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Abstract

Let f be a modular form of weight k ≥ 4 on a Shimura curve, let K be a

quadratic imaginary field, and fix a rational prime p which is inert in K and di-

vides the level of f . The goal of this thesis is to construct and study a collection

of algebraic cycles on an appropriate Chow motive which encode data about the

anticyclotomic p-adic L-function Lp(f,K, s) attached to f and K introduced by

Bertolini-Darmon-Iovita-Spieß in [BDIS02]. In our setting, this function of a p-adic

variable s vanishes in the critical range s = 1, . . . , k−1, and we study its derivative.

After constructing this motive and the corresponding cycles, we compute their im-

age under a p-adic analogue of the Griffiths-Weil Abel-Jacobi map, and show how

this recovers the derivatives of the p-adic L-function at all the points in the critical

range.

Our main result can be viewed as a generalization of the result obtained by

Iovita-Spieß in [IS03], which gives a similar formula for the “central” value s = k/2.

It can also be seen as an extension of the construction of Bertolini-Darmon-Prasanna

appearing in [BDP09] to the Shimura curve setting.
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Abrégé

Soit f une forme modulaire de poids k ≥ 4 sur une courbe de Shimura, soit K un

corps quadratique imaginaire, et soit p un premier fixé qu’on suppose inerte dans K.

Le but de cette thèse est de construire une collection de cycles algébriques sur un

motif de Chow approprié, et de démontrer qu’ils sont liés à la fonction-L p-adique

anti-cyclotomique Lp(f,K, s) attachée à f et K introduite par Bertolini-Darmon-

Iovita-Spieß dans [BDIS02]. Cette fonction d’une variable p-adique s s’annule dans

l’intervalle critique s = 1, . . . , k − 1, et nous nous intéressons à sa dérivée. Après

avoir construit le motif et les cycles correspondants, nous calculons leur image par

un analogue p-adique de l’application d’Abel-Jacobi, et nous retrouvons la dérivée

de Lp(f,K, s) dans l’intervalle critique.

Notre résultat principal est une généralisation du théorème obtenu par Iovita-

Spieß dans [IS03], qui donne une formule du même genre pour la valeur centrale

s = k/2. Cette thèse étend également les constructions introduites par Bertolini-

Darmon-Prasanna dans [BDP09] au cadre des courbes de Shimura.
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Introduction

A classical problem

Consider an elliptic curve E defined over the field Q of rational numbers. The

Mordell-Weil theorem asserts that the group E(Q) of rational points on E is finitely-

generated. While it is easy to compute its torsion, the rank of E(Q), called the

arithmetic rank, is an invariant that is far from being understood. Another invari-

ant attached to E is its Hasse-Weil L function, L(E/Q, s). Thanks to results of

Wiles [Wil95], this is an entire complex function, satisfying a functional equation

relating its behavior at s and 2 − s. One may consider the order of vanishing of

L(E/Q, s) at s = 1, which is called the analytic rank of E. The famous conjecture

of Birch and Swinnerton-Dyer [BD65], which we will refer to as the BSD conjec-

ture, predicts that the arithmetic and analytic ranks coincide. The conjecture is not

only more precise, since it also predicts the first nonzero coefficient of L(E/Q, s)

at s = 1, but it is actually much more general, and can be formulated for abelian

varieties over arbitrary number fields. However, very little is known about the BSD

conjecture, even in the simplest cases.

One of the breakthroughs in the field is due to Gross and Zagier [GZ86], who

proved a formula relating the central critical value of L(E/Q, s) to the Néron-

Tate height of a Heegner point on a modular curve. A few years later Kolyvagin

introduced the technique of Euler systems which, together with the formula of Gross

and Zagier, proved the BSD conjecture when the analytic rank is at most one.

1



Given a normalized eigenform f of arbitrary weight n + 2, one can construct

an L-function L(f/Q, s) in such a way that for weight 2 the function L(f/Q, s)

coincides with L(Ef/Q, s), where Ef is obtained from f using a construction of

Eichler and Shimura. Regarding this generalization, Zhang proved in [Zha97] a

formula similar to that given in [GZ86] for modular forms of arbitrary weight.

This formula relates the derivative of L(f/Q, s) to the Néron-Tate height of certain

Heegner cycles, a class of cycles in the Kuga-Sato variety supported on CM-divisors,

which were already studied in [GZ86].

p-adic L-functions

One essential and striking feature of the BSD conjecture is that it relates complex-

analytic and arithmetic data. The analytic world being a priori so far from the

rational world makes this conjecture unreachable to us using current ideas. Since p-

adic analysis is closely related to arithmetic, a more tractable approach is provided

by a p-adic theory of L-functions replacing its complex counterpart. This theory is

not settled yet, and many different proposals have appeared in the last decades.

Fix a quadratic imaginary field K, and let f be a modular form defined over Q.

The goal of the different theories of p-adic L-functions is to produce rigid-analytic

functions attached to f that interpolate the Rankin-Selberg L-function L(f/K, s) in

different ways. The theory has so far developed in two directions, which correspond

to the two independent Zp-extensions of the field K: the cyclotomic and anti-

cyclotomic extension.

The cyclotomic p-adic L-function

The first approach to such p-adic analogues appeared in [MD74], where Mazur and

Swinnerton-Dyer constructed a p-adic L-function associated to a modular form f

of arbitrary weight n+ 2 using the cyclotomic Zp-extension of Q. Mazur, Tate and
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Teitelbaum formulated in [MTT86] a conjectural formula that related the order of

vanishing of this p-adic L function to that L(f, s), and in [GS93], Greenberg and

Stevens proved that formula in the case of weight 2. Also, Perrin-Riou [Rio92]

obtained a Gross-Zagier type formula for the central value using p-adic heights.

Nekovář [Nek95] extended the result of Perrin-Riou to higher weights, by using

the definition of p-adic height that he had already introduced in his earlier pa-

per [Nek93]. Combining this result with his previous work on Euler systems [Nek92],

he obtained a result of Kolyvagin-type for the cyclotomic p-adic L-function.

The anti-cyclotomic p-adic L-function

Bertolini and Darmon, in a series of papers [BD96], [BD98] and [BD99], con-

structed another p-adic L-function which depends instead on the anti-cyclotomic

Zp-extension of a fixed quadratic imaginary field K. One important feature of this

construction is that it is purely p-adic, unlike its cyclotomic counterpart. Bertolini

and Darmon formulated the analogous conjectures to those of Teitelbaum [Tei90],

and proved them in the case of weight 2.

