∑

x̄∈Xr

Ç(N(Ä t · x)) (x/pr)∗ cEÈ ∈ Ωn−1(X ), (14.4)

where N denotes the norm map on elements in F and on ideals of F . For s ∈ C, we define

EÄ,Ç(s) as above but replacing cEÈ by cEÈ(s) = EÈ(c−1Zn, s)− cnEÈ(Zn, s).

Lemma 14.2.2. The differential form EÄ,Ç on X is invariant under UF ¢ Γ, where the

inclusion of UF in Γ is induced by (14.2).

Proof. For µ ∈ Γ, note that we have µ∗v∗E
(c)
È = (µv)∗E

(c)
È . Then, if µ ∈ UF ¢ Γ

µ∗EÄ,Ç :=
∑

x̄∈Xr

Ç(N(ca)N(Ä t · x))(µx/pr)∗cEÈ

=
∑

x̄∈Xr

Ç(N(ca)N(Ä t · µ−1x))(x/pr)∗cEÈ

=
∑

x̄∈Xr

Ç(N(ca)N(εÄ t · x))(x/pr)∗cEÈ

=
∑

x̄∈Xr

Ç(N(ca)N(Ä t · x))(x/pr)∗cEÈ,

where we used that Ä tµ−1 = εÄ t, for ε ∈ UF the preimage of µ−1 by (14.2), and therefore

ε has norm 1.

Thus, i∗ÄEÄ,Ç defines a closed form on X(F ) and we can consider
∫

X(F )
i∗ÄEÄ,Ç.

We will express this integral in terms of L-functions attached to F . Consider the composi-

tion

Ç̃ = Ç ◦ (N mod pr) : Gpr
N mod pr−−−−−−→ (Z/prZ)×

Ç−−→ Q̄×,

and denote by 1[a],pr the characteristic function of the preimage of [a] ∈ G1 via the natural

map Gpr → G1. We can then consider the L-function L(Ç̃1[a],pr , s), where Ç̃1[a],pr denotes

the function on Gpr obtained as the product of Ç̃ and 1[a],pr .
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Lemma 14.2.3. We have

L(Ç̃1[a],pr , 0) = lim
s→0

Ç(Na)

2n
∑

³∈UF \a−1

Ç(N³)sign(N³)

|N³|s ,

where lims→0 denotes evaluation at s = 0 of the analytic continuation of the right hand

side.

Proof. The result can be deduced from equation (7.15) of [Cha07], which is originally due

to Siegel ([Sie79]).

Theorem 14.2.4. Consider the same notation as above. Then,
∫

X(F )
i∗ÄEÄ,Ç = (1− Ç(Nc)cn)L(Ç̃1[a],pr , 0).

Proof. For s ∈ C such that Re(s)k 0, we have

1

Ç(Nca)

∫

X(F )
i∗ÄEr,Ç(s) =

∫

X(F )
i∗Ä


∑

v̄∈Xr

Ç(N(Ä t · v)) (v/pr)∗ cEÈ(s)




=
∫

X(F )
i∗Ä


∑

v̄∈Xr

Ç(N(Ä t · v))


 ∑

¼∈v/pr+c−1Zn

¸(¼, s)− cn
∑

¼∈v/pr+Zn

¸(¼, s)




 ,

where we recall that ¸(¼, s) was introduced in Section 11.3. Using that ¸(v/pr, s) =

ps¸(v, s), and keeping in mind that we will later be interested in evaluating the analytic

continuation of the expression above at s = 0, it is enough to compute

∫

X(F )
i∗Ä


∑

v̄∈Xr

Ç(N(Ä t · v))


 ∑

¼∈v+c−1prZn

¸(¼, s)− cn
∑

¼∈v+prZn
¸(¼, s)






=
∫

X(F )
i∗Ä


∑

v̄∈Xr

Ç(N(Ä t · v))


 ∑

x∈´(v)+c−1pra−1

¸(´−1x, s)− cn
∑

x∈´(v)+pra−1

¸(´−1x, s)






=
∫

X(F )
i∗Ä


 ∑

x∈c−1a−1

Ç(N(x))¸(´−1x, s)− cn
∑

x∈a−1

Ç(N(x))¸(´−1x, s)


 .

We can compute the inner sums by first taking representatives of UF\c−1a−1 and UF\a−1,

that we denote by x, and then run over all elements in UF , denoted by u. Hence, we

obtain that the previous expressions can be written as

∫

X(F )
i∗Ä


 ∑

UF \c−1a−1

∑

UF

Ç(N(ux))¸(´−1ux, s)− cn
∑

UF \a−1

∑

UF

Ç(N(ux))¸(´−1ux, s)




=
∑

UF \c−1a−1

Ç(N(x))
∫

(F¹R)1
+

i∗Ä¸(´−1x, s)− cn
∑

UF \a−1

Ç(N(x))
∫

(F¹R)1
+

i∗Ä¸(´−1x, s).
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From [BCG20, Section 12.8], we have that for x ∈ F
∫

(F¹R)1
+

i∗Ä¸(´−1x, s) = Ã−n/22s/2−nΓ
(
s

2n
+

1

2

)n sign(N(x))

|N(x)|s .

Hence, we deduce

1

Ç(Nca)

∫

X(F )
Er,Ç =

1

2n
lim
s→0

∑

x∈UF \c−1a−1

Ç(N(x))
sign(N(x))

|N(x)|s −c
n

∑

x∈UF \a−1

Ç(N(x))
sign(N(x))

|N(x)|s .

