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Abstract

Let p be a prime number and let Γ = SL2(Z[1/p]). In their paper Singular moduli for real

quadratic fields: a rigid analytic approach, Darmon and Vonk introduced rigid meromorphic

and analytic cocycles, which can be seen as Γ-invariant modular symbols with values in the

Γ-module of rigid meromorphic and analytic functions on Drinfeld’s p-adic upper half-plane.

Let k ≥ 3 be an odd integer. We construct a Shimura-Shintani style correspondence C from

a certain Q̄-space of weight k + 1/2 cusp forms to the space of rigid analytic cocycles of

weight 2k.

The classical Shimura-Shintani correspondence can be given by pairing modular forms

of weight 2k (resp. k + 1/2) with a holomorphic kernel function Ωk(z, τ) via the Petersson

inner product, getting modular forms of weight k + 1/2 (resp. 2k). The function Ωk(z, τ) is

a modular form of weight k+ 1/2 as a function of τ and its Fourier coefficient for any D > 0

is a certain weight 2k cusp form fk,D(z) for SL2(Z).

We at first classify certain rigid meromorphic cocycles of weight 2k, then for any positive

discriminant D we define a weight 2k rigid analytic cocycle Jk,D. These cocycles are p-adic

analogues of the forms fk,D and the correspondence C is given by constructing a weight

k + 1/2 cusp form Ω̂k(q) with coefficients in the space of weight 2k rigid analytic cocycles.

The D-th coefficient of Ω̂k(q) is essentially Jk,D if D is not a square.

Our strategy is the following. We define at first certain level p counterparts for the cusp

forms fk,D, i.e. we define forms f
(p)
k,D ∈ S2k(Γ0(p)). The forms f

(p)
k,D are essentially the D-th

coefficient of a weight k+ 1/2 cusp form Ω̄k(q) with coefficients in S2k(Γ0(p)). We construct

Ω̂k(q) by retrieving Jk,D from f
(p)
k,D via two linear maps. The output of the first map is the

modular symbol given by the periods of f
(p)
k,D. When computing these periods, we get a result

which is an analogue of a result of Kohnen and Zagier on the periods of fk,D. The second

map is a Schneider-Teitelbaum lift for rigid analytic cocycles. This map first appeared in the

work of Schneider and Teitelbaum and was exploited in the setting of rigid analytic cocycles

of weight two by Darmon and Vonk. We extend this construction to higher weight.
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Abrégé

Soit p un nombre premier et soit Γ = SL2(Z[1/p]). Dans l’article Singular moduli for

real quadratic fields: a rigid analytic approach, Darmon et Vonk ont introduit les cocycles

rigides méromorphes et analytiques, qui peuvent s’interpréter comme des symboles modu-

laires invariant pour l’action du groupe Γ et à valeurs dans le Γ-module des fonctions rigides

méromorphes et analytiques sur le demi-plan supérieur p-adique de Drinfeld. Soit k ≥ 3

un entier impair. Nous construisons une correspondance C à la Shimura-Shintani entre un

certain Q̄-espace vectoriel de formes paraboliques de poids k + 1/2 et l’espace des cocycles

rigides analytiques de poids 2k.

La correspondance classique de Shimura-Shintani peut se définir comme le produit scalaire

de Petersson entre une forme modulaire de poids 2k (resp. k + 1/2) avec une certaine fonc-

tion Ωk(z, τ), donnant lieu à une forme modulaire de poids k + 1/2 (resp. 2k). La fonction

Ωk(z, τ) est une forme modulaire de poids k + 1/2 pour la variable τ et son coefficient de

Fourier pour D > 0 est une certaine forme parabolique fk,D(z) pour SL2(Z) de poids 2k.

Dans un premier temps, nous classifions certains cocycles rigides méromorphes de poids

2k, ensuite nous définissons des cocycles rigides analytiques Jk,D de poids 2k pour tout

discriminant D positif. Ces cocycles sont des analogues p-adiques des formes fk,D, et la

correspondance C est définie à l’aide d’une forme parabolique Ω̂k(q) de poids k + 1/2 à

coefficients dans l’espace de cocycles rigides analytiques de poids 2k. Le D-ième coefficient

de Ω̂k(q) est essentiellement Jk,D, si D n’est pas un carré parfait.

La stratégie est la suivante. Nous définissons d’abord des formes f
(p)
k,D ∈ S2k(Γ0(p))

qui sont des analogues de niveau p pour les formes paraboliques fk,D. Les formes f
(p)
k,D

sont essentiellement le D-ième coefficient d’une certaine forme parabolique Ω̄k(q) de poids

k + 1/2 à coefficients dans S2k(Γ0(p)). Nous construisons Ω̂k(q) en obtenant Jk,D à partir

de f
(p)
k,D via deux applications linéaires. L’image de la première application est le symbole

modulaire donné par les périodes de f
(p)
k,D. Le calcul de ces périodes, nous permet d’obtenir

un résultat analogue à un résultat de Kohnen et Zagier sur les périodes de fk,D. La seconde
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application est un relèvement de Schneider-Teitelbaum pour les cocycles rigides analytiques.

Cette application a fait sa première apparition dans des articles de Schneider et Teitelbaum

et a été exploitée dans le cadre des cocycles rigides analytiques de poids deux par Darmon

et Vonk. Nous étendons cette construction au cas général de poids k supérieur.
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1 Introduction

Let D > 0 be a real quadratic discriminant, and let

fk,D(z) :=
∑

disc(Q)=D

Q(z, 1)−k, k > 2 even, z ∈ C, Im(z) > 0, (1)

where the sum runs over the integral binary quadratic forms Q(z, 1) = az2 + bz + c of

discriminant D. This function, which was first considered in [Za, Appendix 2], is a weight

2k cusp form on SL2(Z), i.e. an element of S2k(SL2(Z)). In [KZ1], it is shown to be the

D-th Fourier coefficient of the holomorphic kernel function realising the Shimura-Shintani

correspondence S from the “Kohnen plus space” S+
k+1/2 of cusp forms of weight k + 1

2
on

Γ0(4) having a Fourier development of the form

g(z) =
∑
n≥1

c(n)qn, with c(n) = 0 unless n ≡ 0 or 1 (mod 4).

More precisely, Theorem 2 of loc.cit. asserts that for each fixed z in the usual upper half-

plane H, the generating series

Ωk(z, τ) :=
∑
D>0

Dk−1/2fk,D(z)e2πiDτ (2)

belongs to S+
k+1/2 as a function of τ ∈ H. To any g ∈ S+

k+1/2, the correspondence S associates

an element of S2k(SL2(Z)) which, up to a multiplicative constant, is given by

S(g)(z) =
1

6

∫
Γ0(4)\H

g(τ)Ωk(−z, τ)vk−3/2dudv.

Let p be a prime number such that p ≡ 3 (mod 4) and let k ≥ 3 be an odd integer. The

goal of this thesis is to exhibit an analogous kernel function Ω̂k of weight k+1/2 and level 4p2,

in which the space S2k(SL2(Z)) is replaced by the space of rigid analytic cocycles of weight
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2k on Ihara’s group Γ := SL2(Z[1/p]) introduced in [DV1]. In Section 7 we will explain why

such a function Ω̂k gives rise to a correspondence C from the space S
(Q̄)
k+1/2(Γ(4p2)) of weight

k + 1/2 cusp forms of level 4p2 with Fourier coefficients in Q̄ to the space of weight 2k rigid

analytic cocycles.

One of the themes of [DV1] is that rigid analytic cocycles enjoy a strong parallel with

classical modular forms, while lending themselves to complementary applications, notably

to the analytic construction of class fields of real quadratic fields via their “values” at real

multiplication points of Drinfeld’s p-adic upper half-plane. The counterparts for rigid an-

alytic cocycles of (1) and (2) fit into program of developing the analogy between modular

forms and rigid analytic cocycles initiated in [DV1].

This thesis also fits in the nascent “p-adic Kudla program”, an emerging p-adic version

of the classical Kudla program. While the latter investigates relations between automorphic

forms and generating series of cycles on Shimura varieties, its p-adic counterpart explores

connections between automorphic forms and generating series of cycles constructed by p-

adic analytic means. As an example, in [DV2] Darmon and Vonk relate Fourier coefficients

of certain weakly holomorphic modular forms to divisors of rigid meromorphic cocycles,

which can then be viewed as real quadratic counterparts of Borcherds’ singular theta lifts.

More precisely, Darmon and Vonk start with a weakly holomorphic modular form ψ of

weight 1/2 on Γ0(4p) and associate to it a rigid meromorphic cocycle whose singularities

are concentrated at real multiplication (RM) points on Drinfeld’s p-adic upper half-plane

Hp = P1(Cp)−P1(Qp). The singularities of this rigid meromorphic cocycle are determined by

the principal part of ψ and the result of [DV2] adds evidence in favor of the analogy between

rigid meromorphic cocycles and meromorphic functions whose divisors are concentrated at

CM points, such as those arising in the image of Borcherds’ lift. Indeed, in [B1] Borcherds

associated to a weight 1/2 weakly holomorphic modular form φ a certain SL2(Z)-invariant

real analytic function with logarithmic singualrities concentrated at CM points in H and

determined by the principal part of φ.

3



Similar correspondences have been studied by Bruinier and Ono ([BrO]), Schwagenscheidt

([Schw]), Oda ([Oda]), and many others. These correspondences are usually defined via

some theta kernel, and we will do the same by defining Ω̂k. In particular, for non square

discriminants we will define a rigid analytic cocycle Jk,D which is an analogue of the Zagier

form fk,D. If D is not a square, this cocycle plays for the correspondence C the same role

played by fk,D for the classical Shimura-Shintani correspondence, and in particular Jk,D gives

the D-th coefficient of Ω̂k in the same way as fk,D gives the D-th coefficient of Ωk.

1.1 Statement of results and thesis outline

Recall that Γ := SL2(Z[1/p]) is the Ihara group. Let Ak (resp. Mk) be the additive group

of rigid analytic (resp. meromorphic) functions on Hp, endowed with the “weight k action”

of Γ given by

h|γ(z) = (cz + d)−kh

(
az + b

cz + d

)
, for γ =

a b

c d

 ∈ Γ.

Precise definitions of rigid analytic and meromorphic functions can be found in [DT] (Sections

1 and 2) and [GVdP] (Chapter 2). For the purpose of this thesis, a rigid analytic cocycle of

weight k is a function

J : P1(Q)× P1(Q)→ Ak

satisfying the “modular symbol properties”

J{r, s} = −J{s, r} and J{r, s}+ J{s, t} = J{r, t}, for all r, s, t ∈ P1(Q),

together with the Γ-invariance condition

J{γr, γs}|γ = J{r, s}, for all γ ∈ Γ = SL2(Z[1/p]).

4



In other words, a rigid analytic cocycle is an element of MSΓ(Ak), the space of Γ-invariant

modular symbols with values in Ak. Similarly, rigid meromorphic cocycles are elements of

MSΓ(Mk). This definition is equivalent to the one given in [DV1] using parabolic cohomology

(see [DV1], Corollary 1.10, for a proof of this fact).

In Section 2 we will classify rigid meromorphic cocycles of even weight satisfying a certain

condition.