After these papers, Iovita and Spieß entered the project initiated by Bertolini

and Darmon. Their goal was to generalize the previous constructions and results to

higher weights and to make them more conceptual. They considered certain Selmer

groups, in the spirit of the conjectures of Bloch and Kato [BK90] as generalized

by Fontaine and Perrin-Riou in [FR94]. In [BDIS02], taking ideas from the work

of Schneider in [Sch84], the four authors construct the anti-cyclotomic p-adic L-

function attached to a rigid modular form f and a quadratic imaginary field K,

and obtain a formula which computes the derivative of this p-adic L-function at

the central point in terms of an integral on the p-adic upper half plane, using the

integration theory introduced by Coleman in [Col85]. Assume for simplicity that

the ideal class number of K is 1. Using their techniques one can easily show that,

when p is inert in K, the anti-cyclotomic p-adic L-function vanishes at all the critical
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values. Moreover, one computes a formula for the derivative at all the values in

the critical range: if f is a modular form of even weight n + 2, and we denote by

Lp(f,K, s) the anti-cyclotomic p-adic L-function attached to f and K, then for all

0 ≤ j ≤ n, one has:

L′p(f,K, j + 1) =

∫ z0

z0

f(z)(z − z0)j(z − z0)n−jdz, (1)

where, z0, z0 ∈ Hp(K) are certain conjugate Heegner points on the p-adic upper-

half plane. In 2003, Iovita and Spieß [IS03] interpreted the quantity appearing in

the right hand side of formula (1), in the case of j = n
2
, as the image of a Heegner

cycle under a p-adic analogue to the Abel-Jacobi map. This thesis gives a similar

geometric interpretation of the quantity appearing in the right hand side of the

previous formula, for all values of j.

Contributions

Let Mn+2(X) denote the space of modular forms on a Shimura curve X, of weight

n + 2 ≥ 4. The case of weight 2 is excluded for technical reasons, and because it

has already been studied by other authors. Let K be a quadratic imaginary field

in which p is inert, and fix an elliptic curve E with complex multiplication. In this

setting, we construct a Chow motive Dn over X, and a family of algebraic cycles

∆ϕ supported in the fibers over CM-points of X, indexed by isogenies ϕ : E → E ′,

of elliptic curves with complex multiplication. The motive Dn is obtained from a

self-product of a certain number of abelian surfaces, together with a self-product of

the elliptic curve E. The cycles ∆ϕ are essentially the graph of ϕ, and are expected

to carry more information than the classical Heegner cycles.

One can define a map analogous to the classical Abel-Jacobi map for curves,

but for varieties defined over p-adic fields. This map, denoted AJK,p, assigns to a

null-homologous algebraic cycle an element in the dual of the de Rham realization of

the motive Dn. This motive has precisely been constructed so that this realization
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is

Mn+2(X)⊗Qp SymnH1
dR(E/K).

One can choose generators ω and η for the group H1
dR(E/K), and it thus makes

sense to evaluate AJK,p(∆ϕ) on an element of the form f ∧ ωjηn−j. By explicitly

computing this map, and combining the result with the formula (1), we obtain the

following result (see Corollary 6.10 for a more precise and general statement):

Theorem. There exist explicit isogenies ϕ and ϕ as above and a constant Ω ∈ K

such that, for all 0 ≤ j ≤ n:

AJK,p(∆ϕ −∆ϕ)(f ∧ ωjηn−j) = Ωj−nL′p(f,K, j + 1).

This result is to be regarded as a p-adic Gross-Zagier type formula for the anti-

cyclotomic p-adic L-function. Note however that instead of heights it involves the

p-adic Abel-Jacobi map. It can also be seen as a generalization of the main result

of Iovita and Spieß in [IS03] to all values in the critical range.

Structure

This document consists of this introduction and seven chapters. The first four

chapters introduce background material. Therefore no claim of originality is made,

although some details have been added in certain places.

Chapter 1 introduces background on rigid analytic geometry. In particular, the

theory of Coleman integration is developed at the appropriate level of gener-

ality.

Chapter 2 introduces the main geometric object of study in this work, namely

Shimura curves. Both their moduli interpretation as both as a p-adic uni-

formization result due to Čerednik-Drinfel’d are needed later to state the

problem and to obtain the main result.
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Chapter 3 deals with the several definitions of the higher Abel-Jacobi maps that

will be needed in the sequel, and describes formulas for natural pairings on

the cohomology of open Shimura curves with coefficients.

Chapter 4 follows [BDIS02] in introducing the anti-cyclotomic p-adic L-function,

which is the object of the main application of our results.

In the second part there is an exposition of the results obtained so far.

Chapter 5 describes a motive Dn which is inspired by the constructions appearing

in [IS03] and in [BDP09]. We study its p-adic étale realization and its de Rham

realization.

Chapter 6 begins by giving a formula for the values of the derivative of the anti-

cyclotomic p-adic L-function. The goal of this project is to give a geometric

interpretation of these values. It continues by defining a family of cycles

on the motive Dn studied in the previous chapter. The remainder of the

chapter computes the image under the p-adic Abel-Jacobi map of certain

linear combinations of these cycles, which are shown to coincide with the

values of the derivative found before.

Chapter 7 points out different directions towards which the future research on

this subject could be directed.
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Notation

We denote by Z,Q,R and C the ring of integers and the fields of the rational,

real and complex numbers, respectively. For each prime p, we denote by Qp the

field obtained by completing Q with respect to the non-archimedean valuation |·|p
corresponding to p, which is normalized so that it satisfies

|p|p:=p−1.

If q is a prime power, we denote by Fq the finite field with q elements.

In general, if K is any field, we denote by Ksep the separable closure of K, which

coincides with the algebraic closure Kalg of K if K is perfect. We write Kur for the

maximal unramified extension of K. We also write GK for the fundamental group

of K, also known as the absolute Galois group:

GK = Gal(Ksep/K).

We denote by Cp the ring obtained by completing the algebraic closure of Qp

with respect to the unique extension of the valuation |·|p. We fix an embedding of

Q into C, and isomorphisms C ∼= Cp for each prime p.

The notation A:=B means that A is defined to be B, and A=:B means that B

is defined to be A.

By P1(Cp) we mean the set of lines of C2
p. Fixing a coordinate function z, we

think of P1(Cp) as the union A1(Cp) ∪ {∞}. There is a norm

|·| : Cp → Q,
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which we normalize so that |p| = p−1. This gives an extended norm on P1(Cp),

where we declare |∞|:=∞.

For two integers r and s, their greatest common divisor is written (r, s).

Given a ring A, an A-algebra B and an A-module M , we write MB for the tensor

product M ⊗A B. Also, if G is a group acting A-linearly on M , we denote by MG

the submodule consisting of those elements fixed by the action of G.
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Part I

Background
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Chapter 1

Rigid geometry

In this chapter we recall some notions from rigid-analytic geometry that are needed

in the sequel. After introducing the basic notions in Section 1.1 we introduce in

Section 1.2 the only rigid spaces that will be considered in this work, which are the

p-adic upper-half plane and its quotients by certain arithmetic subgroups of GL2. In

Section 1.3 we present the theory of Coleman integration, following roughly [Col82].

1.1 Basics

1.1.1 Affinoids and rigid-analytic spaces

We only introduce the minimum amount of definitions to construct the objects

involved in this work. For more details the reader is invited to look at the standard

references [BGR84] or [FVDP04].

Definition 1.1. A closed disk in P1(Cp) is a set either of the form

B[a, r]:={z ∈ P1(Cp) | |z − a| ≤ r},

for r ∈ |Q×p | and a ∈ Cp, or of the form

B′[a, r]:={z ∈ P1(Cp) | |z − a| ≥ r}.
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For convenience, we set B1:=B[0, 1] to be the closed unit disk. If K/Qp is a field

extension, and a ∈ K and r ∈ |K×|, we say that the disk B[a, r] is K-rational . The

open disks B(a, r) and B′(a, r) are defined by changing the inequalities by strict

inequalities in the previous definitions.

A connected affinoid is the complement of a non-empty finite union of open

disks, and it is said to be K-rational if it is fixed by any automorphism fixing K.