Finally, from Lemma 14.2.3, we obtain
∫

X(F )
i∗Ä,rEr,Ç = (1− Ç(Nc)cn)L(Ç̃1[a],pr , 0)

as desired.

14.3 p-adic L-functions

In this section, we state the relation between the class µ ∈ Hn−1(Γ,D(X,Zp)) constructed

in Section 12 and the p-adic L-function Lp(1[a],p, s) introduced above. From there, we

relate TrFp/QpJEis[Ä ] to norms of Gross–Stark units.

For Ç : Z×
p → Q̄×

p a continuous function, define the UF -equivariant map

φÇ : D(X,Zp) −→ Q̄p, ¼ 7−→
∫

X
Ç
(
N(ca)NFp/Qp(Ä

t · x)
)
d¼.

It induces a map in cohomology

φÇ : Hn−1(Γ,D(X,Zp)) −→ Hn−1(UF , Q̄p).

Fix the generator cUF ∈ Hn−1(UF ,Z) ≃ Hn−1(X(F ),Z) ≃ Z corresponding to the positive

orientation of X(F ) in (14.3). We can then consider the cap product

cUF ⌢ φÇ(µ) ∈ Q̄p.

To make the notation more transparent, we will write

cUF ⌢ φÇ(µ) =
∫

X
Ç
(
N(ca)NFp/Qp(Ä

t · x)
)
dµ(cUF ).

When Ç is a finite order character, this quantity relates to special values of partial

L-functions in the following way.

Lemma 14.3.1. Let Ç : Z×
p ↠ (Zp/p

rZp)
× → Q̄× ¢ Q̄×

p be a character and let Ç̃ = Ç ◦ (N

mod pr). Then,
∫

X
Ç
(
N(ca)NFp/Qp(Ä

t · x)
)
dµ(cUF ) = ∆c(1[a],pÇ̃, 0).
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Proof. Consider the UF -equivariant morphism

φÇ,r : D(Xr,Zp) −→ Q̄p, ¼r 7−→
∑

v̄∈Xr

Ç
(
N(ca)N(Ä t · v)

)
¼r(v̄).

Since Ç factors through Zp/p
rZp, it follows that

cUF ⌢ φÇ(µ) = cUF ⌢ φÇ,r(µr), (14.5)

where µr ∈ Hn−1(Γ,D(Xr,Z[1/m])) is the class described in Definition 12.2.1. In particular,

cUF ⌢ φÇ,r(µr) ∈ Q̄. Fix an embedding Q̄ ¢ C. Then, the right-hand side of (14.5)

can be computed using a representative of the image of µr in Hn−1(Γ,D(Xr,R)). By

Proposition 12.3.2, a representative of µr is given by

φr : Γn −→ D(Xr,R), (µ0, . . . , µn−1) 7−→
(
x̄ 7−→

∫

∆(µ0z,...,µn−1z)
(x/pr)∗cEÈ

)
,

where z ∈X denotes an arbitrary point and ∆(µ0z, . . . , µn−1z) is the geodesic simplex in

X with vertices {µiz}i. Hence, (14.5) can be written as
∫

X(F )
º∗Ä
∑

x̄∈Xr

Ç(N(ca)N(Ä t · x))(x/pr)∗cEÈ =
∫

X(F )
º∗ÄEÄ,Ç,

where X(F ) is given in (14.3) and EÄ,Ç in (14.4). By Theorem 14.2.4, the result follows.

Define the following p-adic analytic function

Lp : (Z/(p− 1)Z)× Zp −→ Fp, s 7−→
∫

X

(
N(ca)NFp/Qp(Ä

t · x)
)−s

dµ(cUF ),

We restrict this function to {0} × Zp ≃ Zp, and we denote the restriction with the

same symbol. Using the previous lemma, we can relate Lp(s) to the p-adic L-function

Lp(1[a],p, s).

Theorem 14.3.2. Let k ∈ Zg1 be such that k ≡ 1 mod [F (µ2p) : F ]. We have Lp(1−k) =

Lp(1[a],p, 1− k). In particular, Lp(s) = Lp(1[a],p, s) for every s ∈ Zp.

Proof. It is enough to prove

Lp(1− k) = Lp(1[a],p, 1− k) mod pr

for every r g 1. For that, fix r g 1 and let ε : Zp ↠ (Z/prZ)× → Z be a locally constant

function such that ε(x) ≡ xk−1 mod pr for every x ∈ Z×
p . By Theorem 14.1.1, we have

Lp(1[a],p, 1− k) ≡ ∆c(1[a],p · ε̃, 0) mod pr.
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On the other hand, it follows from the expression of L(1− k) that

Lp(1− k) ≡
∫

X
ε
(
N(ca)NFp/Qp(Ä

t · x)
)
dµ(cUF ) mod pr.

In view of the previous two congruences, it is enough to prove
∫

X
ε
(
N(ca)NFp/Qp(Ä

t · x)
)
dµ(cUF ) = ∆c(1[a],p · ε̃, 0).

For that, let Ç1, . . . , Çm : (Z/prZ)× → Q̄× be characters and b1, . . . , bm ∈ Q̄ be such that

for every x ∈ Zp, we have ε(x) =
∑
j bjÇj(x). Then,

∫

X
ε
(
N(ca)NFp/Qp(Ä

t · x)
)
dµ(cUF ) =

∑

j

bj

∫

X
Çj
(
N(ca)NFp/Qp(Ä

t · x)
)
dµ(cUF )

=
∑

j

bj∆c(1[a],pÇ̃j, 0)

= ∆c(1[a],pε̃, 0),

where we used Lemma 14.3.1 in the second to last equality.