Given D > 0 as above, let FD(Z[1/p]) denote the set of binary quadratic forms of

discriminant D with coefficients in Z[1/p], equipped with its natural action of Γ. Given a

quadratic form Q(x, y) = ax2 + bxy + cy2 ∈ FD(Z[1/p]), let r1 and r2 denote the so-called

first and second roots of Q(z, 1), defined by

r1 =
−b+

√
D

2a
, r2 =

−b−
√
D

2a
, (3)

where
√
D denotes the positive square root of D. Let γQ := (r1, r2) denote the hyperbolic

geodesic going from r1 to r2, and for any pair (r, s) ∈ P1(Q)×P1(Q), let (r, s) likewise denote

the hyperbolic geodesic joining r to s on H. The choice of an orientation on H (following the

usual “right hand rule” for instance) determines an intersection pairing between hyperbolic

geodesics, which is denoted γ1 · γ2, and belongs to {−1, 0, 1}.

In Section 3 we will define the counterpart of Zagier’s form fk,D(z) of (1) in the setting

of rigid analytic cocycles via the following theorem:

Theorem. Let k ≥ 1 be odd. For all (r, s) ∈ P1(Q)× P1(Q), the infinite sum

Jk,D{r, s}(z) :=
∑

Q∈FD(Z[1/p])

(γQ · (r, s)) ·Q(z, 1)−k

converges to a rigid meromorphic function of z ∈ Hp, which is rigid analytic when (D
p

) = 1.

The function

Jk,D : P1(Q)× P1(Q)→M2k
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is a rigid meromorphic cocycle of weight 2k for SL2(Z[1/p]).

Assume now that the prime p is congruent to 3 modulo 4. In that case, each D > 0 for

which (D
p

) = 1 admits a canonical “positive” square root in Qp, which is a perfect square in

Qp. Our main theorem is:

Theorem. Let k ≥ 3 be odd. If D is not a square and
(
D
p

)
= 1, then Dk−1/2Jk,D is the D-th

coefficient of a weight k + 1/2 cusp form Ω̂k(q) of level 4p2 with coefficients in MSΓ(A2k).

The D-th coefficient of Ω̂k(q) vanishes if
(
D
p

)
6= 1.

The proof of this will be completed in Section 7 and the tools for it will be defined in the

preceding sections. In Section 6 we will define a level p analogue f
(p)
k,D ∈ S2k(Γ0(p)) of the

Zagier form fk,D. The forms f
(p)
k,D belong to a certain Q̄-subspace S

(p)
2k (Q̄) of S2k(Γ0(p)) and

in Section 7 we will package them into a generating series by:

Theorem. Let k ≥ 3 be odd. Consider the series Ω̄k(q) =
∑

D>0D
k−1/2f

(p)
k,D · qD, where D

ranges over discriminants with (D
p

) = 1. Then Ω̄k is a weight k+ 1/2 cusp form of level 4p2

with coefficients in S
(p)
2k (Q̄).

In Section 6 we will compute the period polynomials of f
(p)
k,D, getting a result analogous

to Theorem 4 of [KZ2]. We will also define a Schneider-Teitelbaum lift in the setting of

rigid analytic cocycles of higher weight in Section 4. The classical Schneider-Teitelbaum lift

already appeared in [Sch] and [Te], and was extended to rigid analytic cocycles of weight 2

in [DV2]. We extended to higher weight the construction of this map and of its left inverse.

To summarize, the thesis is organized as follows:

� Section 2 classifies rigid meromorphic cocycles of even weight satisfying a certain con-

dition.

� Section 3 introduces the analogue Jk,D in rigid analytic cocycles of the Zagier form

fk,D.
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� Section 4 defines a Schneider-Teitelbaum lift ST for rigid analytic cocycles of higher

weight.

� Section 5 defines a left inverse for ST and computes certain p-adic residues of Jk,D.

� Section 6 defines a level p analogue of the Zagier form fk,D and computes its period

polynomials.

� Section 7 constructs the theta kernel Ω̂k and shows how this gives the correspondence

C that we seek.

1.2 Some notation

The notion of modular symbol is used heavily in this thesis, so we give its precise definition

below.

Definition 1.1. Let H be a subgroup of SL2(Q) and let Ω be a module over H, where we

denote the group action by ω|h for ω ∈ Ω and h ∈ H. A modular symbol with values in Ω is

a function m : P1(Q)× P1(Q)→ Ω such that

m{r, s} = −m{s, r} and m{r, s}+m{s, t} = m{r, t}, for all r, s, t ∈ P1(Q).

A modular symbol m is said to be H-invariant if

m{hr, hs}|γ = m{r, s}, for all h ∈ H.

Given a binary quadratic form Q(x, y) = ax2 + bxy + cy2 of discriminant D > 0, we will

often adopt the notation Q = [a, b, c]. Throughout the thesis we will denote by r1 and r2 the

so-called first and second roots of Q(z, 1), defined by

r1 =
−b+

√
D

2a
, r2 =

−b−
√
D

2a
,
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where
√
D denotes the positive square root of D. The notions of the geodesic γQ and the

intersection number γQ · (r, s) given above will also be consistent throughout the thesis. A

binary quadratic form [a, b, c] with positive discriminant will be called simple if ac < 0, which

implies that the two roots have opposite sign. A form [a, b, c] such that gcd(a, b, c) = 1 will

be called primitive.

We will denote by p a prime number that will be assumed to be congruent to 3 modulo

4 in Section 7 only.

We will use certain concepts from rigid analytic geometry such as the Bruhat-Tits tree T

of PGL2(Qp) and the reduction map Hp → T . Some references that cover this material are

[DT] (Section 1 and 2) and [GVdP] (Chapter 1 and 2). We will now fix some notation about

these concepts. We will denote by v0 the standard vertex of T , which is the vertex associated

to the lattice Z2
p. Let T ≤n be the subgraph of T containing all the vertices at distance at

most n from v0, as well as all the edges containing two such vertices. The affinoid subdomain

of Hp given by points reducing to T ≤n will be denoted by H≤np . This affinoid subdomain

is obtained by removing (p + 1)pn open disks of radius p−n from P1(Cp). Similarly, we will

denote by T <n the subgraph of T containing all vertices at distance at most n− 1 from v0,

as well as all the edges containing at least one of these vertices. The wide open subspace

of Hp made of all the points reducing to T <n will be denoted by H<n
p . Let T0 be the set

of vertices of T , let T1 be the set of edges and let T ∗1 be the set of ordered edges of T . A

vertex is said to be even (resp. odd) if it has an even (resp. odd) distance from v0. An

ordered edge is said to have an even (resp. odd) orientation if its source is an even (resp.

odd) vertex. We will denote by T +
1 the set of edges which have an even orienation and by

T −1 the set of edges which have an odd orientation. The standard edge of T with positive

orientation will be denoted by e0. For any e ∈ T ∗1 , we will denote by ē the same edge taken

with the opposite orientation and by s(e) the source of e, i.e. the vertex where e starts.
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2 Classification of certain rigid meromorphic cocycles

of weight 2k

In this section we classify rigid meromorphic cocycles of weight 2k satisfying a certain con-

dition on their poles and residues. This is heavily inspired by the classification of rigid

meromorphic cocycles of weight two carried out in [DV1] and most of the notation in this

section is taken from there. The integer k will be assumed to be odd in order to prove

Theorem 2.2, but the other results of this section hold for any k ≥ 0.

Definition 2.1. A rigid meromorphic period function of weight k is the value at {0,∞} of

a rigid meromorphic cocyle of weight k. The space of such functions will be denoted by Rk.

A pair (a/b, c/d) ∈ P1(Q) × P1(Q) is called unimodular if ad − bc = ±1. Any pair in

P1(Q)×P1(Q) can be decomposed as a sequence of unimodular pairs and Γ acts transitively

on such pairs. This implies that, in order to give a classification for MSΓ(Mk), it is enough

to classify Rk. A function ϕ ∈ Rk satisfies the following identities:

ϕ|(1 + S) = 0, ϕ|(1 + U + U2) = 0, ϕ|D = ϕ, (4)

where

S =

 0 1

−1 0

 , U =

 0 1

−1 1

 , D =

p 0

0 1/p

 .

This follows from the modular symbol properties. Moreover, the matrix

P :=

p 0

0 1



9



induces an involution $p on Rk, defined by

$p(ϕ)(z) := −ϕ|P (z) = −pk/2ϕ(pz).

A rigid meromorphic period function is said to be p-even (resp. p-odd) if it satisfies

$p(ϕ) = ϕ, (resp $p(ϕ) = −ϕ).

Note that P 2 = pD.

Definition 2.2. A point τ ∈ Hp is said to be a real multiplication (RM) point if Q(τ) is a

real quadratic field. The set of such points is be denoted by HRM
p . The Galois conjugate of

τ ∈ HRM
p is denoted by τ ′.

Fix an embedding of the real quadratic field Q(τ) into R. We will denote by
√
D the

square root of D in Qp corresponding via the fixed embedding to the positive real root of D.

Definition 2.3. Let ω ∈ HRM
p and let r, s ∈ P1(Q) × P1(Q). Let (r, s) be the hyperbolic

geodesic joining r and s in the upper-half plane H. Let γω be the hyperbolic geodesic joining

ω and ω′. We say that ω is linked to (r, s) if γω intersects (r, s).

Let τ ∈ HRM
p and fix an embedding of Q(τ) into R. Let

Στ (0,∞) := {ω ∈ Γ · τ such that ωω′ < 0}.

In more generality, one can define

Στ (r, s) := {ω ∈ Γ · τ such that ω is linked to (r, s)}.

The set Στ (r, s) is endowed with a sign function δr,s : Στ (r, s)→ ±1. The value δr,s depends

10



on whether ω is “inside” or “outside” the semicircle (r, s) (for more details, see Equation

(19) of [DV1]). Note that δ0,∞(ω) coincides with the sign of ω in R. The intersection of

Στ (r, s) with any affinoid in Hp is finite.

Lemma 2.1. Let Q = [A,B,C] be a primitive binary quadratic form with positive discrim-

inant D = D0p
m, where p - D0 and m > 0. Let z be a point in the affinoid H≤np for some

fixed n. If n < m/2, then ∣∣∣ 1

Q(z, 1)k

∣∣∣ < p2nk.

Proof. Note that, if p does not split in Q(
√
D), then the roots r1, r2 of Q reduce to a point

of T at distance m/2 from the standard vertex (see for example Proposition 1.1 of [DV1]),

therefore |z− ri| > 1/pn if m/2 > n. If p splits in Q(
√
D), the inequality |z− ri| > 1/pn still

holds, because of equations (1.2.4) of [DT]. If p - A, the lemma follows immediately as

1

Q(z, 1)k
=

1

(Az2 +Bz + C)k
=

1

Ak(z − r1)k(z − r2)k
.

Now assume that p|A. Note that p must divide B, as m > 0. This implies that p - C,

otherwise Q would not be primitive. Assume A > 0 (if A < 0, we proceed similarly), so that

A = D0pm−B2

4|C| and the two roots r1 and r2 of [A,B,C] can be written as

−B ± pm/2
√
D0

2A
=

2|C|(−B ± pm/2
√
D0)

D0pm −B2
.