An affinoid is a finite union of connected affinoids. The complement of the union

of two disjoint open disks is called a closed annulus , which is a particular type

of connected affinoid. A wide open annulus is a set of the form A(a, r, R):={z ∈

P1(Cp) | r < |z − a| < R}, with a ∈ A1(Cp) and r, R ∈ |Cp| ∪ ∞.

Remarks 1.2. 1. A connected affinoid can be written as the intersection of

finitely many closed disks.

2. Let B1, B2 be two open disks. If B1 ∪ B2 6= P1(Cp), then B1 ∩ B2 is either

empty or an open disk. If B1 ∪ B2 = P1(Cp), then B1 ∩ B2 is a wide open

annulus.

3. Let F1, F2 be two connected affinoids, with F1∩F2 6= ∅ and F1∪F2 6= P1(Cp).

Then both F1 ∩ F2 and F1 ∪ F2 are connected affinoids.

4. Any affinoid F can be written uniquely (up to reordering) as a finite union of

connected affinoids, which are called the connected components of F .

5. A subset of P1(Cp) is a connected affinoid if and only if it is conformal via a

linear fractional transformation to a set of the form

B1 \
⋃
a∈S

B(a, ra),

where S is a finite subset of B1 and ra ∈ |Cp|.

We want to do function theory on subsets of P1(Cp). The topology induced

on P1(Cp) by the norm |·| is not good enough: for example, P1(Cp) is totally

12



disconnected, and so its space of locally constant functions is infinite-dimensional.

To remedy this problem one endows P1(Cp) with a Grothendieck topology , called a

G-topology:

Definition 1.3. Let X be a set. A G-topology T on X is the datum of:

1. A family F of subsets of X, called the admissible sets , or T -opens, such that

∅ and X belong to F and such that it is closed under finite intersections.

2. For each U ∈ F , a set Cov(U) of set-theoretic coverings of U by elements of

F , called admissible coverings , or T -coverings, satisfying:

(a) {U} ∈ Cov(U),

(b) For V, U ∈ F satisfying V ⊂ U and U ∈ Cov(U), then the covering

U ∩ V :={U ′ ∩ V | U ′ ∈ U} belongs to Cov(V ), and

(c) For U ∈ F , let {Ui}i∈I ∈ Cov(U) be any covering. For each i ∈ I,

let Ui ∈ Cov(Ui). Then ∪i∈IUi:={U ′ | U ′ ∈ Ui for some i ∈ I} is an

element of Cov(U).

One defines pre-sheaves, sheaves and Čech complexes for a G-topology in a

natural way. For more details, see [FVDP04, Section 2.4].

Definition 1.4. We define the weak G-topology on P1(Cp) as follows:

1. The admissible opens are ∅,P1(Cp) and all the affinoids.

2. A covering {Ui} of an admissible U is admissible if all the Ui are admissible

and if U is already the union of finitely many of the Ui’s.

Sometimes it is best to change a given G-topology by accepting more sets as ad-

missible, without changing the sheaf theory on it. There is a notion of a G-topology

T ′ being slightly finer than another G-topology T , which makes this concept pre-

cise. One defines the strong G-topology to be the finest topology which is slightly

finer than the weak G-topology. In our situation this is easily described:
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Proposition 1.5. The strong G-topology on P1(Cp) is described as:

1. Every open subset U of P1(Cp) is admissible.

2. An open covering {Ui}i∈I of an open U ⊆ P1(Cp) is admissible if for every

affinoid F ⊆ U there is a finite subset J ⊆ I and affinoids Fj ⊆ Uj for all

j ∈ J , such that F ⊆ Uj∈JFj.

1.1.2 Some sheaves on P1

Definition 1.6. The sheaf O of analytic functions on P1(Cp) is defined as follows:

1. O(∅) = 0 and O(P1(Cp)) = Cp.

2. For U ⊂ P1(Cp) an affinoid, O(U) is the completion of Rat(U) with respect

to the sup-norm, where Rat(U) is the Cp-algebra of rational functions with

poles outside U .

Proposition 1.7 ([FVDP04, Theorem 2.5.1]). O is an acyclic sheaf on P1(Cp) for

the weak G-topology.

Definition 1.8. The sheaf M of meromorphic functions on P1(Cp) is defined by:

1. M(∅) = 0 and M(P1(Cp)) = Cp(z) (rational functions on P1(Cp)).

2. M(U) = Frac(O(U)) for any admissible U ⊂ P1(Cp).

One can verify thatM is also an acyclic sheaf. See [FVDP04, Proposition 2.4.6].

Definition 1.9. The sheaf L of locally-analytic functions on P1(Cp) is defined by:

1. L(∅) = 0.

2. For each any admissible U ⊂ P1(Cp), the space L(U) is the space of functions

f : U → Cp such that, for each point x ∈ U , there is a power series Fx(z)

converging in a neighborhood Vx ⊂ U of x (for the topology induced from

that of Cp), and such that f |U = Fx.
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1.1.3 Rigid analytic spaces

We want to define the notion of a rigid space. Let G be a non-empty collection of

affinoids of P1(Cp), satisfying:

1. If the union of X1, X2 ∈ G is not P1(Cp), then X1 ∪X2 ∈ G,

2. If X1 ⊆ X2 are two affinoids and X2 ∈ G, then X1 ∈ G.

To such a collection one associates data Ω = Ω(G), called the rigid space associated

to G, as follows:

1. A topological space Ω: as a set, it is the direct limit (increasing union) of all

the X ∈ G. A subset U ⊆ Ω is declared open if U ∩X is open in X, for all

X ∈ G.

2. A G-topology on Ω: the admissible sets are F :=G ∪ {∅,Ω}, and a covering

{Ui}i∈I of U ∈ F is admissible if all Ui ∈ F and every affinoid F ⊆ U is

contained in a finite union Uj∈JUj,

3. A structure sheaf O, defined by: for X ∈ G, define O(X) as the algebra of

regular functions on X. Also, O(∅) = 0, and O(G):= lim←−X∈G O(X).

In the next section we define a certain analytic subspace of P1(Cp), the p-adic

upper-half plane Hp. It is defined by giving it as a subset of P1(Cp), and giving a

collection of affinoids G as above, so that Hp = Ω(G).

1.2 The p-adic upper-half plane and its quotients

In this section we define the p-adic upper-half plane over Qp. The construction for

general p-adic fields is given in [DT08, Chapter 3]. In order to describe its rigid-

analytic structure, it is convenient to introduce a combinatorial device called the

Bruhat-Tits tree. We follow the exposition of [Dar04].

15



1.2.1 The Bruhat-Tits tree

In this subsection we define the Bruhat-Tits tree T of PGL2(Qp). It is a graph

which has as set of vertices V(T ) the similarity classes of Zp-lattices in Q2
p. Two

vertices are connected by an edge whenever they have representative lattices Λ1 and

Λ2 satisfying

pΛ2 ( Λ1 ( Λ2.

The set of edges of T will be denoted E(T ). Note that the above symmetrical

relation makes T an unoriented graph. In fact, T is a (p+ 1)-regular tree; that is,

each vertex has exactly (p+1) neighbors. There is a natural action of PGL2(Qp) on

T by acting on the lattices, and this action respects the edges, yielding an action

of PGL2(Qp) on T by (continuous) graph automorphisms.

Fix an ordering of the edges of T , and denote by ~E(T ) the set of ordered edges.