As a consequence, we obtain the desired relation between JEis[Ä ] and norms of Gross–

Stark units.

Corollary 14.3.3. Let u ∈ Up ¹ Q be the Gross–Stark unit introduced in Proposition

14.1.2 and denote by uÄ := u1−cn ∈ Up ¹Q. We have,

TrFp/QpJEis[Ä ] = TrFp/Qp logp(uÄ ).

Proof. Observe that, by viewing D0(X,Zp) ¢ D(X,Zp), we can consider cUF ⌢ φ(·)−s(µ0) ∈
Q̄p. Moreover, since µ0 is a lift of µ, we have that for every s ∈ Zp,

cUF ⌢ φ(·)−s(µ0) = Lp(s).

Then, it follows from the definition of JEis = ST(µ0), and the fact that µ0 takes values on

measures of total mass zero, that TrFp/QpJEis[Ä ] = −L ′
p(0). Hence, the result follows from

Theorem 14.3.2 and Theorem 14.1.3.

14.4 Conjectural relation between JEis[Ä ] and Gross–

Stark units

In view of Corollary 14.3.3, we make the following conjecture.
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Conjecture 14.4.1. Let u ∈ Up ¹Q be the Gross–Stark unit introduced in Proposition

14.1.2 and denote by uÄ := u1−cn ∈ Up ¹Q. We have,

JEis[Ä ] = logp(uÄ ).

Remark 14.4.2. Suppose n = 2 and consider JDR ∈ H1(SL2(Z),A×)− a lift of (the

restriction to SL2(Z) of) JDR ∈ H1(SL2(Z[1/p]),A×/C×
p )− constructed in [DPV24]. By

comparing the constructions of JDR and JEis, we deduce

JEis = logp(JDR) ∈ H1(SL2(Z),AL).

Then, Theorem B of [DPV24] implies that Conjecture 14.4.1 holds if n = 2.

We conclude with some observations to support the conjecture for general n g 2.

Recall the class µ ∈ Hn−1(Γ,D(X,Zp))
− constructed in Section 12 and denote by µ|UF its

restriction to UF ¢ Γ. Consider the UF -equivariant morphism

Ē : D(X,Zp) −→ Fp/Zp logp(O×
F ), ¼ 7−→

∫

X
logp(Ä

t · x)d¼,

where Zp logp(O×
F ) denotes the Zp-span of logp(O×

F ) in Fp (i.e. its completion in Fp).

Corollary 14.3.3 implies that

cUF ⌢ Ē(µ|UF ) = uÄ mod Zp logp(O×
F ). (14.6)

We would like to obtain an expression for the Gross–Stark uÄ without the ambiguity

Zp logp(O×
F ). Observe that, if we consider measures of total mass zero, we can define the

UF -equivariant morphism

E : D0(X,Zp) −→ Fp, ¼ 7−→
∫

X
logp(Ä

t · x)d¼.

Moreover, it follows from Proposition 12.4.2 that µ|UF lifts to a class inHn−1(UF ,D0(X,Zp)).

However, the lift is not unique. Indeed, the long exact sequence

· · · −→ Hn−2(UF ,Zp)
¶−−→ Hn−1(UF ,D0(X,Zp)) −→ Hn−1(UF ,D(X,Zp)) −→ · · ·

shows that a lift of µ|UF is well-defined up to the image of ¶. Since UF ≃ Zn−1 by

Dirichlet’s unit theorem, we have a natural isomorphism

Hn−2(UF ,Zp) ≃ UF ¹ Zp.

This leads to the following proposition.
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Proposition 14.4.3. The map

Hn−2(UF ,Zp)
∼−−→ Zp logp(UF ), u 7−→ cUF ⌢ E(¶(u))

is an isomorphism. More precisely, it is equal to logp : UF ¹ Zp
∼−→ Zp logp(UF ).

In other words, the process of lifting µ|UF to a class valued in total mass zero measures

allows to compute its image under E and construct an element in Fp. However, since

the lift is only well-defined up to UF ¹ Zp, the elements we construct in Fp are only

well-defined up to Zp logp(UF ). Therefore, we obtain the same ambiguity as the one we

encountered in (14.6) using the proof of the Gross–Stark conjecture.

On the other hand, if we work with cohomology classes for Γ, instead of UF , we obtain

that µ ∈ Hn−1(Γ,D(X,Zp))
− has a unique lift (up to torsion) µ0 ∈ Hn−1(Γ,D0(X,Zp))

−.

Indeed, as explained in Section 12.4, this follows from the long exact sequence

Hn−2(Γ,Zp)
− −→ Hn−1(Γ,D0(X,Zp))

− −→ Hn−1(Γ,D(X,Zp))
− −→ Hn−1(Γ,Zp)

−,

Proposition 12.4.2, and the fact that Hn−2(Γ,Zp)
− is torsion by [LS19]. Then, the

restriction µ0|UF
is a preferred lift of µ|UF to Hn−1(UF ,D0(X,Zp)). Hence, using µ0|UF

and

the map E , we are able to produce a canonical element in Fp

cUF ⌢ E(µ0|UF
) = JEis[Ä ] ∈ Fp.

The fact that this construction is unique suggests that the quantity we produced could be

a preferred lift of TrFp/Qp logp(uÄ ), and this motivates us to state Conjecture 14.4.1 above.