Hence we get

1

Ak(z − r1)k(z − r2)k
=

4|C|k

(z(pm/2
√
D0 +B)− 2|C|)k(z(pm/2

√
D0 −B) + 2|C|)k

. (5)

We can write valp(z−2|C|/B) ≤ n−2valp(B) (this is one of the equations defining H≤np , see

for example equation (1.2.4) of [DT]). Hence we have valp(zB − 2|C|) ≤ n − valp(B) ≤ n,

and so the norm of (5) is smaller than p2nk for n < m/2.
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To any ω ∈ HRM
p we can associate a binary quadratic form Qω with integer coprime

coefficients such that Qω(ω, 1) = 0 and ω is the first root of Qω. The correspondence

ω ↔ Qω is bijective. The discriminant of Qω is the discriminant of ω, which is a positive

integer Dω = pnωDω,0 where p does not divide Dω,0. Given a binary quadratic form Qω of

positive discriminant, recall the definition of the geodesic γQω given in Section 1.1, after 3.

Theorem 2.1. For any τ ∈ Γ \ HRM
p , the infinite sum

ϕτ (z) :=
∑

ω∈Στ (0,∞)

(γQω · (0,∞))
D
k/2
ω

Qω(z, 1)k
.

converges uniformly on affinoid subsets to a rigid meromorphic period function of weight 2k.

Proof. We will assume that τ reduces to a vertex of the Bruhat-Tits tree T , as the case in

which τ reduces to an edge can be treated in a similar way. We will show that the restriction

of ϕτ to any affinoid H≤np can be written as the limit for h→∞ of a Cauchy sequence {ϕ(h)
τ }

of rational functions and that it has finitely many poles in H≤np . Indeed, Proposition 1.1 of

[DV1] implies that ϕτ is the limit for h→∞ of the rational functions

ϕ(h)
τ (z) :=

∑
ω∈Σ≤hτ

(γQω · (0,∞))
D
k/2
ω

Qω(z, 1)k
, where Σ≤hτ := Στ (0,∞) ∩H≤hp ,

as pnω grows for ω ∈ Στ (0,∞)−Σ≤hτ , when h grows. If ω ∈ Σ≤hτ , then ω reduces to a vertex

of T at distance N ≤ h from the standard vertex v0. If N > n, then ω does not belong to

H≤np and Qω(z, 1)−k is regular on H≤np .

For z ∈ H≤np with n fixed and h big enough, Lemma 2.1 implies that

∣∣∣ D
k/2
ω

Qω(z, 1)k

∣∣∣
p
< pk(2n−nω/2).

Hence {ϕ(h)
τ }h is a Cauchy sequence. We have proven that ϕτ (z) converges to a rigid mero-

12



morphic function on Hp. Similarly the sums

Φτ{r, s} :=
∑

ω∈Στ (r,s)

(γQω · (r, s))
D
k/2
ω

Qω(z, 1)k

converge to rigid meromorphic functions. We will now prove that

Φτ : P1(Q)× P1(Q)→M2k

is a Γ-invariant modular symbol. The modular symbol property holds because any pair

(ω, ω′) is linked to the pair (r, t) if and only if it is linked either to (r, s) or (s, t) but not to

both. (If it is linked to both, then the two intersection numbers have opposite signs).

Now we show the Γ-invariance condition, i.e. Φτ{δ−1r, δ−1s} = Φτ{r, s}|δ for any δ ∈ Γ,

where the action of Γ on M2k is the weight 2k one. Given a form Q = [A,B,C] with roots

ω, ω′ and a matrix δ =

a b

c d

, we compute

Q(z, 1)−k|δ =
( 1

A(z − ω)k(z − ω′)k
)∣∣δ =

(a− ωc)−k(a− ω′c)−k

A(z − δ−1ω)k(z − δ−1ω′)k
.

Letting Q|δ = [A′, B′, C ′] where the action of Γ on quadratic forms is the usual one, the

expression above can be rewritten as

1

A′(z − δ−1ω)k(z − δ−1ω′)k
= (Q|δ)(z, 1)−k,

hence

Φτ{r, s}(z)|δ =
∑

ω∈Στ (r,s)

(γQω · (r, s))
D
k/2
ω

(Qω|δ)(z, 1)k
.

13



Now note that (γQω · (δ−1r, δ−1s)) = (γQω |δ−1 · (r, s)), so

Φτ{δ−1r, δ−1s}(z) =
∑

ω∈Στ (r,s)

(γQω |δ−1 · (r, s)) D
k/2
ω

Qω(z, 1)k
,

and the Γ-invariance follows. The theorem follows from the fact ϕτ = Φτ{0,∞}.

Similarly to [DV1], we provided an explicit collection of rigid meromorphic period func-

tions ϕτ of weight 2k indexed by τ ∈ Γ\HRM
p . However in our case the sets of poles of these

functions are given by Στ (0,∞)∪Στ ′(0,∞), and not only by Στ (0,∞). For this reason, the

rigid meromorphic period functions φ that we classify have to satisfy the condition that if

τ ∈ HRM
p is a pole then also τ ′ is a pole, and resτ (φ) = −resτ ′(φ).

Note that ϕτ = ϕτ ′ , since Qω = −Qω′ and (γQω · (0,∞)) = −(γQω′ · (0,∞)). However,

if we consider the index τ ∈ Γ \ HRM
p modulo the Galois action, then the functions ϕτ are

linearly independent, as they have disjoint set of poles.

Theorem 2.2. Let k ≥ 1 be odd. Let φ be a rational period function of weight 2k, and

assume that if a point τ ∈ HRM
p is a pole of φ, then also τ ′ is a pole of φ. Assume moreover

that resτ (φ) = −resτ ′(φ). Then φ is a finite linear combination of the functions ϕτ of

Theorem 2.1 and of a rigid analytic period function of weight 2k.

Proof. This proof parallels closely the proof of Theorem 1.24 of [DV1].

Let φ± := φ±$p(φ). As φ = (φ+ +φ−)/2, we can assume without loss of generality that

φ is p-even or p-odd. Let Σφ denote the set of poles of φ. The identities in (4) imply

ω ∈ Σφ ⇒ S(ω) ∈ Σφ and U(ω) ∈ Σφ or U2(ω) ∈ Σφ. (6)

Now let

Σ<1
φ := Σφ ∩H<1

p .

14



The set Σ<1
φ is finite because a rigid meromorphic function has finitely many poles on any

given affinoid. Moreover, the fact that SL2(Z) preserves H<1
p implies that Σ<1

φ satisfies the

conditions in (6) just as Σφ does. Any finite set satisfying (6) can be written as a finite union

Σ<1
φ = ∪τ∈IφΣ0

τ (0,∞),

where

Iφ ⊂ SL2(Z) \ (HRM
p ∩H<1

p ) and Σ0
τ (0,∞) = Στ (0,∞) ∩H<1

p .

See [DV1] for a proof of this fact. Lemma 4 and Lemma 5 of [CZ] imply that φ has only

poles of order k on H<1
p and that if τ ∈ H<1

p is a pole of φ, then

PPτ (φ) = resτ ((z − τ)k−1φ) · PPτ (D
k/2/Qτ (z, 1)k), (7)

where PPτ denotes the principal part of a function at τ . Lemma 4 of [CZ] also implies that,

for any SL2(Z)-orbit A of a pole τ ∈ H<1
p of φ, there exist a constant CA such that

resτ ((z − τ)k−1φ) = sgn(τ) · CA. (8)

Let Aτ be the SL2(Z)-orbit of a pole τ . As k is odd, equations (7) and (8), together with

the conditions on the poles and residues of φ in the statement of the Theorem, imply that

φ−
∑
τ∈Iφ

CAτϕ
+
τ

is a p-even rigid meromorphic period function having no singularities outside H<1
p . Any p-

even or p-odd rigid meromorphic period function which is regular on H<1
p must be regular on

Hp. This is proven in [DV1] for functions of weight 2, but the proof is identical for functions

of higher weight.
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3 Rigid analytic cocycles attached to real quadratic

fields

In this section, we associate to any real quadratic discriminant D satisfying (D
p

) = 1 (resp.

(D
p

) 6= 1) a rigid analytic (resp. meromorphic) cocycle Jk,D of weight 2k for the Ihara group.

The cocycle Jk,D is one of the main objects studied in this thesis, as it is a p-adic analogue

of the Zagier form fk,D mentioned in the introduction and it will be used in Section 7 to

construct the correspondence C that we seek.

Theorem 3.1. Let k ≥ 1 be odd. For all (r, s) ∈ P1(Q)× P1(Q), the infinite sum

Jk,D{r, s}(z) :=
∑

Q∈FD(Z[1/p])

(γQ · (r, s)) ·Q(z, 1)−k

converges to a rigid meromorphic function of z ∈ Hp, which is rigid analytic when (D
p

) = 1.

The function

Jk,D{r, s} : P1(Q)× P1(Q)→M2k

is a rigid meromorphic cocycle of weight 2k for SL2(Z[1/p]).

Proof. Note that (γQ · (r, s)) = −(γ−Q · (r, s)), so we do not get cancellation between a

form Q and −Q in the sum defining Jk,D. For any form in FD(Z[1/p]), we can clear the

denominators, obtaining a form in FDp2n(Z) for some n ∈ Z. Hence the sum in the statement

can be rewritten as
∞∑
n=0

( ∑
Q∈FDp2n (Z)

(γQ · (r, s)) ·Q(z, 1)−k
)
pnk. (9)

Let z belong to the affinoid H≤hp for some fixed h. We assume at first that (r, s) = (0,∞), so

the inner sum is over simple forms [A,B,C] with A,B,C ∈ Z, AC < 0, thus B2 + 4|AC| =

Dp2n. Note that, if p does not split in Q(
√
D), the roots r1, r2 of such a form reduce to a
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point of T at distance n from the standard vertex (see for example Proposition 1.1 of [DV1]),

therefore |z − ri| > 1/ph if n > h, so the inner sum is regular on H≤hp .

We are going to prove that, for any h ≥ 0, the outer sum in (9) is the limit of a Cauchy

sequence relative to the sup norm on H≤hp and hence converges to a rigid meromorphic

function on Hp. To do this, we will show that the norm of the general term of the outer

sum is (eventually) going to zero uniformly in z ∈ H≤hp . Indeed, Lemma 2.1 implies that

eventually ∣∣∣ 1

Q(z, 1)k

∣∣∣ < p2hk. (10)

As there are only finitely many simple forms of a given discriminant, we get that

∑
Q∈FDp2n (Z)

(γQ · (0,∞)) ·Q(z, 1)−k

is a finite sum and the general term of the outer sum in (9) eventually has norm smaller

than pk(2h−n), so the series converges to a rigid meromorphic function Jk,D(0,∞)(z), which

is analytic when (D
p

) = 1 (as in this case
√
D /∈ Hp).

The case of a general pair (r, s) follows from the modular symbol property and the Γ-

invariance condition, together with the fact that any pair (r, s) can be written as a sum of

unimodular pairs and SL2(Z) acts transitively on such pairs. The modular symbol property

and the Γ-invariance condition are proved with the same computations used at the end of

the proof of Theorem 2.1.
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4 A Schneider-Teitelbaum lift for rigid analytic cocy-

cles

The aim of this section is to define a Schneider-Teitelbaum lift for rigid analytic cocycles,

i.e. a map

ST : MSΓ0(p)(P2k−2)→ MSΓ(A2k),

where P2k−2 denotes polynomials with coefficients in Cp and degree at most 2k−2, endowed

with the following “weight 2k − 2 action” of Γ

q|γ(z) = (cz + d)2k−2q
(az + b

cz + d

)
, for γ =

a b

c d

 . (11)

For cocycles of weight 2, this was already done in [DV1]. It will be more convenient to

consider the dual space P∨2k−2 := HomCp(P2k−2,Cp), which is a Γ-module with the action of

Γ given by

(q̂|γ)(·) = q̂( · |γ−1).