If the edge e connects the vertices v1 and v2, we write v1 = o(e) and v2 = t(e). We

also write ē for the opposite edge, which has o(ē) = v2 and t(ē) = v1.

The Bruhat-Tits tree T has a distinguished vertex, written v0, which corre-

sponds to the homothety class of the standard lattice Z2
p inside Q2

p. The edges e

with o(e) = v0 correspond to the (p+ 1) sublattices of index p in Z2
p, which in turn

are in bijection with the points of P1(Fp). These edges are called e0, e1, . . . ep−1, e∞ ∈
~E(T ). We will abuse language and think of T as a contractible topological space.

Given an edge e ∈ E(T ), we write [e] ⊂ T for the closed edge (which contains the

two vertices that e connects), and ]e[ for the open edge.

1.2.2 The p-adic upper-half plane as a rigid-analytic space

The p-adic upper-half plane Hp can be defined as a formal scheme over Zp, but we

are only interested in the rigid-analytic space associated to its generic fiber: the set

of the Cp-valued points ofHp isHp(Cp):=P1(Cp)\P1(Qp), and it has the structure of

a rigid-analytic space, which we describe below. Note that GL2(Qp) acts on Hp(Cp)
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by fractional linear transformations: for τ ∈ Hp(Cp) and γ = ( a bc d ) ∈ GL2(Qp),

γ · τ :=
aτ + b

cτ + b
.

We describe a covering by basic affinoids and annuli, using the Bruhat-Tits tree

defined above. Let

red: P1(Cp)→ P1(Fp)

denote the natural map given by reduction modulo mOCp
, the maximal ideal of the

ring of integers of Cp.

Definition 1.10. Let x̃ be a point in P1(Fp). The residue class of x̃ is the subset

of P1(Cp):

R = Rx̃:={x ∈ P1(Cp) | red(x) = x̃}.

Define the set A0 to be red−1(P1(Fp) \ P1(Fp)). Concretely:

A0 =

τ ∈ Hp(Cp)

∣∣∣∣∣|τ − t| ≥ 1, ∀ 0 ≤ t ≤ p− 1

|τ | ≤ 1

 .

This is the prototypical example of a standard affinoid . Define also a collection of

annuli

Wt:=

{
τ | 1

p
< |τ − t| < 1

}
, 0 ≤ t ≤ p− 1,

as well as

W∞:= {τ | 1 < |τ | < p} .

Note that A0 and the annuli Wt and W∞ are mutually disjoint. The goal is to

construct a “reduction map” r : Hp(Cp)→ T . We first define it on the set

X1:=A0 ∪ (∪0≤t≤p−1Wt) ∪W∞, (1.1)

by setting

r(τ):=

v0 if τ ∈ A0

et if τ ∈ Wt.
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The map r is extended by requiring it to be compatible with the action of GL2(Qp)

on both Hp and T : for all τ ∈ Hp(Cp) and for all γ ∈ GL2(Qp), we require

r(γτ) = γr(τ).

For each vertex v ∈ V(T ), let Av:=r−1({v}). For each edge e ∈ E(T ), write

A[e]:=r
−1([e]) and A]e[:=r

−1(]e[). Then the collection G:={A[e]}e∈E(T ) gives a cov-

ering of Hp(Cp) by standard affinoids, and their intersections are:

A[e] ∩ A[e′] =

∅ if [e] ∩ [e′] = ∅,

Av if [e] ∩ [e′] = {v}.

As an example, note that Av0 = A0 and that for 0 ≤ t ≤ p − 1, A[et] is the union

of two translates of A0 glued along Wt. This covering gives the rigid-analytic space

structure to Hp:=Ω(G).

In general, if X is any topological space and U = {Ui}i∈I is a covering of X,

one can construct an abstract simplicial complex N from U , called the nerve of the

covering U , as follows:

1. The empty set belongs to N , and

2. A finite set J ⊆ I belongs to N if and only if⋃
j∈J

Uj 6= ∅.

Note that the covering that we have constructed has the tree T as its nerve:

there are no triple intersections and no loops.

1.2.3 The boundary of Hp

The boundary of Hp is the set P1(Qp), which has been removed from P1(Cp) in

order to obtain Hp(Cp). If {xn}n≥1 is a sequence of points in Hp(Cp) approaching

x ∈ P1(Qp), then the sequence {r(xn)}n≥1 gives a path on T which contains a

subsequence with no backtracking. This motivates the following definition:
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Definition 1.11. An end of T is an equivalence class of sequences {ei}i≥1 of edges

ei ∈ ~E(T ), such that t(ei) = o(ei+1), and such that t(ei+1) 6= o(ei). Two such

sequences are identified if a shift of one is the same as the other, for large enough

i. Write E∞(T ) for the space of ends.

Choose once and for all an edge e0 ∈ ~E(T ) such that its stabilizer inside

PGL2(Qp) is the image of the image of the unit group in the Eichler order

R:= {( a bc d ) ∈M2(Zp) | c ≡ 0 (mod p)} .

The following lemma is immediate.

Lemma 1.12. The map β 7→ β · e0 identifies PGL2(Qp)/ stab(e0) with ~E(T ). The

inverse map will be written e 7→ βe.

Lemma 1.13. The map

N : {ei}i 7→ lim
i
βei(∞)

identifies E∞(T ) with P1(Qp).

Proof. Let (x : y) be the coordinates of a point P ∈ ¶1(Qp). Consider the lattice

L0 = Zp ⊕Zp, and consider l:=(−y, x) as an point in the lattice L0. The sequence:

{[L0], [lZ + pL0], [lZ + p2L0], . . .}

represents an end which maps to (x, y) under the map N , showing surjectivity of

N .

Conversely, given a sequence of lattices Λi representing an end

{[Λ0], [Λ1], . . .},

and supposing that Λ0 = L0, note that the intersection of all the lattices Λi is a

one-dimensional subspace of Q2
p, thus giving a point l ∈ P1(Qp). Using that the

lattices Λi represent an end, we can show that they are of the form

Λi = Zli ⊕ piL0,

with the sequence {li} converging to l, and therefore N is injective.
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In this way, the p-adic topology on P1(Qp) induces a topology on E∞(T ). For

an edge e ∈ ~E(T ), write U(e) for the compact open subset of E∞(T ) consisting of

those ends having a representative which contains e. This is a basis for the topology,

and we can compactify T by adding to it its ends. Calling this completed tree T ∗,

we can extend r to a map r : P1(Cp)→ T ∗.

1.2.4 Quotients of Hp by arithmetic subgroups

In [GvdP83] one can find the general theory of Schottky groups, which are those

groups that lead to manageable quotients of Hp. We will restrict our attention to

a very special class of those groups, which are related to the p-adic uniformization

of Shimura curves.

Let B be a definite rational quaternion algebra of discriminant N− coprime to

p. Fix an Eichler Z[1
p
]-order R of level N+ in B, and fix an isomorphism B⊗QQp

∼=

M2(Qp). Let Γ be the group of elements of reduced norm 1 in R.

Lemma 1.14. The group Γ is a discrete cocompact subgroup of SL2(Qp).

Proof. See [Shi94, Proposition 9.3].