We summarize this discussion with the following commutative diagram

torsion Hn−1(Γ,D0(X,Zp))
− Hn−1(Γ,D(X,Zp))

−

UF ¹ Zp Hn−1(UF ,D0(X,Zp)) Hn−1(UF ,D(X,Zp))

Zp logp(UF ) Fp Fp/(Zp log(UF )).

cUF⌢E◦¶(·)

¶

cUF⌢E(·) cUF⌢Ē(·)
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Chapter III

Discussion



Section 15

Discussion on the

Gross–Kohnen–Zagier theorem

In this section, we outline the history of the Gross–Kohnen–Zagier theorem and compare

some of its previous proofs with the one we presented in Chapter I. This motivates future

research directions, which we outline. Finally, we explore the possibility of extending the

techniques of Chapter I to other settings where the role of Heegner points is replaced by

different objects of arithmetic significance.

15.1 Brief history of the GKZ theorem

We begin with a brief outline of how the Gross–Zagier formula led to the Gross–Kohnen–

Zagier theorem, as it motivates several of the research directions we will describe below. Let

E be an elliptic curve over Q of conductor N and consider a modular curve parametrization

of E. This parametrization, together with the theory of complex multiplication, allows for

the construction of Heegner points PD ∈ E(Q), for K = Q(
√
−D) a quadratic imaginary

field satisfying the Heegner hypothesis and −D a fundamental discriminant.

In [GZ86], Gross and Zagier proved the so-called Gross–Zagier formula, which gives

a criterion for the point PD to have infinite order in terms of an analytic quantity. A

consequence of their result suitable for our exposition is the following.

Theorem 15.1.1. Let −D be a fundamental discriminant coprime to 2N satisfying the

Heegner hypothesis, let L(E, s) be the L-function of E, and L(E,ÇD, s) the L-function

twisted by
(
−D
·

)
. Finally, denote by ï·, ·ð the height pairing on E. Then

ïPD, PDð .= L′(E, 1)L(E,ÇD, 1). (15.1)

where, here and from now on, .
= indicates equality up to a non-zero scalar factor.
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Suppose now that ords=1L(E, s) = 1. By a result of Waldspurger, there are infinitely

many quadratic imaginary fields K = Q(
√
−D) such that:

• K satisfies the Heegner hypothesis,

• L(E,ÇD, 1) ̸= 0.

Thus, by the Gross–Zagier formula (15.1), PD is of infinite order. In particular, this

implies that rk(E(Q)) g 1. The BSD Conjecture, unknown for rank 1 by the time the

Gross–Zagier formula was proven, predicts that rk(E(Q)) = 1. On the other hand, the

reasoning above proves that PD is non-torsion for infinitely many D. Thus, the points

{PD}D should be collinear. In [GKZ87], Gross, Kohnen, and Zagier verified this prediction

by studying the position of Heegner points in E(Q) using the height pairing ï·, ·ð. We give

their main result in a simplified setting, but a similar expression holds more generally.

Theorem 15.1.2. Suppose that the conductor of E is prime and let D, D′ be coprime

fundamental discriminants. Then,

ïPD, PDð .= L′(E, 1)c(D)2,

ïPD, PD′ð .= L′(E, 1)c(D)c(D′).

Here c(D) is the Dth Fourier coefficient of the modular form of weight 3/2 in the Kohnen

space corresponding to E via the Shimura correspondence.

In particular, an application of Cauchy–Schwarz in the case of equality confirms the

anticipated collinearity of Heegner points. In addition, this result guided Gross, Kohnen,

and Zagier to the statement that generating series of Heegner points are modular forms

of weight 3/2. The collinearity of Heegner points became evidence for the fact that

rk(E(Q)) = 1. This fact was later proven by Kolyvagin in [Kol88a] and [Kol88b] using

the theory of Euler systems.

The Gross–Kohnen–Zagier theorem for Heeger divisors on Shimura curves was first

proven by Borcherds in [Bor99]. There, Borcherds theory of singular theta lifts provides a

lift from weakly holomorphic modular forms of weight 1/2 to meromorphic forms on the

Shimura curve with known zeros or poles. The divisors of these lifts are linear combinations

of Heegner points, given by the principal part of weakly holomorphic modular forms weight

1/2. This provides relations of Heegner divisors on the Jacobian of the Shimura curve,

which translate to the fact that certain Heegner divisors appear as the Fourier coefficients

of a modular form of weight 3/2 by Serre duality, giving the Gross–Kohnen–Zagier theorem.
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15.2 Future research

In Chapter I, we obtained a new proof of the Gross–Kohnen–Zagier theorem for the case

of Shimura curves as a consequence of the following expression. Let E be an elliptic curve

defined over Q that appears in the Jacobian of a Shimura curve X. Similar to above, E

is equipped with a collection of Heegner points {PD}D, where the indexing set is over

discriminants satisfying the Heegner hypothesis (for the Shimura curve parametrization).

For p a rational prime dividing the discriminant of the Shimura curve, we constructed a

p-adic family of theta series Θk of weight 3/2 + k. The family satisfies that Θ0 = 0 and
∑

Dg1

logp(PD)qD = prE (eordΘ′
0) , (15.2)

where we follow the same notation as in the General Introduction. In the proof of this

equality, we did not use the collinearity of Heegner points, the computations of their

height pairings, nor the theory of Borcherds lifts. This raises the question of whether we

can go in the reverse direction and deduce properties of Heegner points from the fact that

they package in a modular generating series. In addition, we would like to explore analogs

of (15.2) in different settings.

Collinearity

As we mentioned, a consequence of the main formula proved in Chapter I, together with

a study of the Hecke equivariance of theta lifts is that
∑

Dg1

logp(PD) = prE (eordΘ′
0) .