The spaces P2k−2 and P∨2k−2 are isomorphic as Γ-modules, so we will actually define a map

ST∨ : MSΓ0(p)(P∨2k−2)→ MSΓ(A2k)

and at the beginning of Section 5 we will write down the corresponding map ST defined on

MSΓ0(p)(P2k−2).

Definition 4.1. A harmonic cocycle with value in a Γ-module Ω is a function c : T ∗1 → Ω

satisfying

c(ē) = −c(e), and
∑
s(e)=v

c(e) = 0, for all v ∈ T0 and e ∈ T ∗1 .
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The space of such harmonic cocycles is denoted by Char(Ω). The actions of Γ on T and Ω

induce an action on Char(Ω) given by

(c|γ)(e) = c(γe)|γ.

So we want to define a map MSΓ0(p)(P∨2k−2) → MSΓ(A2k), but because of the lemma

below this is like defining a map MSΓ(Char(P∨2k−2))→ MSΓ(A2k).

Lemma 4.1. There is an isomorphism eve0 : MSΓ(Char(P
∨
2k−2))→ MSΓ0(p)(P∨2k−2).

Proof. Let eve0 be the Γ0(p)-equivariant map induced by the evaluation of harmonic cocycles

on the standard edge e0 of the Bruhat-Tits T . To clarify, eve0(c{r, s}) = (c{r, s})(e0). We

first prove the injectivity. If c is a modular symbol in the kernel of eve0 , then c{r, s}(e0) = 0

for all r, s ∈ P1(Q). But Γ acts transitively on T +
1 so for any edge e we have e = γ−1e0

for some γ ∈ Γ. The definition of the Γ-action on harmonic cocycles, together with the

Γ-invariance of the modular symbol c, give:

c{r, s}(e) = c{r, s}(γ−1e0) = (c{r, s}|γ−1)(e0)|γ = (c{γr, γs}(e0))|γ = 0.

We now prove the surjectivity. Given c0 ∈ MSΓ0(p)(P∨2k−2), define c ∈ MSΓ(Char(P
∨
2k−2)) by

setting, for each e = γ−1e0 ∈ T +
1 ,

c{r, s}(e) := c0{γr, γs}|γ.

Note that γ is only well-defined up to left multiplication by elements of StabΓ(e0) = Γ0(p),

but if we substitute γ by δγ with δ ∈ Γ0(p), we get

c0{δγr, δγs}|δγ = (c0{γr, γs}|δ−1)|δγ = c0{γr, γs}|γ.
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It is easy to see that eve0(c) = c0. Finally, for any c ∈ MSΓ(Char(P
∨
2k−2)) the modular symbol

eve0(c) is Γ0(p)-invariant, because Γ0(p) fixes e0 and c is Γ-invariant.

To any oriented edge e of the Bruhat-Tits tree T , one can associate a p-adic ball U(e) ⊂

P1(Qp). This is done in [DT], but we will briefly cover the construction below. We will need

the notion of ends on the tree T .

Definition 4.2. Let P = (l0, l1, . . . ) and P ′ = (l′0, l
′
1, . . . ) be infinite paths of vertices of T

without backtracking. If P and P ′ differ only by a finite number of vertices, we say that they

are equivalent and we write P ∼ P ′. An equivalence class [P ] for the relation ∼ is called an

end of T . The set of all ends is denoted by Ends(T ).

Let e be the oriented edge running from a vertex l0 to a vertex l1 and let

Ue := { [P ] ∈ Ends(T ) | P = (l0, l1 . . . ) } ,

which is the subtree of T given by all ends leaving the oriented edge e. Let red : Hp → T

be the reduction map from Hp to T (for a precise definition see, for example, [DT]). Let

Σe = red−1(Ue) and let Σ̄e be the closure of Σe in P1(Cp), then

U(e) := Σ̄e ∩ P1(Qp)

is a ball in P1(Qp). One can show that U(γe) = γU(e) for any γ ∈ Γ (see [DT]).

Note that a modular symbol c in MSΓ(Char(P∨2k−2)) is a collection of harmonic cocycles

c{r, s} indexed by P1(Q)× P1(Q) and satisfying the modular symbol conditions. This gives

a collection of distributions µc{r,s} on P1(Qp) defined by

∫
U(e)

P (t)dµc{r,s}(t) = (c{r, s}(e))(P ), (12)
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where P ∈ P2k−2. Note that c{r, s}(e) is an element of P∨2k−2, hence it can be evaluated at

P ∈ P2k−2. The distributions given in 12 are basically the same as the ones defined in [Sch]

and [Te]. The only difference is that we are generalizing them to the setting of modular

symbols.

The map ST∨ : MSΓ(Char(P∨2k−2))→ MSΓ(A2k) will be given by c 7→ f , where

f{r, s}(z) =

∫
P1(Qp)

1

z − t
dµc{r,s}(t). (13)

We need to show that this expression makes sense, in particular we need to show that our

integral extends to a set of functions containing 1
z−t . This is done in the two following

sections. After that, we will show that f{r, s}(z) is an element of Ak and that f{r, s} is a

Γ-invariant modular symbol.

Note that the assignment c{r, s} 7→ c{0,∞} is injective and identifies MSΓ(Char(P∨2k−2))

with the subset of Char(P∨2k−2) given by the harmonic cocycles c satisfying the relations

c|(1 + S) = 0, c|(1 + U + U2) = 0, c|D = c, (14)

where

S =

 0 1

−1 0

 , U =

 0 1

−1 1

 , D =

p 0

0 1/p

 .

This means that, given c ∈ Char(P∨2k−2) satisfying the relations above, it is enough to show

that the integral ∫
P1(Qp)

1

z − t
dµc{0,∞}(t)

makes sense. We will do this using the following fact, which can be found in [Te] (Proposition

9) and [Ort] (Section 3.2). Let r be a fixed integer with 0 ≤ r ≤ k − 2 and let µ be a
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distribution on P2k−2 satisfying

∣∣∣ ∫
U(e)

(x− a)ndµ(x)
∣∣∣
p
≤ C(1/p)α(e)(n−r) for a ∈ U(e),∞ /∈ U(e), 0 ≤ n ≤ 2k − 2, (15)

where α(e) = infu,v∈U(e){valp(u− v)} for ∞ /∈ U(e), and

∣∣∣ ∫
U(e)

xndµ(x)
∣∣∣
p
≤ C(1/p)α(e)(r−n) for ∞ ∈ U(e), 0 /∈ U(e), 0 ≤ n ≤ 2k − 2, (16)

where α(e) = −infu,v /∈U(e){valp(u−v)} for∞ ∈ U(e). Then the distribution can be extended

uniquely to the space A2k of Cp-valued functions on P1(Qp) which are locally analytic except

for a pole at ∞ of order at most 2k − 2. The space A2k is endowed with a weight 2k − 2

action of Γ defined by the same formula (11) giving the weight 2k − 2 action on P2k−2.

We want to show that if c is an harmonic cocycle satisfying the conditions (14), then the

distribution given by c satisfies the two conditions above. In the following section, we will

prove this for p-adic balls centered at 0 or ∞, while the case of balls centered at a general

a ∈ Qp will be covered in Section 4.2.

4.1 The case of balls centered at 0 or ∞

In this section we will first prove condition (15) for a = 0 and the prove condition (16).

Recall that Γ acts on Char(P∨2k−2) by (c|γ)(e) = c(γe)|γ. Hence we have

∫
U(e)

P (t)dµc|γ(t) = (c|γ)(e)(P ) = c(γe)(P |γ−1) =

∫
γU(e)

(P |γ−1)(t)dµc(t). (17)

We will use this property to prove the following lemmas.

Lemma 4.2. Let c be an element of Char(P∨2k−2) satisfying condition c|D = c from (14).

Then inequality (15) holds for µc and a = 0.
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Proof. All balls of P1(Qp) centered at zero can be written as translates of Zp or pZp via some

power of the matrix D. Let e such that U(e) = Zp and consider for example U(Dme) =

{τ | valp(τ) ≥ 2m} for some m ∈ Z. Then property (17) of the integral combined with the

Dm-invariance of c gives

∫
U(Dme)

xn|D−mdµc =

∫
U(e)

xndµc,

which is ∫
U(Dme)

xndµc = (1/p)−2m(n−(2k−2)/2)

∫
U(e)

xndµc.

If instead than U(e) = Zp we take U(e) = pZp, we get similar inequalities for the balls that

have radius given by an odd valuation. Condition (15) then follows for all balls centered at

zero and 0 ≤ n ≤ 2k − 2 .

Lemma 4.3. Let c be an element of Char(P∨2k−2) satisfying condition c|(1 + S) = 0 from

(14). Assume also that inequality (15) holds for µc with a = 0. Then inequality (16) is also

satisfied.

Proof. Any ball of P1(Qp) centered at ∞ can be written as U(Se) for some ball U(e) ⊆ Qp

centered at zero. Then property (17) of the integral together with the fact c = −c|S gives

∫
U(e)

xndµc = −
∫
U(Se)

(xn|S)dµc.

So we get ∫
U(Se)

xndµc = (−1)n+1

∫
U(e)

x2k−2−ndµc,

hence

∣∣∣ ∫
U(Se)

xndµc

∣∣∣
p
≤ C

(1

p

)α(e)(2k−2−n−(2k−2)/2)

= C
(1

p

)α(e)((2k−2)/2−n)

= C
(1

p

)α(Se)((2k−2)/2−n)

,

23



and the thesis follows (recall that α(e) and α(Se) have been defined at the end of the previous

section).

4.2 The case of balls centered at a ∈ Qp

In this section we prove condition (15) for balls centered at any a ∈ Qp.

Lemma 4.4. Let c be an element of Char(P∨2k−2) satisfying conditions c|(1 + S) = 0 and

c|D = c from (14). Then inequality (15) holds for any a ∈ Qp.

Proof. Let α =

pm a/pm

0 p−m

 for an integer m. A general ball in Qp can be written as α(Zp)

or α(pZp).

Let U(e) = Zp so that U(αe) = a+ p2mZp. From property (17) of the integral we get

∫
U(αe)

(x− a)ndµc =

∫
U(e)

((x− a)n|α)dµc|α = p2m(n−(2k−2)/2)

∫
U(e)

xndµc|α.

Recall now that we are implicitly identifying MSΓ(Char(P∨2k−2)) with the subset of Char(P∨2k−2)

given by the harmonic cocycles c satisfying the relations (14). So, with a slight abuse of

notation, dµc = dµc{0,∞} and dµc|α = dµc{α−10,α−1∞}. But the pair (α−10, α−1∞) can be

written as a finite sum of unimodular pairs, so we get a finite sum

∫
U(αe)

(x− a)ndµc = p2m(n−(2k−2)/2)
∑
t

∫
U(e)

xndµc{rt,st},

where the pairs (rt, st) are unimodular. Now recall that SL2(Z) acts transitively on unimod-

ular pairs, therefore the sum above can be rewritten as

p2m(n−(2k−2)/2)
∑
t

∫
U(e)

xndµc{0,∞}|βt = p2m(n−(2k−2)/2)
∑
t

∫
U(e)

xndµc|βt ,
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for some βt ∈ SL2(Z). Using again property (17) of the integral we get

p2m(n−(2k−2)/2)
∑
t

∫
U(e)

xndµc|βt = p2m(n−(2k−2)/2)
∑
t

∫
U(βte)

Pt(x)dµc, (18)

where Pt(x) = xn|β−1
t is a polynomial in P2k−2. Now note that U(βte) = U(e) as SL2(Z)

stabilizes Zp. This means that inequality (15) holds for the integrals in the sum above. The

norm of these integrals will be bounded by some constant Cp0 = C because the integrals are

on Zp, and so for U(e) = Zp we get

∣∣∣ ∫
U(αe)

(x− a)ndµc

∣∣∣
p
≤ C(1/p)2m(n−(2k−2)/2).