Suppose for simplicity that Γ contains no elliptic points, and consider the topo-

logical quotient π : Hp → XΓ:=Γ\Hp. Since Γ is discrete, the space XΓ can be

given a structure of rigid-analytic space in a way so that π is a morphism of rigid-

analytic spaces. An admissible covering is indexed by the quotient graph Γ\T , in

the same way that was done for Hp. In this way one obtains a complete curve called

a Mumford-Shottky curve. In Chapter 2 we will see how these curves are related to

Shimura curves.

In Chapter 3 we describe certain pairings on the cohomology of a Shimura curve.

In order to get explicit formulas, we will need the notion of a good fundamental

domain. By a half-tree in T we mean a connected component of T \]e[, for some

edge e ∈ E(T ).
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Definition 1.15 ([dS89, Section 2.5]). Let F be a bounded connected subset of T .

We say that F is a good fundamental domain for Γ\T if:

1. F is the complement of 2g pairwise disjoint half-trees in T , denoted

B1, . . . , Bg, C1, . . . , Cg.

Denote by b1, . . . , bg, c1, . . . , cg the 2g free edges of F , oriented such that o(bi) ∈

Bi and t(ci) ∈ Ci.

2. The group Γ is generated by γ1, . . . , γg, where γi maps Bi isomorphically onto

T \ (Ci ∪ {ci}). In particular, γi(bi) = ci.

If F is a good fundamental domain for Γ\T , write F := red−1(F ), which gives a

fundamental domain for Γ\Hp.

1.3 p-adic integration

The theory of p-adic integration was constructed initially by Coleman in [Col89],

[Col85] and [Col82], and further developed by Coleman-Iovita in [CI03], and by de

Shalit [dS89], among others. We will borrow very little from this vast theory, in

order to cover only those concepts that we need in our project.

Concretely, we will construct an integration theory on rigid spaces which admit

an admissible covering by a special type of open subsets of P1(Cp). The p-adic

upper-half plane Hp admits such a covering, and hence we will obtain a theory of

integration on Hp and on Mumford-Schottky curves.

We will also be interested in the integration of general vector bundles over the

curves above. It turns out, however, that the bundles that we will encounter always

have a basis of horizontal sections, and therefore one can integrate component-wise,

thus reducing to integration with trivial coefficients.
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1.3.1 Notation

Definition 1.16. A wide open is a set of the form

U :={z ∈ P1(Cp) | |f(z)| < ef , f ∈ S},

where S a finite set of rational functions over Cp containing at least one non-constant

function, and ef ∈ {1,∞}.

Example 1.17. The following are all examples of wide open sets:

1. The open balls B(a, r), with a ∈ A1(Cp) and r ∈ |Cp| ∪ {∞}.

2. The open annuli A]e[, for edges e ∈ E(T ).

3. The set X1 defined in subsection 1.2.2.

If X ⊆ P1(Cp) is an affinoid and U ⊃ X is a wide open such that the complement

U \ X is a disjoint union of annuli, we say that U is a wide open neighborhood of

X.

Definition 1.18. A basic wide open is a set C of the form:

C = A1(Cp) \
⋃

a∈S∪{∞}

B[a, ra],

where S is a finite subset of B1 no two elements of which are contained in the same

residue class, and for each a ∈ S ∪ {∞} the radius ra ∈ |Cp| satisfies |ra| < 1.

A basic wide open C is the disjoint union of a connected affinoid X, and of

|S|+ 1 wide open annuli Va:

X = B1 \
⋃
a∈S

B(a, 1),

Va = A(a, ra, 1), a ∈ S ∪ {∞}.

Remark 1.19. When #S ≥ 2, X is characterized as the smallest connected affinoid

contained in C whose complement is a finite disjoint union of annuli.

Example 1.20. The set X1 appearing in Equation (1.1) is an example of a basic

wide open, with X(X1) = A0.
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1.3.2 The logarithm and integration on wide open annuli

A locally analytic homomorphism l : C×p → C+
p such that d

dz
l(1) = 1 is called a

branch of the logarithm. It can be easily shown that l(z) is analytic on B(x, |x|),

for all x ∈ C×p . Let C be a basic wide open. For z ∈ C and S as in Definition 1.16,

set:

r(z):= min{|z − d| | d ∈ S},

and define the thickened diagonal of C to be:

D = D(C):= {(x, y) ∈ C × C | |x− y| < r(x)} .

For 0 < r < 1, define the wide open neighborhoods of X(C):

Ur:=B(0, r−1) \
⋃
a∈S

B[a, r],

so that for r sufficiently close to 1 we have Ur ⊆ C.

For V an open of P1(Cp), we set

Ω(V ):=O(V )dz,

ΩL(V ):=L(V )dz,

where we recall that L is the sheaf of locally-analytic functions as in Definition 1.9.

There are canonical derivations making the following diagram commutative:

L(V ) d // ΩL(V )

O(V ) d //
?�

OO

Ω(V )
?�

OO

We set H i(V ) to be the cohomology of the complex

0→ O(V )
d−→ Ω1(V )→ 0.

Let V be an annulus about a ∈ A1(Cp), and let ω ∈ Ω(V ) be an analytic differential

on V .
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Definition 1.21. The annular residue of ω at V , written resV ω, is the coefficient

of dz
z−a in the Laurent expansion of ω on V .

The annular residue is well defined because of the following:

Lemma 1.22. The annular residue is characterized by being the unique map

resV : Ω(V )→ Cp

satisfying:

1. resV (df) = 0 for all f ∈ O(V ), and

2. resV
(
dz
z−a

)
= 1.

It is easy to integrate analytic differentials on wide open annuli, as long as they

have no residue:

Lemma 1.23. ω ∈ dO(V ) if and only if resV (ω) = 0.

Sketch of proof. For f ∈ O(V ), write:

f(z) =
∑
n≥n0

an(z − a)n.

Then df has an expansion: ∑
n≥n0

nan(z − a)n−1dz.

The coefficient of −1 corresponds to n = 0 and is therefore 0.

Conversely, if ω has no residue, then one can integrate term by term to get

an element f such that df = ω. One needs only to check that the denominators

introduced by this process do not change the convergence properties.

Lemma 1.24. Let V be an annulus about a, and let g ∈ O(V )×. Define n ∈ Cp

by:

n:= resV
dg

g
.

Then n ∈ Z and g can be written as g = c(z− a)n(1 + h), where c ∈ Cp, h ∈ O(V ),

and |h(z)| < 1 for all z ∈ V .
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There is also a local residue, for each point a ∈ P1(Cp): if ω is a meromorphic

differential and t is a local parameter around a (e.g. t = z − a), then around a we

can express ω =
∑

n∈Z ant
ndt, and we set

resa ω:=a−1.

The two residue maps are related:

Proposition 1.25 ([FVDP04, Lemma 2.3.2]). Let V = A(a, r, R) be an annulus,

let ω = fdz be a meromorphic differential with f a rational function on P1(Cp),

and assume that ω has no poles on the sets {z | |z − a| = r} or {z | |z − a| = R}.

Then:

resV ω =
∑

x∈B(a,r)

resx ω.

We want to state a p-adic analogue to the residue theorem in complex analysis.

First, let D be an open disk.

Definition 1.26. Let q ∈ P1(Cp) be a point which is not in D. The boundary of

D with respect to q, which we write as ∂qD, is defined as follows: choose a point

b ∈ D, and consider a fractional linear transformation z 7→ t(z) satisfying t(q) =∞,

t(b) = 0, and

D = {x ∈ P1(Cp) | |t(x)| < 1}.