Here, eordΘ′
0 ∈ S3/2(Γ0(4N),Qp), for N the conductor of the elliptic curve, and

prE : S3/2(Γ0(4N),Qp) −↠ S3/2(Γ0(4N,Qp)E

denotes a Hecke projection to the subspace S3/2(Γ0(4N),Qp)E spanned by eigenforms

with the same Hecke eigenvalues as the weight 2 eigenform corresponding to E. The

Shimura correspondence implies that this subspace is 2-dimensional. We could refine the

projector prE so that it has image in a one-dimensional subspace of S3/2(Γ0(4N),Qp)E,

for example in its Kohnen subspace. Denote by FE a generator of this subspace. Then,

(up to replacing {PD} by their images by this refined operator), we would have
∑

Dg1

logp(PD) = cFE,

for c ∈ Qp. This would give a new proof that the Heegner points {PD}D are collinear and

the relations between them are given by the Fourier coefficients of FE.
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Calculation of height pairings

Knowing that Heegner points are collinear and that their precise relations are given

by Fourier coefficients of half-integral weight modular forms can be used to simplify

calculations of height pairings between them. Bruinier and Yang exploited this idea in

[BY09] to give a new proof of the Gross–Zagier formula for the case of modular curves

which uses minimal information on finite intersections between Heegner divisors. An

informal summary of their strategy is that to compute ïPD, PDð it is enough to compute

instead ïPD1 , PD2ð for a suitable choice of discriminants D1, and D2. Indeed, the two

quantities differ by an explicit factor involving Fourier coefficients of half-integral weight

modular forms. Then, they choose D1 and D2 such that the height pairing has only

archimedean contribution.

It would be interesting to explore if a similar strategy could yield a simpler approach

to compute height pairings, or p-adic analogs of them, in our setting.

Gross–Kohnen–Zagier theorems in other settings

We aim to investigate whether identities similar to (15.2), or more generally similar to the

main theorem of Chapter I (Theorem 1.2.1), can be found in other settings, were the role

of Heegner points is replaced by different objects. This seems especially interesting in the

cases where these objects do not have a known algebraic construction, as identities analog

to (15.2) could shed light on their arithmetic properties. A compelling setting would be

the study of a Gross–Kohnen–Zagier theorem for the so-called plectic points.

Plectic points are a p-adic generalization of Heegner points, meaningful for elliptic

curves of arbitrary rank. They were introduced by Fornea and Gehrmann in [FG23],

where they conjectured that plectic points are related to algebraic points on elliptic curves

of arbitrary rank. Together with these two authors, we are working on generalizing (15.2)

to this setting. There, Heegner points are replaced by plectic points, and the derivative of

the family of theta series is replaced by a higher-order derivative of a family Hilbert theta

series. This would imply bounds on the span of plectic points in line with the predictions

of the BSD Conjecture, generalizing the collinearity of Heegner points and extending the

current results on their algebraicity.



Section 16

Discussion on rigid classes for

SLn(Z[1/p])

In this section, we outline the theory of rigid analytic classes initiated by Darmon and

Vonk in [DV21] and [DV22] and discuss how our construction of JEis in Chapter II could

fit in this theory. This leads to a discussion towards a generalization of the theory of

rigid analytic classes to SLn(Z[1/p]), which would require to refine the construction of

JEis to a class for this p-arithmetic group. Throughout the section, n g 2, Γ = SLn(Z)

and Γp = SLn(Z[1/p]).

16.1 Rigid analytic cocycles for SL2(Z[1/p])

For n = 2, Darmon and Vonk introduced the theory of rigid analytic theta classes for Γp

in [DV22, Section 3]. These are classes in H1(Γp,A×/C×
p ), where A is the ring of rigid

analytic functions on the p-adic upper half plane Hp. This cohomology group admits an

action by Hecke operators and there is a Hecke equivariant short exact sequence

0 −→ Q −→ H1(Γp,A×/C×
p )Q −→ H1(Γ0(p),Q) −→ 0. (16.1)

There is also an involution induced by w = diag(1,−1) ∈ GL2(Z)/Γ, which yields an

isomorphism on the −1 eigenspaces (see [DPV21, Lemma 2.1])

H1(Γp,A×/C×
p )−Q

∼−−→ H1(Γ0(p),Q)−. (16.2)

Therefore, by (16.1), (16.2) and the Eichler–Shimura theorem, rigid cocycles for Γp have

a structure similar to that of modular forms of weight 2 and level Γ0(p). In contrast, rigid

cocycles can be evaluated at real quadratic points, as mentioned in Chapter II.
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Indeed, let Ä ∈Hp be a real quadratic point and consider the real quadratic field F =

Q(Ä). The stabilizer of Ä in Γp is isomorphic to ï±µÄ ð, for µÄ of infinite order. To simplify

the exposition, suppose that such stabilizer is contained in Γ. Let J ∈ H1(Γp,A×/C×
p ) be

a rigid analytic theta class. Observe that the short exact sequence of Γ-modules

1 −→ C×
p −→ A× −→ A×/C×

p −→ 1

induces a long exact sequence in cohomology

· · · −→ H1(Γ,C×
p ) −→ H1(Γ,A×) −→ H1(Γ,A×/C×

p ) −→ H2(Γ,C×
p ) −→ · · · .

Since the groups H i(Γ,C×
p ) for i ∈ {1, 2} are finite and killed by 12, (the 12th power of)

the restriction of J to Γ admits a unique lift J ∈ H1(Γ,A×) up to torsion.

Definition 16.1.1. Consider the same notation as above. Define the value of J at Ä ∈Hp

as J [Ä ] := J (µÄ )(Ä) ∈ C×
p .