If instead we have U(e) = pZp, the proof is the same as above, we just need to be more

careful as βt does not necessarily fix pZp. However, as βt ∈ SL2(Z), we have that βt(pZp)

will also be a ball of radius 1/p, so the integral in (18) is bounded by (1/p)−(2k−2)/2 and the

proof proceedes as in the previous case.

The lemma above, together with what we did in Section 4.1, implies that the integral

defined by c{r, s} with c ∈ MSΓ(Char(P∨2k−2)) can be extended uniquely to the space A2k of

Cp-valued functions on P1(Qp) which are locally analytic except for a pole at ∞ of order at

most 2k − 2. So the map

c{r, s} 7→ f{r, s}(z) =

∫
P1(Qp)

1

z − t
dµc{r,s}(t)

makes sense.

25



4.3 The end of the proof

In this section we prove that the function f{r, s}(z) defined in (13) is rigid analytic and that

f{r, s} is a Γ-invariant modular symbol.

Proposition 4.1. Let c be an element of MSΓ(Char(P∨2k−2)). The function

f{r, s}(z) =

∫
P1(Qp)

1

z − t
dµc{r,s}(t)

is an element of A2k.

Proof. We will drop the index {r, s} as we do not need it in this proof. Let A be a connected

affinoid of Hp. We can assume that for some n we have

A = P1(Cp) \
n⊔
i=1

Bi,

where Bi = {τ ∈ P1(Cp) : |τ − ai|p < ri} with ai ∈ P1(Qp) and the ri’s are powers of p.

We assume ai = ∞ if ∞ ∈ Bi. Let Ui be the intersection between P1(Qp) and Bi. These

intersections give a covering of P1(Qp) by disjoint compact open balls, hence if we let

fi(z) =

∫
Ui

1

z − x
dµ(x),

then f(z) =
∑n

i=1 fi and it is enough to show that each fi is rigid analytic on the complement

of Bi. Let us first consider the case ∞ /∈ Ui. Let z ∈ P1(Cp) \Bi, then

1

z − x
=
∞∑
l=0

1

(z − ai)l+1
(x− ai)l
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converges for x ∈ Bi and we have

fi(z) =
∞∑
l=0

1

(z − ai)l+1

∫
Ui

(x− ai)ldµ(x).

This converges uniformly on the complement of Bi by Proposition 9 in [Te]. Consider now

the case ∞ ∈ Bi. If z is in the complement of Bi then

1

z − x
=
∞∑
l=0

zl

xl+1

converges for x ∈ Ui and as before

fi(z) =
∞∑
l=0

zl
∫
Ui

1

xl+1
dµ(x)

converges uniformly on P1(Cp) \Bi. So f is rigid analytic on A and hence on Hp.

Lemma 4.5. The quantity

(ct+ d)2k−2

γz − γt
− (cz + d)2k

z − t

is a polynomial in t of degree at most 2k − 2.

Proof. We have

(ct+ d)2k−2

γz − γt
− (cz + d)2k

z − t
=

(ct+ d)2k−1(cz + d)

z − t
− (cz + d)2k

z − t

=
cz + d

z − t
((ct+ d)− (cz + d))

2k−2∑
i=0

(ct+ d)i(cz + d)2k−2−i

= −c(cz + d)
2k−2∑
i=0

(ct+ d)i(cz + d)2k−2−i,

so the thesis follows.
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Proposition 4.2. The expression f{r, s} defined in (13) gives an element of MSΓ(A2k).

Proof. We have that f{r, s} + f{s, t} = f{r, t} because to define f{r, s} we used a co-

cycle c{r, s} which satisfies the modular symbol condition. Now we need to show that

f{γr, γs}(z) = (f{r, s}(z))|γ−1. By property (17) of the integral we get

∫
P1(Qp)

1

z − t
dµc{γr,γs}(t) =

∫
P1(Qp)

(ct+ d)2k−2

z − γt
dµc{r,s}(t).

Using now Lemma 4.5 we get that this expression is

(cγ−1z + d)2k

∫
P1(Qp)

1

γ−1z − t
dµc{r,s}(t) = (a− cz)−2k

∫
P1(Qp)

1

γ−1z − t
dµc{r,s}(t),

which is (f{r, s}(z))|γ−1, so the thesis follows.
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5 The residue of Jk,D

Our goal for this section is to define a left inverse for ST and evaluate it at Jk,D, assuming(
D
p

)
= 1. Consider the pairing on P2k−2 given by

〈T i, T j〉 =

(
2k − 2

i

)−1

(−1)iδi,2k−2−j. (19)

Definition 5.1. Let c ∈ Char(P2k−2). For any edge e of T we define the components ci(e)

of c by the following expression

c(e)(T ) =
2k−2∑
i=0

(
2k − 2

i

)
ci(e)T

i.

If we identify P2k−2 and P∨2k−2 via the pairing above, then the distribution defined by

∫
U(e)

xidµc(t) = (−1)ic2k−2−i(e)

for a cocycle c ∈ Char(P2k−2) agrees with the distribution that was given in (12) for a cocycle

in Char(P∨2k−2). Because of what we did in Section 4, this distribution can be extended to

A2k and we can define a map

ST : MSΓ(Char(P2k−2))→ MSΓ(A2k)

in the same way as we defined ST∨ in Section 4. So we have the commutative diagram

MSΓ(Char(P2k−2)) MSΓ(Char(P∨2k−2))

MSΓ(A2k) MSΓ(A2k)

∼

ST ST∨
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We now define a map Res on MSΓ(A2k) with values in MS(Char(P2k−2)) by f{r, s} 7→

c{r, s} with

c{r, s}(e)(T ) =
2k−2∑
i=0

(
2k − 2

i

)
(−1)i Rese(z

2k−2−if{r, s}(z)dz)T i, (20)

where Rese denotes the residue with respect to the annulus in Hp corresponding to the edge

e. The lemma below shows that Res(f{r, s}) is a Γ-invariant modular symbol, hence we

constructed a map

Res : MSΓ(A2k)→ MSΓ(Char(P2k−2)).

Lemma 5.1. The modular symbol defined in (20) is Γ-invariant.

Proof. For any γ =

a b

c d

 in Γ we need to show that the expression

c{γr, γs} =
2k−2∑
i=0

(
2k − 2

i

)
(−1)i Rese(z

2k−2−if{γr, γs}(z)dz)T i (21)

equals the expression

(c{r, s})|γ−1 =
2k−2∑
i=0

(
2k − 2

i

)
(−1)i Resγ−1e(z

2k−2−if{r, s}(z)dz)(T i|γ−1). (22)

We can rewrite (21) as

2k−2∑
i=0

(
2k − 2

i

)
(−1)i Resγ−1e

(
(γz)2k−2−i(−cγz + a)−kf{r, s}(z)

dz

(cz + d)2

)
T i (23)

because of the property of the annular residue Resγ−1e(f(γz)d(γz)) = Rese(f(z)dz). The

lemma follows after completely expanding (22), (23) and comparing their coefficients.

Proposition 5.1. The map Res is a left inverse for ST, i.e. Res ◦ ST = Id.
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Proof. To ease the notation, we will drop the index {r, s} as it is not needed here. Recall

that for a cocycle c ∈ Char(Pk−2) we have F := ST(c)(z) =
∫
P1(Qp)

1
z−tdµc(t) and if U(e) is a

ball centered at a and not containing infinity, then one can write a power series expansion

for ST(c)(z) and get

Rese((z − a)iF (z)) =

∫
U(e)

(t− a)idµc(t),

where suitable adjustments can be made if U(e) contains infinity. Given any edge e of T the

components of the cocycle cF := (Res ◦ ST )(c) are

(cF )i(e) = (−1)i
2k−2−i∑
j=0

(
2k − 2− i

j

)
Rese(a

2k−2−i−j(z − a)jFdz).

Using the equality above these can be rewritten as

(−1)i
2k−2−i∑
j=0

(
2k − 2− i

j

)
a2k−2−i−j

∫
U(e)

(t− a)idµc(t) = (−1)i
∫
U(e)

tidµc(t),

which is just

(−1)i(−1)ici(e) = ci(e)

because of the definition of µc. This shows that cF = c and the proposition follows.

Recall that there is an isomorphism between MSΓ(Char(P2k−2)) and MSΓ0(p)(P2k−2) which

is induced by evaluating a harmonic cocycle at the standard edge e0. So there is a map

Res0 : MSΓ(A2k)→ MSΓ0(p)(P2k−2)

which is the composite of Res and this isomorphism. In the next section we will compute

Res0(Jk,D).
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5.1 The computation of the residue

Let FD(Z) denote, as before, the set of integral binary quadratic forms of discriminant D. A

form Q(x, y) = ax2 + bxy + cy2 ∈ FD(Z) is called a Heegner form if p divides a, and the set

of all Heegner forms of discriminant D is denoted F (p)
D (Z). The standard annulus of Hp is

the annulus of Hp which reduces to the standard vertex e0 of T . Recall that in this section

we are assuming
(
D
p

)
= 1. We will need the proposition below.

Proposition 5.2. Let Q ∈ FDp2n(Z) be a binary quadratic form with integer coefficients and

discriminant Dp2n. Then Rese0 Q(z, 1)−k is not zero if and only if Q is an Heegner form

and p does not divide the discriminant of Q.

Proof. This follows from the lemmas below and the p-adic Residue Theorem (see for example

[FVdP]).

Lemma 5.2. Let Q = [A,B,C] and let r1 and r2 be the two roots of Q. Assume that

valp(r1) ≥ 0 (resp. valp(r2) ≥ 0) and valp(r2) ≤ −1 (resp. valp(r1) ≤ −1), i.e. one root is

“inside” the standard annulus in Hp and the other one is “outside”. Then p|A.

Proof. The sum of the two roots is

r1 + r2 =
−B +

√
∆

2A
+
−B −

√
∆

2A
=
−B
A
,

where ∆ is the discriminant of Q. Therefore valp(−B/A) = valp(r1 + r2) < 0 and p|A.

Lemma 5.3. Let Q ∈ FDp2n(Z) with Q = [A,B,C] and let ∆ be the discriminant of Q. If

Q is an Heegner form and if p|∆, then Rese0(Q(z, 1)−k) = 0.
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Proof. We know that p|A, so we can write A = apα where p - a and α > 0. As p divides the

discriminant then we also have p|B and B = bpβ with p - b and β > 0. There are now three

cases.

If 2β > α then we can write ∆ = pα(b2p2β−α − 4aC). Note that α must be even. The

roots of Q can be written as

−bpβ ± pα/2
√
b2p2β−α − 4aC

2apα
,

so the p-adic valuation of both roots is −α/2 ≤ −1. Hence both r1 and r2 are ”outside” the

standard annulus and Rese0(Q(z, 1)−k) = 0 by the Theorem of Residues in Hp.

If 2β < α then we have ∆ = p2β(b2−4apα−2βC). We can aslo write α = 2β+x fore some

x > 0 and the two roots of Q(z, 1) are

−bpβ ± pβ
√
b2 − 4apxC

2ap2β+x
=
−b±

√
b2 − 4apxC

2apβ+x
.