Then define:

∂qD:={x ∈ P1(Cp) | |t(x)| = 1}.

Remark 1.27. The boundary of D with respect to q does not depend on the choice

of neither t nor b.

Let F be a connected affinoid in P1(Cp) which is the complement of a finite

number of disjoint open disks D1, . . . , Ds. Fix q ∈ F , and let ∂Di:=∂qDi, which we

also suppose pairwise disjoint. Define the interior of F with respect to q to be:

F ◦:=F \
⋃
i

∂Di.

The following is the p-adic residue formula:
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Proposition 1.28. 1. Let ω be a meromorphic differential form on F such that

its restriction to each ∂Di has no poles. Then:∑
a∈F ◦

resa(ω) +
∑
i

res∂Di(ω) = 0.

2. Let f be a meromorphic function on F such that its restriction to each ∂Di

has neither poles nor zeros. Then:∑
a∈F ◦

orda(f) +
∑
i

ord∂Di(f) = 0

Proof. See [FVDP04, Theorem 2.3.3].

For every open subset V ⊆ P1(Cp) we define

OLog(V ):=O(V )
[
Log(f) | f ∈ O(V )×

]
.

Define also

Ω1
Log(V ):=OLog(V )⊗O(V ) Ω1(V ).

Lemma 1.24 implies:

Corollary 1.29. If V is an annulus about a, then

OLog(V ) = O(V )[Log(z − a)].

Wide open annuli also satisfy a uniqueness principle:

Proposition 1.30. Let V be a wide open annulus, and let f ∈ OLog(V ). If f

vanishes on a non-empty open subset of V , then f vanishes identically on V .

This proposition and the previous results make it possible to compute the co-

homology of a wide open annulus. By H i
Log(V ) we denote the ith cohomology of

the complex:

0→ OLog(V )
d−→ Ω1

Log(V )→ 0.

Lemma 1.31. Let V be a wide open annulus. Then:
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1. H0
Log(V ) = Cp, and

2. H1
Log(V ) = 0.

Remark 1.32. We underline what the previous lemma says. Firstly, the second

statement says that, given ω ∈ Ω1
Log(V ), there exists f ∈ OLog(V ) such that df = ω.

The first statement says that if f and f ′ belong to OLog(V ) and satisfy df = df ′,

then f ′ = f + c, for some constant c ∈ Cp. Therefore there is an integration theory

on V , as long as we allow logarithms.

1.3.3 The Frobenius and the Dwork principle

Let X be an affinoid, and let q = pn. Consider O(X), its ring of rigid-analytic

functions. It has a maximal ideal

O(X)◦:={f ∈ O(X) | |f | < 1},

and therefore we can consider Õ(X) to be the corresponding reduction, which is an

Fp-algebra. We say that X has good reduction if Õ(X) is regular.

Definition 1.33. A morphism φ : X → X is called a Fq-Frobenius morphism if the

reduction of its pullback φ̃∗ : Õ(X)→ Õ(X) is of the form

f 7→ F−1(f q),

where F is an extension of the absolute Frobenius automorphism of Fq/Fq to Õ(X).

Let Y ⊆ P1(Cp) be a rigid space, and let X ⊆ Y be an affinoid of Y . A wide

open U ⊆ Y which contains X is called a wide open neighborhood of X.

Definition 1.34. A pair (U, φ) is a Fq-Frobenius neighborhood of X in Y if U ⊆ Y

is a wide open neighborhood of X, and φ : U → Y is a morphism whose restriction

to X is an Fq-Frobenius morphism of X.

Fact. If X has good reduction, then X has a Frobenius neighborhood.
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If X is an affinoid inside P1(Cp) and (U, φ) is a Fq-Frobenius neighborhood of

X, we define recursively

U1:=U, Ui:={x ∈ Ui−1 | φ(x) ∈ Ui−1}.

Then (Un, φ
n) is an Fqn-Frobenius neighborhood of X.

The logarithm introduced above has a rigidity property with respect to Frobe-

nius that will be later exploited to integrate on more general spaces. This is ex-

plained in the following key lemma due to Coleman.

Lemma 1.35 ([Col82, Lemma 2.5]). Let S be a finite subset of A1(Cp), and let

X be a subaffinoid of A1(Cp) \ S with good reduction. Let (U, φ) be a Fq-Frobenius

neighborhood of X contained in A1(Cp) \ S. Then there exists an Fqn-Frobenius

neighborhood (V, φn), with V ⊆ Un for some n ∈ Z≥0, such that:

1. For each connected component B of A1(Cp) \X, φ(B ∩ V ) ⊆ B, and

2. For all a ∈ S,

(φ∗)nLog(z − a)− qnLog(z − a) ∈ O(V ).

Let X be an affinoid with good reduction, and let φ be a Frobenius morphism

of X. The following result is due to Dwork.

Proposition 1.36 ([Kat]). For each residue class R of X, there exists some n ∈

Z≥1 and some ε ∈ R such that:

lim
m→∞

φnm(x) = ε,

for all x ∈ R. The point ε is called a Teichmüller point.

Proof. There exists n ∈ Z≥1 such that φn(R) ⊆ R. Let x ∈ R be any point. The

sequence {φnm(x)}m≥1 is seen to be convergent, and the limit point ε, which has

to exist, will satisfy φn(ε) = ε. One then sees that as m increases, φnm(x) becomes

arbitrarily close to φnm(y) for x, y ∈ R, and therefore such an ε is unique.
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1.3.4 Integration on basic wide opens

In this subsection we define logarithmic F -crystals. Fix a branch of the logarithm

Log(z). Let U ⊆ A1(Cp) be an arbitrary open, and let M ⊆ L(U) be an O(U)-

module. If f : V → U is any morphism of rigid spaces, we write M(V ) for the

pullback f ∗M , and similarly write ΩM(V ) for f ∗ΩM . That is:

M(V ) = M ⊗O(U) O(V ) ⊆ L(V ),

and similarly for ΩM(V ). Also, if dM ⊆ ΩM(U), then we set:

H1(M(V )):=ΩM(V )/dM(V ).

Let C be a basic wide open.

Definition 1.37 ([Col82, Section IV]). A logarithmic F -crystal on C is an O(C)-

submodule M ⊆ L(C) containing O(C), and such that:

1. M(X) is analytic in each residue class of X and for all a ∈ S, M(Va) ⊆

ALog(Va).

2. dM ⊆ ΩM(C).

3. p∗1M = p∗2M , where pi : D(C)→ C are the two canonical projections.

4. M(Ur) satisfies the uniqueness principle for any 0 ≤ r < 1 such that Ur ⊆ C.

5. The natural map H1(M)
∼−→ H1(M(Ur)) is an isomorphism for all 0 ≤ r < 1

such that Ur ⊆ C.

6. There is a Frobenius neighborhood (U, φ) of X in C such that

(a) φ∗(M) ⊆M(U), and

(b) There exists b ∈ Cp which is not a root of unity, and such that for all

ω ∈ ΩM(C),

φ∗ω − bω ∈ dM(U).
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Let M be a logarithmic F -crystal on a basic wide open space C.