Suppose that f is a Hecke eigenclass in H1(Γ0(p),Q)− and let Jf ∈ H1(Γp,A×/C×
p )−

be the corresponding class via the isomorphism (16.2). Then, it is conjectured that the

value Jf [Ä ] ∈ C×
p has arithmetic significance. More precisely:

• If f corresponds to a cuspidal eigenform, and we denote by E(Cp) ≃ C×
p /qf

Z the

Cp-points of the elliptic curve attached to it, then Jf [Ä ] ∈ C×
p /qf

Z is conjectured to

be a global point defined over an abelian extension of F .

• If f is the Eisenstein class in H1(Γ0(p),Q), then Jf , usually denoted JDR, satisfies

that JDR[Ä ] ∈ C×
p /p

Z is equal to a Gross–Stark unit in an abelian extension of F .

In fact, the previous two points are a restatement of the explanations given in the interlude

(Table i), once we apply the GL2(Qp)-equivariant isomorphism due to Van der Put [vdP82]

A×/C×
p ≃ D0(P

1(Qp),Z),

where D0(P
1(Qp),Z) denotes Z-valued measures on P1(Qp) of total mass zero.

The short exact sequence (16.1) has the following refinement. Suppose f ∈ H1(Γ0(p),Q)

is an eigenclass and let Jf ∈ H1(Γp,A×/C×
p )Q be as above. Then, using the theory of p-

adic families of modular forms it can be proven that Jf admits a lift Jf,Λ ∈ H1(Γp,A×/Λ),

where we remark that Jf,Λ is a class for the p-arithmetic group Γp, and

• Λ is commensurable with qZf , if f corresponds to a cuspidal eigenform,

• Λ = pZ if f is the Eisenstein class.

From there, we could alternatively define the value Jf [Ä ] = Jf,Λ(µÄ )(Ä) ∈ C×
p /Λ. This

definition justifies the importance of interpreting the values of Jf modulo certain periods.
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16.2 Future research

Suppose n g 2. In Chapter II, we constructed a class

JEis ∈ Hn−1(Γ,AL)−,

where AL denotes the space of log-rigid analytic functions on Drinfeld’s symmetric domain

Xp ¢ Pn−1(Cp). When n = 2, the class JEis is related to JDR ∈ H1(Γp,A×/C×
p )− via

the expression JEis = logp(JDR), where JDR ∈ H1(Γ,A×) is a lift of (a power of) the

restriction of JDR to Γ. Moreover, for Ä ∈Xp a point represented by a vector in Cn
p whose

coordinates generate a fractional ideal of a totally real field F where p is inert, we defined

JEis[Ä ] ∈ Fp and conjectured JEis[Ä ] = logp(uÄ ), where uÄ ∈ F ab.

We aim to investigate whether a general theory of rigid analytic cocycles for Γp can be

developed, and how our construction of JEis integrates into such a framework. It would

also be interesting to examine whether this theory could be used to construct invariants

associated with totally real fields of degree n, even in cases where p is not inert.

Rigid analytic theta cocycles for Γp := SLn(Z[1/p])

In view of the definition of rigid analytic theta classes when n = 2, the group

Hn−1(Γp,A×/C×
p ),

where A denotes the rigid analytic functions on Xp, appears to be a natural candidate

for the space of rigid analytic theta cocycles for Γp. In particular, it would be desirable

to have a generalization of the short exact sequence (16.1), describing the space of rigid

analytic theta cocycles in terms of cohomology classes for congruence subgroups of Γ.

When n = 2, this short exact sequence can be deduced from the GL2(Qp)-equivariant

isomorphisms

A×/C×
p ≃ D0(P

1(Qp),Z) ≃ C1
har(Z),

where C1
har(Z) denotes the space of harmonic cochains on the Bruhat–Tits tree (the

definition of harmonic cochain and the second isomorphism can be found in Definition 5.6,

Definition 5.10 and (5.5) of [Dar04]). For general n g 2, Gekeler provides a generalization

of these isomorphisms [Gek20] . Indeed, we have a GLn(Qp)-equivariant isomorphism

A×/C×
p ≃ D0(P

n−1(Qp),Z).

Moreover, these spaces have interpretation in terms of harmonic cochains (Theorem 4.16

of [Gek20]):
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• There is a GLn(Qp)-equivariant isomorphism between D0(Pn−1(Qp),Z) and a space

of harmonic cochains on the Bruhat–Tits building of PGLn(Qp) (maps from oriented

1-simplices to Z satisfying certain conditions, see Section 3.2 of [Gek20]).

• There is an isomorphism between D0(Pn−1(Qp),Z) and harmonic cochains in a tree

obtained as a subcomplex of the Bruhat–Tits building of PGLn(Qp).

The study of these spaces of harmonic cochains could lead to the desired understanding

of the structure of Hn−1(Γp,A×/C×
p ). The paper [Geh22] also seems relevant for this aim.

Refinements in the construction of the Eisenstein class

Based on the theory for the n = 2 case, we expect that the class JEis ∈ Hn−1(Γ,AL) of

Chapter II can be refined to a class

JDR ∈ Hn−1(Γp,A×/pZ)

such that JEis = logp(JDR), where JDR is viewed as a class for Γ in this last equality.

Following [DPV24], a strategy to achieve this would be to refine the construction of

µ0 ∈ Hn−1(Γ,D0(X,Zp)) given in Section 12 (more precisely in (12.7)) to a class

µDR ∈ Hn−1(Γp,D0(X
p,Z)p),

where D0(X
p,Z)p denotes the space of p-invariant measures ¼ on Xp := Qn

p − {0} such

that ¼(X) = 0. Then, the Γp-equivariant multiplicative lift

ST× : D0(X
p,Z) −→ A×/pZ, ¼ 7−→

(
z 7−→ ×

∫

X
zt · x d¼

)

would allow to define JDR := ST×(µDR). This is ongoing joint work with Peter Xu.