Note that p - C, so the valuation of one of the roots must be −β < 0. This implies that the

valuation of the other root must be −β−x, because valp(r1r2) = −x−2β. Therefore also in

these case the valuation of both roots is at most −1, hence they are ”outside” the standard

annulus and the residue of Q(z, 1)−k is zero also in this case.

Finally let us consider the case 2β = α. We have ∆ = p2β(b2 − 4aC) and the two roots

can be written as

−b±
√
b2 − 4aC

2apβ
.

Then valp(−b +
√
b2 − 4aC) = 0, which implies that valp(−b−

√
b2 − 4aC) = 0. Therefore

the valuation of both roots is −β and the residue of Q(z, 1)−k is again zero.

Lemma 5.4. Let Q be a Heegner form and assume p - ∆. Then one of the roots of Q is

“inside” the standard annulus of Hp and the other one is “outside”.
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Proof. We let again Q = [A,B,C], with A = pαa and p - a. Then either valp(−B+
√

∆) = α

or valp(−B −
√

∆) = α. If we consider the product r1r2 we see that in the first case

valp(r1) = 0 and valp(r2) = −α, while in the second case valp(r1) = −α and valp(r2) = 0

.

In order to make a distinction between the cases in which a root is inside or outside the

standard annulus, it will be important to fix a choice of a square root of D in Qp and to

introduce the notation of first (resp. second) root of Q in a p-adic sense. Note that we are

still assuming that D is a square modulo p.

Definition 5.2. Let
√
D be a fixed choice of a square root of D in Qp and let Q = ax2 +

bxy+ cy2 be a binary quadratic form with coefficients in Qp. The first root r1 and the second

root r2 of Q in a p-adic sense are defined as

r1 =
−b+

√
D

2a
, r2 =

−b−
√
D

2a
.

Remark 5.1. The notion in the definition above is different from the notion of first and

second root used so far and given in the introduction, because it depends on a square root

of D in Qp rather than on the positive real root. This notion will be only used in Definition

5.3 below.

Definition 5.3. Let Q be as in the definition above and assume p|A. Let r1, r2 be the fisrt

and second root of Q in a p-adic sense. We will denote by (γQ · e0) the ”p-adic intersection

number” defined as

(γQ · e0) =

 1 if valp(r1) ≥ 0, valp(r2) ≤ −1,

−1 if valp(r1) ≤ −1, valp(r2) ≥ 0.
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In other words (γQ · e0) = 1 (resp. −1) if r1 is inside the standard annulus (resp. outside)

and r2 outside (resp. inside). Note that if we change the choice of the square root of D in

Qp then (γQ · e0) changes sign.

Proposition 5.3. Let k ≥ 1 be odd. For all {r, s} ∈ P1(Q)× P1(Q), the finite sum

κk,D{r, s}(z) =

(
2k − 2

k − 1

)
1

Dk−1
√
D

∑
Q∈F(p)

D (Z)

(γQ · (r, s))(γQ · e0) ·Q(z, 1)k−1

is a polynomial of degree 2k − 2 with coefficients in Cp. The function

κk,D : P1(Q)× P1(Q)→ P2k−2

is an element of MSΓ0(p)(P2k−2).

Proof. This is true because Heegner forms are fixed by Γ0(p) and because (γQ ·e0) = (γQδ ·e0),

where Qδ = Q|δ ∈ F (p)
D and the action of Γ0(p) on binary quadratic forms is the usual one.

Indeed let r1 and r2 be the first and second root of Q. Then one can check that δ−1r1 and

δ−1r2 are the first and second root of Qδ, respectively. Because the matrix δ−1 fixes the

standard affinoid of Hp, the p-adic intersection number does not change.

We are now ready to compute the residue of Jk,D.

Theorem 5.1. Let k ≥ 1 be odd and let Res0 : MSΓ(A2k) → MSΓ0(p)(P2k−2) be the map

defined in Section 5. Then

Res0(Jk,D) = κk,D.

Proof. Let P := Res0(Jk,D), so

P{r, s}(T ) =
2k−2∑
i=0

(
2k − 2

i

)
(−1)i Rese0(z

2k−2−iJk,D{r, s}(z)dz)T i.
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We want to show that the expression above equals κk,D{r, s}(T ). We will drop the index

{r, s} as it is not necessary in this proof. Given a Heegner form Q = [A,B,C], let H(T ) =

Q(T, 1)k−1 and let H(2k−2−i) denote the coefficient of degree 2k − 2 − i of the polynomial

H(T ). Because only the Heegner forms give a contribution in the computation of the residue,

it is enough to show that

(
2k − 2

i

)
(−1)i Rese0

( zi

Q(z, 1)k

)
= (γq · e0)

H(2k−2−i)

Dk−1
√
D

(
2k − 2

k − 1

)
.

From now on we will assume that (γq·e0) = 1, so that Rese0(z
i/Q(z, 1)k) = Resr1(z

i/Q(z, 1)k).

This is enough because if it was (γq · e0) = −1, then we would just take the residue with

respect to r2, getting the opposite sign. We can write

Rese0

( zi

Q(z, 1)k

)
=

M∑
l=0

(
i

l

)
ri−l1

Ak
Rese0

((z − r1)l−k

(z − r2)k

)
,

where M = min(i, k−1). The upper bound for l is M because Rese0((z−r1)l−k/(z−r2)k) = 0

if l ≥ k.

To compute the residues in the sum above we express (z − r1)l−k/(z − r2)k as a power

series in (z − r1), getting

(z − r1)l−k

(z − r2)k
=

(z − r1)l−k

(r1 − r2)(k − 1)!

∞∑
j=k−1

j(j − 1)(j − 2)...(j − k + 2)(z − r1)j−k+1

(r2 − r1)j
.

This expression can be obtained by formally differentiating the geometric series which gives

the expansion of (z − r2)−1. Therefore

Rese0

((z − r1)l−k

(z − r2)k

)
=

(
2k − 2− l
k − 1

)
(−1)l

(r1 − r2)2k−1−l ,

and

Rese0

( zi

Q(z, 1)k

)
=

M∑
l=0

(
i

l

)(
2k − 2− l
k − 1

)
(−1)lri−l1

Ak

( A√
D

)2k−1−l
,
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where we used the equality r1 − r2 =
√
D/A.

On the other hand, we have

H(2k−2−i) = Ak−1

N∑
l=0

(
k − 1

l

)(
k − 1

2k − 2− i− l

)
(−r1)k−1−l(−r2)i+l−k+1, (24)

where N = min(2k − 2− i, k − 1). Now using the equality r2 = r1 −
√
D/A we can rewrite

(24) as

Ak−1

N∑
l=0

((k − 1

l

)(
k − 1

2k − 2− i− l

)
rk−1−l

1 (−1)i
i+l−k+1∑
h=0

(
i+ l − k + 1

h

)
rh1

(√D
−A

)i+l−k+1−h)
.

From the above computations we see that to complete the proof we need to show that

(
2k − 2

i

) M∑
l=0

(
i

l

)(
2k − 2− l
k − 1

)
(−1)lri−l1

(√D
A

)l
(25)

is equal to

(
2k − 2

k − 1

) N∑
l=0

((k − 1

l

)(
k − 1

2k − 2− i− l

)
rk−1−l

1

i+l−k+1∑
h=0

(
i+ l − k + 1

h

)
ri+l−k+1−h

1 (−1)h
(√D
A

)h)
.

(26)

We can see the two expressions above as polynomials in (
√
D/A). These polynomials

have the same degree, because if M = k − 1 then N = 2k − 2 − i, while if M = i then

N = k − 1. Assume M = k − 1 (the case M = i can be treated similarly).

The coefficient of degree l of the polynomial in (25) is

(
2k − 2

i

)(
i

l

)(
2k − 2− l
k − 1

)
(−1)lri−l1 , (27)

while the coefficient of degree l of the polynomial in (26) is

(
2k − 2

k − 1

) 2k−2−i∑
t=0

(
k − 1

t

)(
k − 1

2k − 2− i− t

)(
i+ t− k + 1

l

)
(−1)lri−l1 . (28)
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Therefore to conclude the proof it is enough to show the equality

(
2k − 2

k − 1

) 2k−2−i∑
t=0

(
k − 1

t

)(
k − 1

2k − 2− i− t

)(
i+ t− k + 1

l

)
=

(
2k − 2

i

)(
i

l

)(
2k − 2− l
k − 1

)
.

(29)

We will prove this equality by applying some binomial identities to its left hand side. If

we let a := k − 1 and b := 2k − 2− t− i, then the left hand side of (29) becomes

(
2k − 2

k − 1

) 2k−2−i∑
t=0

(
a− b
l

)(
a

b

)(
a

t

)
=

(
2k − 2

k − 1

)(
k − 1

l

) 2k−2−i∑
t=0

(
k − 1− l

2k − 2− i− t

)(
k − 1

t

)
,

(30)

where the equality follows from the binomial identity
(
a
b

)(
a−b
l

)
=
(
a
l

)(
a−l
b

)
.

Now we let n = 2k − 2− i and (30) becomes

(
2k − 2

k − 1

)(
k − 1

l

) n∑
t=0

(
k − 1− l
n− t

)(
k − 1

t

)
=

(
2k − 2

k − 1

)(
k − 1

l

)(
2k − 2− l
2k − 2− 1

)
, (31)

where the last equality holds because of the Chu-Vandermonde indentity, i.e.

n∑
t=0

(
m

t

)(
s−m
n− t

)
=

(
s

n

)
,

with m = k − 1− l and s = 2k − 2− l in our case.

Now it is easy to see that (31) is equal to the right hand side of (29), so the theorem

follows.
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6 A Zagier form of level p

Let k continue to be an odd integer, and assume also k ≥ 3. The Zagier form fk,D(z) of the

introduction admits an analogue in level p, given by

f
(p)
k,D(z) =

∑
Q∈F(p)

D (Z)

(γQ · e0)

Q(z, 1)k
,

where F (p)
D (Z) was defined at the beginning of Section 5.1. The coefficient (γQ · e0) ensures

that there is no cancellation between the forms Q and −Q. Moreover, this coefficient will

play an important role in the proof of Theorem 7.2.

Proposition 6.1. The function f
(p)
k,D(z) is a weight 2k cusp form for Γ0(p).

Proof. This follows from the fact that Γ0(p) fixes Heegner forms. Indeed for any δ =

a b

c d


in Γ0(p) we have

(f
(p)
k,D|δ)(z) =

∑
Q∈F(p)

D (Z)

(γQ · e0)

Qδ(z, 1)k
,

where Qδ = Q|δ ∈ F (p)
D and the action of Γ0(p) on binary quadratic forms is the usual one.

Moreover when we proved Proposition 5.3 we showed that (γQ · e0) = (γQδ · e0). Note that

the series defining f
(p)
k,D(z) converges by the argument used to prove the convergence of the

Eisenstein series. This is covered for example in [Z123], Section 2.1. The series moreover

gives a cusp form because it converges absolutely uniformly on compact sets and each term

tends to zero when z tends to ∞. This completes the proof.