Lemma 1.38. There exists a Frobenius neighborhood (W,φ) of X in C, and n ≥ 0,

such that:

1. The pair (W,φ) satisfies the condition (6) for M , with some power of b in

place of b,

2. φ(W ∩ Va) ⊆ Va for each a ∈ S, and

3. Log
(
φ(z)−a
(z−a)q

)
∈ O(W ) for each a ∈ S.

Proof. See [Col82, Lemma 4.2].

Lemma 1.39. Let ω ∈ ΩM(C). There exists a locally-analytic function Fω ∈ L(C),

unique up to an additive constant, which satisfies:

1. dFω = ω,

2. There is a wide open neighborhood V of C such that φ∗Fω− bFω ∈M(V ), for

some b ∈ Cp which is not a root of unity, and

3. The restriction of Fω to the underlying affinoid X is analytic in each residue

class of X, and the restriction to Va is in OLog(Va) for all a ∈ S.

Given M , define an O(C)-module M ′ as follows:

M ′:=M +
∑

ω∈ΩM (C)

FωO(C).

Theorem 1.40. The O(C)-module M ′ is the unique minimal logarithmic F-crystal

on C which contains M and such that dM ′ ⊇ ΩM(C).

Remark 1.41. Logarithmic F-crystals on C satisfy the uniqueness principle on C.

It is easy to see that, for C a basic wide open, the ring of rigid-analytic functions

O(C) is a logarithmic F-crystal. This allows to define A1(C):=O(C)′, and we

obtain:
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Theorem 1.42 (Coleman). Let ω ∈ Ω1(C). There exists a unique (up to constants)

function Fω ∈ A1(C), such that dFω = ω.

Proof. See [Col82, Theorem 5.1].

Let Y be a rigid-analytic space which can be covered by a family C of basic wide

opens, which intersect at basic wide opens, and such that the nerve of the covering

is simply connected. Let A1 be the sheaf of OY -modules defined by A1(U):=A1(U)

for each U ∈ C.

Corollary 1.43. There is a short exact sequence:

0→ Cp → H0(Y,A1)
d−→ H0(Y,A1)⊗OY (Y ) Ω1(Y )→ 0

Proof. Let ω ∈ H0(Y,A1) ⊗OY (Y ) Ω1(Y ). Let N = (V(N ),E(N )) be the nerve of

the covering. To each v ∈ V(N ), there is a corresponding open U ∈ C, and a local

primitive F ′v of ω|V , which is defined up to a constant. Therefore the map:

e 7→ F ′o(e) − F ′t(e) ∈ Cp

is a 1-cocycle. Since N is simply connected, this is a coboundary. So there exists a

0-cocycle v 7→ cv ∈ Cp such that:

F ′o(e) − F ′t(e) = ct(e) − co(e).

Define F by Fv:=F
′
v + cv. The previous equation proves that this glues, and gives

a global primitive to ω.

Lastly, the fact that ker d = Cp is equivalent to the fact that F is uniquely

defined up to constants.
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Chapter 2

Shimura curves

In this chapter we introduce the different ways in which Shimura curves appear

in this work. We start by introducing basic definitions of quaternion algebras in

Section 2.1. In Section 2.2 we define Shimura curves as the solution to certain

moduli problems. We continue in Section 2.3 to describe certain special points

which play a very important role in our project. In Section 2.4 we describe a

uniformization result of Čerednik and Drinfel’d which is a p-adic analogue to the

complex uniformization of modular curves. In Section 2.5 we explain what are the

spaces of modular forms on a Shimura curve, and we end in Section 2.6 by relating

these to classical modular forms.

2.1 Quaternion algebras

This section based in [Bes95] and it is just meant to introduce the required notation.

2.1.1 First definitions

Definition 2.1. An associative algebra D over a field F is:

• simple algebra if it does not have any nontrivial double-sided ideals.
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• semisimple algebra if it the direct sum of simple algebras.

• a division algebra if every nonzero element has an inverse.

• central algebra if the center of D is F .

Definition 2.2. A quaternion algebra over a field F is a 4-dimensional central

simple F -algebra B. If F equals Q, we call B a rational quaternion algebra.

Example 2.3. The F -algebra of two-by-two matrices with entries in F , which we

write M2(F ), is a quaternion algebra. This is the only example of a quaternion

algebra over F which is not a division algebra.

A quaternion algebra B comes equipped with an anti-involution x 7→ x, called

the canonical anti-involution of B. For all a, b ∈ F and all x, y ∈ B, it satisfies:

ax+ by = ax+ by, x = x, xy = y x.

The existence of the canonical anti-involution allows for the following:

Definition 2.4. The reduced trace of B is the additive homomorphism trd: B → F

which maps x to x+ x. The reduced norm of B is the multiplicative homomorphism

nrd: B → F which maps x to xx. If B ∼= M2(F ), then nrd and trd are the usual

determinant and trace of matrices, respectively.

Remark 2.5. Note that neither the reduced norm nor the reduced trace are algebra

homomorphisms. They are just group homomorphisms, where the group structure

is either the underlying additive structure (for the trace) or the multiplicative struc-

ture (for the norm).

Remark 2.6. In general if B is any finite-dimensional F algebra, given b ∈ B

one can consider the F -linear map mb given by y 7→ yb. This gives an element

of EndF−vs(B). Since B is a finite-dimensional F -vector space, the choice of a

basis of B yields an identification EndF−vs(B) ∼= End(F 4) ∼= M4(F ). Hence one

may define t(b):= tr(mb) (here by tr we mean the trace of an endomorphism), and
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n(b):= det(mb). They satisfy t(b) = 2 trd(b) and n(b) = nrd(b)2, respectively. Hence

the distinction of calling trd and nrd the reduced trace and norm.

If B is a quaternion algebra over a field F and char(F ) 6= 2, then one can find

an F -basis {1, i, j, k} for B, satisfying the relations:

ij = −ji = k, i2 = r, j2 = s,

for some elements r, s ∈ F . Such a quaternion algebra is written
(
r,s
F

)
. A similar

description can be given in characteristic 2, but we will not need it in the sequel.

Example 2.7 (Hamilton quaternions). The rational quaternion algebra
(
−1,−1

Q

)
is

known as the algebra of (rational) Hamilton quaternions . We will denote it by H.

A field extension F ′/F is said to split a quaternion algebra B if

B ⊗F F ′ ∼= M2(F ′).

An algebraically closed extension always splits B, so if F is an algebraic closure of F

one can compute the trace and norm of B by restricting the trace and determinant

via the inclusion B ↪→ B ⊗ F ∼= M2(F ).

Lemma 2.8. A quadratic extension F ′/F splits B if and only if F ′ embeds in B

as an F -algebra.

The main involution of B restricts to the nontrivial Galois automorphism on

any quadratic extension embedded in B. In particular, if B has a basis {1, i, j, k}

as before, then

(x+ yi+ zj + wk) = x− yi− zj − wk.

Theorem 2.9 (Skolem-Noether). Any two embeddings of an F -algebra F ′ into the

quaternion algebra B are conjugate to one another. Also, any F -automorphism of

B is inner. That is, it is of the form x 7→ y−1xy for some invertible element y ∈ B.
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2.1.2 Local theory

Given a B a rational quaternion algebra, and p a prime of Q (which can be the

infinite prime, also), let Bp:=B ⊗Q Qp (where Q∞ = R). Then Bp is a quaternion

algebra over Qp.