It would also be interesting to explore if the classes µ0 for different primes (not

necessarily inert in F ) can be used to extract information on tame refinements of the

Gross–Stark conjecture. This could potentially lead to a proof of Conjecture 9.2.3, as a

consequence of the Gross tower of fields conjecture (see [Das08] and [DK23]).

In a different direction, JEis was used to construct invariants attached to totally real

fields where p is inert, that conjecturally belong to abelian extensions of such fields. More

generally, these invariants can be defined for totally real fields F such that F ¹Qp is a field.

One of the reasons for this is that it seems that Xp only contains special points attached

to totally real fields satisfying this condition. This leads to the next two questions:

• Can the class µ0 be used to conjecturally construct Gross–Stark units in abelian

extensions of totally real fields F of degree n, where F ¹Qp is not a field?

• Is there a p-adic symmetric space with special points attached to totally real fields

of degree n where F ¹Qp is not a field?



Section 17

Values of rigid classes and Fourier

coefficients of p-adic families

This last section discusses the relation between values of rigid classes and Fourier coefficients

of derivatives of p-adic families modular forms. After a summary of some known results

for the case of classes for SL2(Z[1/p]) due to Darmon, Pozzi, and Vonk, we discuss future

directions involving the generalization of these results to SLn(Z[1/p]). We conclude by

outlining a possible framework that would encompass Chapter I and Chapter II. In this

section, n g 2, Γ = SLn(Z) and Γp = SLn(Z[1/p]).

17.1 Results of Darmon, Pozzi, and Vonk

For n = 2, the construction of rigid analytic theta classes for Γp is explicit and achieved

via analytic methods. This allows for the computation of values of rigid classes to high

precision, providing numerical evidence for the conjectures stated in Section 16.1. On the

other hand, the absence of an algebraic theory underlying these constructions complicates

the possibility of proving these conjectures in full generality. Despite this fact, there

has been substantial progress in the study of values of rigid classes via the connections

between:

• Values of rigid classes.

• Fourier coefficients of derivatives of p-adic families of modular forms.

• Deformations of Galois representations attached to p-adic families of modular forms.

In particular, the algebraic nature of the values of rigid classes results from the alge-

braic properties of the corresponding Galois deformations. These techniques have been
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especially fruitful when the corresponding Galois deformations are deformations of Artin

representations. The works of Darmon, Pozzi, and Vonk develop this strategy to study

the values of the Dedekind–Rademacher cocycle

JDR ∈ H1(Γp,A×/C×
p ),

where we recall that JDR corresponds to the Eisenstein class in H1(Γ0(p),Q)− via (16.2).

More precisely, the main result of [DPV24] is the following one (already given in Theorem

9.1.3).

Theorem 17.1.1 (Darmon–Pozzi–Vonk). Let Ä ∈Hp be a real quadratic point such that

p is inert in Q(Ä). Then,

logp(JDR[Ä ]) = logp(uÄ ),

for uÄ ∈ OH [1/p]× ¹Q a Gross–Stark in an abelian extension H of F .

As we mentioned, one of the ingredients in their proof is to relate values of rigid classes

to Fourier coefficients of derivatives of p-adic families of modular forms. We now outline

their main results on this subject, as it is relevant for the theme of this thesis. For that,

we need to introduce another rigid class. Let X0(p) be the closed modular curve of level

Γ0(p) and consider

φw ∈ H1(Γ0(p),Q) ≃ H1(X0(p), {0,∞},Q)

the class corresponding to the projection of the path from 0 to ∞ in H via Poincaré

duality. It can be verified that φw ∈ H1(Γ0(p),Q)−. Then, the winding class is the rigid

analytic theta class

Jw ∈ H1(Γp,A×/C×
p )−

mapping to φw via (16.2). We will also be interested in the translates TmJw of Jw by the

mth Hecke operator for every m g 1.

Let Ä ∈ Hp be a real quadratic point such that p is inert in F := Q(Ä). We can

consider the values JDR[Ä ] and TmJw[Ä ] ∈ C×
p for every m g 1. It can be deduced from

their definition that they belong to F×
p , where Fp denotes the p-adic completion of F .

Darmon, Pozzi, and Vonk relate them to Fourier coefficients of derivatives of p-adic

families of modular forms:

1. In [DPV21], they consider a p-adic family of Hilbert–Eisenstein series of parallel

weight k ∈ Z/(p − 1)Z × Zp attached to an odd function È : Cl+(F ) → C on a

narrow ring class field of F determined by Ä ∈Hp

Ek(1, È)(z1, z2).



17.2 Future research 125

The diagonal restriction Gk := Ek(1, È)(z, z) is a p-adic family of elliptic modular

forms of weight 2k satisfying that its specialization G1 = 0 and, if we denote by G′
1

the value at k = 1 of its derivative with respect to k, we have

logp(NFp/QpJDR[Ä ]) +
∑

mg1

logp(NFp/QpTmJw[Ä ])qm = eord(G′
1). (17.1)

2. In [DPV24], they refine the results of the previous point by considering also cuspidal

deformations of certain Hilbert–Eisenstein series. In this way, they construct a

p-adic elliptic modular form ∂fÈ, which has similar role as G′
1 above, and prove

logp(JDR[Ä ]) +
∑

mg1

logp(TmJw[Ä ])qm = eord(∂fÈ). (17.2)

Moreover, the Fourier coefficients of ∂fÈ can be explicitly computed via the study

of Galois deformations, and a0(eord∂fÈ) = a0(∂fÈ) = logp(uÄ ), where uÄ is as in

Theorem 17.1.1.