An Eichler cocycle of weight 2k is an element of the space MSSL2(Z)(P2k−2) of SL2(Z)-

invariant modular symbols with values in P2k−2. More generally, an Eichler cocycle of weight

2k and level p is an element of the space MSΓ0(p)(P2k−2). The relevance of Eichler cocycles
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to modular forms arises from the Eichler-Shimura isomorphism, which to any cusp form f

of weight k for a congruence group Γ associates the Eichler cocycle of weight k defined by

κf{r, s} :=

∫ s

r

f(z)(x− z)k−2dz, (32)

where the integral is over the geodesic in the upper half plane joining r and s. The right hand

side is a polynomial in x, and κf is an element of MSΓ(P2k−2). Furthermore, the assignment

f 7→ κf induces a Hecke equivariant vector space isomorphism between the space Sk(Γ) of

cusp forms of weight k for Γ and the space MSΓ(P2k−2). Some references for this material

are [GS] (Section 4), [KZ2], and [Dar2] (Chapter 2).

Let f be a weight 2k cusp form for Γ0(p) (or SL2(Z)). To f we associate the modular

symbol

κ̄f{r, s} := κf{r, s} − κf{−r,−s}|Ĩ ,

where

Ĩ :=

−1 0

0 1

 .

Lemma 6.1. The modular symbol κ̄f is Γ0(p)-invariant, i.e. it belongs to MSΓ0(p)(P2k−2).

Proof. Let γ ∈ Γ0(p). The result follows from the following equalities

κf{−γr,−γs} = κf{Ĩγr, Ĩγs}

= κf{ĨγĨ(−r), ĨγĨ(−s)}

= κf{−r,−s}|Ĩγ−1Ĩ ,

where we used the fact that ĨγĨ ∈ Γ0(p) in the last equality.

An important theme of [KZ2] is that the forms fk,D(z) have rational periods. Indeed
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Kohnen and Zagier computed the even period of fk,D(z), which is essentially equal to

κ̄f{0,∞}, up to a constant. They did not use the notation of modular symbols, however

their result can be formulated as

κ̄fk,D{0,∞} =

(
2k − 2

k − 1

)
π

Dk−1
√
D

∑
Q∈FD(Z)

(γQ · (0,∞)) ·Q(x, 1)k−1 (33)

up to a constant, for k even and D non square. Note that the sum above is finite because

of the coefficient (γQ · (0,∞)). Hence one can associate to the forms fk,D an Eichler cocycle

in MSSL2(Z)(P2k−2) whose values are polynomials with rational, indeed integral, coefficients.

We now prove an analogous and more general result for f
(p)
k,D, in the case where k is odd.

Note that the polynomial in (33) is an even polynomial and it is indeed the even period of

fk,D. The polynomial κ̄
f
(p)
k,D
{0,∞} of Theorem 6.1 below is instead an odd polynomial, and

it is basically the odd period of f
(p)
k,D.

Theorem 6.1. If D is not a square, then

κ̄
f
(p)
k,D
{r, s}(x) = 3π

√
−1

(
2k − 2

k − 1

)
1

Dk−1
√
D

∑
Q∈F(p)

D (Z)

(γQ · (r, s))(γQ · e0) ·Q(x, 1)k−1,

where
√
−1 denotes the square root of −1 in C.

Proof. Note that the sum in the statement is finite because of the coefficient (γQ · (r, s)). We

will start assuming r, s ∈ Q. Let w = 2k − 2. Then

κ̄
f
(p)
k,D
{r, s}(x) =

∫ s

r

f
(p)
k,D(z)(x− z)2k−2dz −

∫ −s
−r

f
(p)
k,D(z)(−x− z)2k−2dz

=
w∑
i=0

(
w

i

)
xw−i

[ ∫ s

r

(−z)i · f (p)
k,D(z)dz −

∫ −s
−r

zi · f (p)
k,D(z)dz

]
=

w∑
i=0

(
w

i

)
xw−i

[ ∑
Q∈F(p)

D (Z)

∫ s

r

(γQ · e0) · (−z)i

Q(z, 1)k
−

∑
Q∈F(p)

D (Z)

∫ −s
−r

(γQ · e0) · zi

Q(z, 1)k

]
.
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The last equality holds because the series defining f
(p)
k,D converges absolutely uniformly on

suitable compact sets containing the semicircle joining r to s. Now note that this also implies

that the series appearing in the last expression converge absolutely, hence we can rewrite

the expression as

w∑
i=0

(
w

i

)
xw−i

[ ∑
Q∈F(p)

D (Z)

(γQ · e0) ·
(∫ s

r

(−z)i

Q(z, 1)k
−
∫ −s
−r

zi

Q(z, 1)k

)]

=
w∑
i=0

(
w

i

)
xw−i

[ ∑
Q∈F(p)

D (Z)

(γQ · e0) ·
(∫ s

r

(−z)i

Q(z, 1)k
−
∫ −s
−r

zi

Q̃(z, 1)k

)]
,

where if Q = [a, b, c] then Q̃ := [−a, b,−c]. The last equality holds because we can rearrange

the terms of a series which converges absolutely. By Proposition 6.2 and Lemma 6.2 below,

we can rewrite the difference of the integrals above as

3π
√
−1

(
(−1)i

(γQ · (r, s)) · A(i)
Q,1 +GQ,i

(r,s)

ak
−

(γQ̃ · (−r,−s)) · A
(i)

Q̃,1
+GQ̃,i

(−r,−s)

(−a)k

)
= 2(−1)ia−k3π

√
−1 · (γQ · (r, s)) · A(i)

Q,1.

For r, s ∈ Q the Theorem then follows by formally comparing this expression with Theorem

5.1.

The case {r, s} = {0,∞} follows from Theorem 5 of [KZ2]. Indeed for any cusp form f ,

the polynomial κ̄f{0,∞}(x) is odd, and our result for {0,∞} can be read from the odd part

of the polynomial in Theorem 5 of [KZ2].

The case {r,∞} follows because κ̄f{r,∞}(x) = κ̄f{r, 0}(x) + κ̄f{0,∞}(x).

Remark 6.1. The period polynomials of Theorem 6.1 basically have the same expression

as the polynomials κk,D{r, s} defined in Proposition 5.3. However, the period polynomials

κ̄
f
(p)
k,D
{r, s}(x) have coefficients in C and the square root of D appearing in their formula is

the complex one. The polynomials κk,D{r, s} instead have coefficients in Cp and the square
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root of D appearing in their definition is an element of Qp.

We devote the rest of this section to proving the results mentioned in the proof of Theorem

6.1. Given a binary quadratic form Q = [a, b, c], let r1 and r2 denote, as usual, its first and

second root. Consider the following partial fraction decomposition

zi

(z − r1)k(z − r2)k
=

A
(i)
Q,1

(z − r1)
+ ...+

A
(i)
Q,k

(z − r1)k
+

B
(i)
Q,1

(z − r2)
+ ...+

B
(i)
Q,k

(z − r2)k
.

For any r, s ∈ Q, let GQ,i
(r,s) be defined as

GQ,i
(r,s) :=

k∑
l=2

( A
(i)
Q,l

(1− l)(s− r1)l−1
+

B
(i)
Q,l

(1− l)(s− r2)l−1
−

A
(i)
Q,l

(1− l)(r − r1)l−1
−

B
(i)
Q,l

(1− l)(r − r2)l−1

)
+ A

(i)
Q,1 ln

∣∣∣s− r1

s− r2

∣∣∣− A(i)
Q,1 ln

∣∣∣r − r1

s− r2

∣∣∣.

Proposition 6.2. Let r, s ∈ Q and assume that the discriminant of Q is not a square. Then

∫ s

r

zi

(z − r1)k(z − r2)k
dz = 3π

√
−1 · (γQ · (r, s)) · A(i)

Q,1 +GQ,i
(r,s),

where
√
−1 denotes the square root of −1 in C and the integral is taken over the geodesic in

the upper-half plane joining r and s.

Proof. We will denote by (r, s) the geodesic in the upper-half plane joining r and s, which

is a semicircle having r and s as endpoints and oriented from r to s.

Case (γQ · (r, s)) = 0

In this case either both roots lie “inside” (r, s) or “outside” of it. If both r1 and r2 are

outside the semicircle, then the Residue Theorem implies that the integral on (r, s) is the

same as the line integral from r to s, which is exactly GQ,i
(r,s).

If both roots are inside (r, s) we proceed similarly but this time we need to add detours

around the poles. Assume also that r < r1 < r2 < s to fix things. Let ρ be a positive number
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with 4ρ < s− r. Consider the path given by the union of the segment joining r and r1 − ρ,

the semicircle in the lower half-plane of radius ρ and center r1, the segment joining r1 + ρ

and r2− ρ, the semicircle in the lower half-plane of radius ρ centered at r2, and the segment

joining r2 + ρ with s. Call this path Sρ. Then the Residue Theorem implies

∫ s

r

zi

(z − r1)k(z − r2)k
dz =

∫
Sρ

zi

(z − r1)k(z − r2)k
dz = GQ,i

(r,s).

Case (γQ · (r, s)) 6= 0

In this case one root is inside the semicircle (r, s) and the other is outside. Call y the

positive root. We will proceed similarly to the previous case, but we need to add a detour

around y. Let the path Sρ be defined as the union of the segment joining r with y − ρ, the

semicircle in the lower half-plane of radius ρ centered at y, and the segment joining y + ρ

with s. By the Residue Theorem

∫ s

r

zi

(z − r1)k(z − r2)k
dz = 2π

√
−1 · (γQ · (r, s)) · A(i)

Q,1 +

∫
Sρ

zi

(z − r1)k(z − r2)k
dz. (34)

The theorem follows as one can check that

∫
Sρ

zi

(z − r1)k(z − r2)k
dz = π

√
−1 · (γQ · (r, s)) · A(i)

Q,1 +GQ,i
(r,s).

Lemma 6.2. Given a binary quadratic form Q = [a, b, c], let Q̃ := [−a, b,−c]. Then for any

l = 0, ..., k and i = 0, ..., 2k − 2 we have

A
(i)

Q̃,l
= (−1)l+iA

(i)
Q,l, B

(i)

Q̃,l
= (−1)l+iB

(i)
Q,l,
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and

GQ,i
(r,s) = (−1)i+1GQ̃,i

(−r,−s).

Proof. Note that if r1, r2 are the first and second root of Q, then −r1 and −r2 are the

first and second root of Q̃, respectively. The computation of A
(i)
Q,l, B

(i)
Q,l is simply a residue

computation, indeed

A
(i)
Q,l = Resr1

( zi(z − r1)l−1

(z − r1)k(z − r2)k

)
=

i∑
j=0

(
i

j

)
ri−j1 Resr1

((z − r1)j−k+l−1

(z − r2)k

)
.

But

(z − r1)j−k+l−1

(z − r2)k
=

(z − r1)j−k+l−1

(r1 − r2)(k − 1)!

∞∑
t=k−1

t(t− 1)...(t− k + 2)(z − r1)t−k+1

(r2 − r1)t
,

hence

Resr1

((z − r1)j−k+l−1

(z − r2)k

)
=

(
2k − j − l − 1

k − 1

)
(−1)

(r2 − r1)2k−j−l .

It follows that

A
(i)
Q,l =

i∑
j=0

(
i

j

)
ri−j1

(
2k − j − l − 1

k − 1

)
(−1)

(r2 − r1)2k−j−l .