17.2 Future research

In Chapter II, we constructed an analog for the values logp(JDR[Ä ]) for the case of totally

real fields where p is inert. Thus, it would be interesting to explore if techniques of

Darmon, Pozzi, and Vonk generalize to n g 2. In particular, this could lead to a proof

of Conjecture 9.2.3. Moreover, the similarities between the main formula of Chapter I,

(namely (15.2) or Theorem 1.2.1), and expression (17.1) above motivate the search for a

general framework where the two equalities appear as special cases. For the rest of the

section, n g 2.

Generalization of the work of Darmon, Pozzi, and Vonk

We would like to generalize (17.1) and (17.2) to the setting of rigid analytic classes for Γp.

We comment on the possible generalization of each side of the equality (17.1), which is

ongoing joint work with Romain Branchereau and Peter Xu:

• In Chapter II, we presented a generalization of logp(JDR[Ä ]). On the other hand, we

should construct an analog for the winding cocycle Jw. Following the principle that

rigid analytic classes for Γp should be related to cohomology classes for congruence

subgroups of Γ, the classes studied in the work [Bra24] of Branchereau coming from

the projection of embeddings

GLn−1(R)+/SOn−1 ↪−→X = SLn(R)/SOn
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to quotients of X by congruence subgroups seem promising candidates to generalize

φw ∈ H1(Γ0(p),Q) attached to the path {0,+∞}. Indeed, observe that {0,+∞}
can be seen as the image of an inclusion of GL1(R)+ into H .

• To generalize (17.1), a candidate for Gk is the diagonal restriction of a p-adic family

of Hilbert–Eisenstein series attached to a totally real field of degree n where p is

inert. More precisely, a suitable Hecke translate of this family to ensure that it

vanishes at k = 1 (i.e. in weight n). Moreover, Theorem 1.1 of [Bra24] relates Fourier

coefficients of diagonal restrictions of Hilbert–Eisenstein series to the Eisenstein

class studied in Section 10.2 and the generalizations of the winding class mentioned

above, suggesting that a generalization of (17.1) could follow by taking a p-adic

limit of the results of [Bra24].

General relations between values of cocycles and p-adic families

Recall the main result of Chapter I (Theorem 1.2.1) which, following the same notation

as in the General Introduction, implies

∑

Dg1

logp(PD)qD = prE(eord(Θ′
0)).

On the other hand, the identity (17.1) reads as

logp(NFp/QpJDR[Ä ]) +
∑

mg1

logp(NFp/QpTmJw[Ä ])qm = eord(G′
1). (17.3)

The left-hand side of these equations can be interpreted as an average of values of rigid

analytic classes at tori (either attached to imaginary or real quadratic fields). Indeed, this

is clear for the second equation, while for the first one we refer the reader to the Interlude

(see Table i).

On the other hand, the right-hand side of these equations is the derivative of a p-adic

family of theta lifts. For the first case, we considered a family of definite ternary theta

series. For the second one, observe that the diagonal restriction of a Hilbert–Eisenstein

series is a Kudla–Millson theta lift (see [Bra23]).

Therefore, both equalities relate generating series of values of rigid classes to derivatives

of a p-adic families of theta series. It would be instructive to explore if these two equalities

arise as the special case of a more general theory, as it could provide a more conceptual

approach to prove them. With this aim, we outline a possible approach:

1. Values of rigid analytic classes are determined by periods along tori of pr-level

specializations of ordinary p-adic families of modular forms.
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2. In certain scenarios, Fourier coefficients of theta lifts are equal to periods of modular

forms along tori.

3. We would then expect that periods of pr-level specializations of an ordinary family

along tori appear as the pr-level specialization of an ordinary family of theta lifts.

4. The p-adic limiting process of periods of modular forms used to define the values of

rigid cocycles (as the integral with respect to certain measure), corresponds to the

p-adic limiting process of taking the derivative of the p-adic family of theta series.

The next diagram illustrates the previous relations.

Periods of ordinary modular

forms of level pr along tori
Theta series of level pr

Values of rigid

cocycles at tori

Derivative of p-adic

family of theta series.

Theta lift

Arithmetic theta lift

p-adic limit p-adic limit



Final conclusion

In this thesis, we explored two connections between p-adic families of theta series and

arithmetic:

1. Derivatives of p-adic families of definite ternary theta series encode Abel–Jacobi

images of Heegner points on Shimura curves, yielding a new proof of the Gross–

Kohnen–Zagier theorem.

2. Periods of p-adic families of Eisenstein series can be combined into a group coho-

mology class for SLn(Z) and lead to a log-rigid analytic class for SLn(Z). Moreover,

they can be evaluated at tori attached to totally real fields of degree n where p is

inert, thus providing invariants attached to these fields. The local traces of these

invariants coincide with those of p-adic logarithms of Gross–Stark units in abelian

extensions of totally real fields.

These findings provide new instances in which p-adic families of modular forms encode

arithmetic information. Moreover, they set the stage for further exploration of general

identities between p-adic families of theta series and values of rigid classes, as well as for

developing the theory of rigid classes for SLn(Z[1/p]). Combining these two directions

would relate the values of our log-rigid class to Fourier coefficients of p-adic families of

modular forms, and ultimately to deformations of Artin representations. This would shed

light on the arithmetic nature of the invariants we constructed for totally real fields in

which p is inert.
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