Now A
(i)

Q̃,l
can be found from the formula for A

(i)
Q,l simply by substititing −r1 and −r2 in place

of r1, r2. Then it is clear that A
(i)

Q̃,l
= (−1)l+iA

(i)
Q,l. The relationship for B

(i)
Q,l, B

(i)

Q̃,l
can be

found in a similar way and the Lemma follows immediately.
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7 A Shimura-Shintani correspondence for rigid ana-

lytic cocycles of higher weight

The aim of this section is to construct a cusp form Ω̂k(q) of weight k + 1/2 and level 4p2

with coefficients in MSΓ(A2k), for k ≥ 3 odd. For this section only, we will assume that

p ≡ 3 (mod 4). More precisely, Ω̂k(q) should be an element of S
(Q̄)
k+1/2(Γ(4p2))⊗MSΓ(A2k) ⊂

Q̄[[q]]⊗MSΓ(A2k), where S
(Q̄)
k+1/2(Γ(4p2)) are the weight k+1/2 cusp forms of level 4p2 whose

Fourier coefficients are in Q̄.

We will now describe how one can get a correspondence

S
(Q̄)
k+1/2(Γ(4p2))

C−−→ MSΓ(A2k)

via Ω̂k(q). Let {g1, ..., gt} be a basis of eigenforms for S
(Q̄)
k+1/2(Γ(4p2)). Then we can write

Ω̂k(q) =
t∑
i=1

gi ⊗mi, for some mi ∈ MSΓ(A2k).

Now let g ∈ S(Q̄)
k+1/2(Γ(4p2)) and write g =

∑t
i=1 αigi for some αi ∈ Q̄. Then the correspon-

dence C is defined by letting

C : g 7→
t∑
i=1

αimi.

As mentioned in the introduction, the rigid analytic cocycle Jk,D should play for the

correspondence that we aim to construct a role analogous to the role played by the Za-

gier form fk,D for the classical Shimura-Shintani correspondence. In particular, the series

Ω̂k(q) should have an expression of the form Ω̂k(q) =
∑

D>0D
k−1/2Jk,D · qD, which mimics

the formula for the holomorphic kernel function for the Shimura-Shintani correspondence

Ωk(q) =
∑

D>0D
k−1/2fk,D · qD. However, if D is a square then Jk,D is not defined, so our
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main result is slightly different.

Theorem 7.1. Let k ≥ 3 be odd. If D is not a square and
(
D
p

)
= 1, then Dk−1/2Jk,D is

the D-th coefficient of a weight k + 1/2 cusp form Ω̂k(q) of level 4p2 with coefficients in

MSΓ(A2k). The D-th coefficient of Ω̂k(q) vanishes if
(
D
p

)
6= 1.

Proof. The proof consists of two steps.

Step 1.

We will at first construct a level 4p2 cusp form Ω̄k(q) =
∑

D>0 cD · qD of weight k + 1/2

with coefficients cD ∈ S
(p)
2k (Q̄), where S

(p)
2k (Q̄) ⊂ S2k(Γ0(p)) is a certain vector space over

Q̄. More precisely, Ω̄k(q) will be an element of S
(Q̄)
k+1/2(Γ(4p2))⊗S

(p)
2k (Q̄) ⊂ Q̄[[q]]⊗S

(p)
2k (Q̄).

The D-th coefficient of Ω̄k(q) vanishes if
(
D
p

)
6= 1. This construction will be carried out in

Theorem 7.2.

Step 2.

We will then construct a Q̄-linear map ι : S
(p)
2k (Q̄) → MSΓ(A2k) and show that cD 7→

Dk−1/2Jk,D if D is not a square. By definition, the resulting generating series Ω̂k(q) =∑
D>0 ι(cD) · qD is a weight k + 1/2 cusp form of level Γ(4p2) with coefficients in MSΓ(A2k),

i.e. an element of an element of S
(Q̄)
k+1/2(Γ(4p2))⊗MSΓ(A2k) ⊂ Q̄[[q]]⊗MSΓ(A2k). This will

be done in Theorem 7.3.

Fix an embedding of Q̄ into Cp and let P2k−2(Q̄) ⊂ P2k−2 be the polynomials with

coefficients in Q̄ and degree at most 2k−2. Let S
(p)
2k (Q̄) ⊂ S2k(Γ0(p)) be the subset of forms

f such that (3π
√
−1)−1 · κ̄f ∈ MSΓ0(p)(P2k−2(Q̄)). This is a vector space over Q̄ containing

f
(p)
k,D.

Theorem 7.2. Let k ≥ 3 be odd. Consider the series Ω̄k(q) =
∑

D>0D
k−1/2f

(p)
k,D · qD, where

D ranges over discriminants with (D
p

) = 1. Then Ω̄k is a weight k + 1/2 cusp form of level

4p2 with coefficients in S
(p)
2k (Q̄).
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Proof. We will proceed similarly to [KZ1] in their Theorem 2, in particular we will use a

theorem of [Vig] which was generalized by Stopple ([St]). At first, note that the square root

of D appearing in the definition of Ω̄k is the positive one in R, and that Ω̄k is well defined as

p ≡ 3 (mod 4). Indeed, for such primes there is a canonical choice of
√
D ∈ Qp as D varies,

and this implies that there is no ambiguity in the choice of the terms (γQ · e0) appearing in

the definition of f
(p)
k,D. For

(
D
p

)
= 1, let s,−s be the square roots of D (mod p) and let

F (p),s
D := {Q = [a, b, c] ∈ F (p)

D such that b ≡ s (mod p)}.

Then note that

f
(p)
k,D(z) =

∑
Q∈F(p)

D (Z)

(γQ · e0)

Q(z, 1)k
= ±2

( ∑
Q∈F(p),s

D (Z)

1

Q(z, 1)k

)
,

where the sign depends on the choice of a square root of D in Qp. Let F+
p be a set of

representatives for F×p /{±1}. There is a canonical choice for these representatives, as p ≡ 3

(mod 4) and hence −1 is not a square modulo p. By letting q = e2πiτ we can see Ω̄k as a

function of two variables z, τ ∈ H as

Ω̄k(z, τ) =
∑
D>0

Dk−1/2f
(p)
k,D(z)e2πiDτ =

∑
α∈F+

p

Ω̄k,α(z, τ), (35)

where

Ω̄k,α(z, τ) :=
∑

[a,b,c]∈Hα
b2−4ac>0

(b2 − 4ac)k−
1
2

(az2 + bz + c)k
· e2πi(b2−4ac)τ (36)

and Hα is the coset of [0, α, 0] in L/L′ with L := {[a, b, c] ∈ Z3 such that p|a} and L′ :=

{[a, b, c] ∈ L such that p|b}. Now we apply Theorem 1 of [St], which is a generalization of

the theorem on p. 228 of [Vig] (Stopple considers only the case of lattices of even dimension,

while Vigneras considers also odd dimensions. The result of Stopple still holds in our case

as we are working over Q, see [St] for more details). This shows that the functions Ω̄k,α(z, τ)
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are weight k + 1/2 modular forms in τ whose level is the same as the level of the lattice L′.

By computing the dual of L′, we see that the level is 4p2. Since Ω̄k(z, τ) has no constant

term, the theorem follows.

Remark 7.1. Note that the functions Ω̄k,α defined in the proof of Theorem 7.2 are, in

general, well defined only up to sign. In our case there is no ambiguity in their definition as

p ≡ 3 (mod 4).

Theorem 7.3. If D is not a square, there exists a Q̄-linear map ι : S
(p)
2k (Q̄) → MSΓ(A2k)

such that ι
(
f

(p)
k,D

)
= Jk,D.

Proof. The map ι will be the composite ι = ST ◦ p of the two maps

S
(p)
2k (Q̄)

p−→ MSΓ0(p)(P2k−2(Q̄)) ⊂ MSΓ0(p)(P2k−2)
ST−→ MSΓ(A2k).

Here p is the Q̄-linear map defined as

p(f) :=
1

3π
√
−1
· κ̄f

and ST is the Schneider-Teitelbaum lift for rigid analytic cocycles defined in Section 4. The-

orem 6.1 and Theorem 5.1 imply that p(f
(p)
k,D) = κk,D, where κk,D was defined in proposition

5.3.

In Theorem 5.1 we proved that Res0(Jk,D) = κk,D. By Corollary 2.3.4. and Theorem

4.5.2. of [DT], the map Res defined in Section 5 is injective, and by Lemma 4.1 the map

Res0 is also injective. Hence ST(κk,D) = Jk,D and the theorem follows.

Remark 7.2. In Theorem 7.3 we are implicitly associating a square root of D in Qp to the

positive real square root of D. As p ≡ 3 (mod 4), there is a canonical choice for
√
D ∈ Qp,

uniformly in D.
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7.1 Future research

It would be interesting to relate our work to the theory of the theta correspondence by writing

the series Ω̄k(q) as the theta series attached to a Schwartz function ϕ ∈ S(Q3⊗AQ). Seeing

our construction as part of this more general framework would offer several future research

directions as the theta correspondence can be specialized to many different settings. For

instance, the Zagier form fk(D, z) defined in the introduction is the restriction of a certain

Hilbert modular form which plays a key role in the Doi-Naganuma correspondence between

cusp forms and Hilbert modular forms ([Za]). We would like to see if one can define an

analogue of this correspondence for rigid meromorphic or analytic cocycles. We would also

like to see if this can be done for more general correspondences which were studied by Oda

who also generalized the form fk(D, z) ([Oda]). In general, it would be interesting to learn

more about the Kudla program and the theta correspondence, with the intention to explore

related p-adic aspects, particularly in the framework of the nascent p-adic version of the

program.

In an ongoing work, Darmon, Gehrmann and Lipnowski are laying the foundations for

the study of rigid meromorphic cocycles attached to quadratic spaces over Q. Let (V, q)

be such a quadratic space of real signature (r, s), and let VZ be a lattice in V where q

has integer values. Let Γ := O(VZ[1/p]). In this setting, rigid meromorphic cocycles are

classes in Hs(Γ,M×(Xp)), whereM×(Xp) denotes the multiplicative group of non zero rigid

meromorphic functions on a certain rigid analytic space Xp over Qp, which depends on q. In

the case of signature (2, 1), one recovers the rigid meromorphic cocycles defined in this thesis.

In [Neg], we studied certain p-adic theta functions that can be seen as rigid meromorphic

cocycles for a quadratic space of signature (3, 0). The next step would be to consider the case

of signature (4, 0), and in general other signatures, both from a theoretical and computational

point of view. In general it would be interesting to understand rigid meromorphic cocycles

in broader settings and to study questions in the case of general orthogonal groups similar to

the ones currently studied for the case of signature (2, 1). One could for example ask what
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the space V looks like in other settings, as well as try to define some examples of cocycles in

these settings, and eventually classify them. It would be interesting to seek correspondences

similar to the one constructed in this thesis in this more general setting. Some work in

the direction of extending rigid meromorphic cocycles has already been done by Guitart,

Masdeu and Xarles, who in [GMX] considered a quaternionic case from a theoretical and

computational point of view.

It would also be interesting to evaluate at RM points the rigid analytic cocycles arising

from the correspondence constructed in this thesis to see if they satisfy patterns.

Moreover, the RM values of rigid analytic cocycles should be related to the p-units that

arise in the Gross-Stark conjecture and the work of Dasgupta and Kakde, and clarifying this

relationship is one of our goals.

In Section 2 we classified certain rigid meromorphic cocycles of higher weight, and we

intend to do the same for rigid analytic cocycles of higher weight.

It would also be interesting to define the cocycle Jk,D in the case when D is a square. This

could possibly be done by studying the winding cocycle defined in [DPV1], and in particular

its logarithmic derivative. This is an object of weight 2 and one can ask what happens for

higher weight.
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