Lemma 2.10. There are exactly two isomorphism classes of quaternion algebras

over Qp, given by M2(Qp) and by Hp, where for p 6=∞ a model for Hp is given as

{(
a b
pbσ aσ

)
, a, b ∈ Lp

}
⊆M2(Lp).

Here Lp = Qp2 is the unique unramified quadratic extension of Qp, and σ is the

nontrivial automorphism of Lp over Qp. Finally, H∞ = H ⊗Q R is the classical

algebra of Hamilton quaternions.

Definition 2.11. The quaternion algebra B is called ramified at p if Bp
∼= Hp, and

it is said to be split at p otherwise (that is, if Bp
∼= M2(Qp)). If B is ramified at ∞

one says that B is definite. If B is split at ∞ one says that B is indefinite.

Theorem 2.12 (Eichler). A rational quaternion algebra is determined up to iso-

morphism by its set of ramifying primes, including the infinite prime, which is

always a finite set of even cardinality. Moreover, given any set of even cardinality

of places of Q, there exists a (necessarily unique) quaternion algebra B which is

ramified precisely at those places.

Definition 2.13. The discriminant of a rational quaternion algebra is the product

of the finite ramifying primes.

Remark 2.14. The discriminant of a rational quaternion algebra B is always a

square-free positive integer, which is divisible by an odd (resp. even) number of

primes if B is definite (resp. indefinite)

The following theorem gives a criterion for a quadratic number field to split a

rational quaternion algebra.
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Theorem 2.15 (Hasse-Brauer-Noether-Albert). Let B be a rational quaternion

algebra and let F be a quadratic number field. There is an embedding of F into B if

and only each prime which divides the discriminant of B is either inert or ramified

in F .

2.1.3 Ideals and orders

Definition 2.16. An ideal in a rational quaternion algebra B is a free Z-lattice of

rank 4 in B. An order is an ideal which is a subring of B. A maximal order is an

order which is not strictly contained in any other order.

Definition 2.17. The right order (resp left order) of an ideal I of B is the order

R(I) = {x ∈ B | Ix ⊆ I} (resp. L(I) = {x ∈ B | xI ⊆ I}).

Definition 2.18. Let I be an ideal in a rational quaternion algebra B, and choose

a basis {ei} for it:

I = Ze1 ⊕ Ze2 ⊕ Ze3 ⊕ Ze4.

The discriminant of I is the rational number:

disc(I):=
√

det(trd(eie′j)).

Lemma 2.19 ([Vig80, Cor III.5.3]). An order R in a rational quaternion algebra

B is maximal if and only if

disc(R) = disc(B).

Definition 2.20. An Eichler order in a rational quaternion algebra is an order R

which is the intersection of two maximal orders.

Proposition 2.21. If R is Eichler order in a rational quaternion algebra B of

discriminant D, then the local order R ⊗Z Zp is conjugate to one of the following

orders: if 2 6= p | D,

Rp =
{(

a b
pbσ aσ

)
| a, b ∈ OLp

}
⊆M2(OLp),
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where OLp is the ring of integers of Lp, and v a non-residue modulo p. If p - D,

Rp =
{(

a b
cpn d

)
| a, b, c, d ∈ Zp

}
⊆M2(Qp),

for some non-negative integer n. Finally,

R2 = {( a b
2bσ aσ ) | a, b ∈ OL2} ⊆M2(OL2),

where L2 may be taken to be Q(
√

5) and OL2 = Z2 ⊕ Z2(1 +
√

5)/2.

Definition 2.22. The level of an Eichler order if the product of all prime powers

pn appearing in the previous proposition. It is always an integer prime to the

discriminant of B.

Proposition 2.23. The discriminant of an Eichler order of level N in a rational

quaternion algebra of discriminant D is ND.

Proposition 2.24. Let B be an indefinite rational quaternion algebra (i.e. unram-

ified at ∞). Then every left ideal of an Eichler order in B is principal.

In the rest of this work the quaternion algebras that will appear will be denoted

by either B if they are definite, or by B if they are indefinite. This convention

seems to be in accordance with a large number of those authors using the p-adic

uniformization of Shimura curves.

2.2 Shimura curves as moduli spaces

A good exposition of the theory of Shimura curves and their p-adic uniformization

can be found in [BC91]. Here we just recall the basic facts.

Fix an integer N which can be factored as N = pN−N+, where p a prime which

will remain fixed, N− is a positive squarefree integer with an odd number of prime

divisors none of which equals p, and N+ is a positive integer relatively prime to

pN−. Let B be the indefinite rational quaternion algebra of discriminant pN−. Fix

a maximal order Rmax in B, and an Eichler order R of level N+ contained in Rmax.
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Definition 2.25. Let S be a Q-scheme. An abelian surface with quaternionic

multiplication (by Rmax) and level N+-structure over S is a triple (A, i,G) where

1. A is a (principally polarized) abelian scheme over S of relative dimension 2;

2. i : Rmax ↪→ EndS(A) is an inclusion defining an action of Rmax on A;

3. G is a subgroup scheme of A which is locally isomorphic to Z/N+Z and is

stable and locally cyclic under the action of R.

When no confusion may arise, such a triple will be called an abelian surface with

QM .

Definition 2.26. The Shimura curve X:=XN+,pN−/Q is the coarse moduli scheme

representing the moduli problem over Q:

S 7→ { isomorphism classes of abelian surfaces with QM over S }.

Proposition 2.27 (Drinfel’d). The Shimura curve XN+,pN− is a smooth, projective

and geometrically connected curve over Q.

Proof. See [BC91, Chapter III].

It is simpler from a technical point of view to work with a Shimura curve which

is a fine moduli space. For that, we need to rigidify the moduli problem, as follows.

Definition 2.28. Let M ≥ 3 be an integer relatively prime to N . Let S be a Q-

scheme. An abelian surface with QM and full level M-structure (QM by Rmax and

level N+-structure is understood) is a quadruple (A, i,G, ν) where (A, i,G) is as

before, and ν : (Rmax/MRmax)S → A[M ] is a Rmax-equivariant isomorphism from

the constant group scheme (Rmax/MRmax)S to the group scheme of M -division

points of A.

Definition 2.29. The Shimura curve XM = XN+,pN−,M is defined to be the fine

moduli scheme classifying the abelian surfaces with QM and full level M -structure.
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Remark 2.30. The curve XM is still smooth and projective over Q. However, it

is not geometrically-connected. In fact, as we will see below, it is the disjoint union

of #(Z/MZ)× components.

Forgetting the level M -structure yields a Galois covering q : XM → X, with

Galois group

(Rmax/MRmax)×/{±1} ∼= GL2(Z/MZ)/{±1}.

2.3 Heegner points on a Shimura curve

Let F be a field of characteristic zero.

Definition 2.31. An abelian surface A defined over F (with i : Rmax ↪→ EndF (A)

and level-N structure) is said to have complex multiplication (CM) if EndRmax(A),

the ring of endomorphism of A which commute with the action of Rmax, strictly

contains Z. In that case, O:= EndRmax(A) is an order in an imaginary quadratic

number field K, and one says that A has CM by O.

Definition 2.32. An point on the Shimura curve XM is called a Heegner point

if it can be represented by a quadruple (A, i,G, ν) such that A has complex-

multiplication byO and G isO-stable. If we drop the condition of G beingO-stable,

then we call it a CM point .

Remark 2.33. Suppose that A has QM by Rmax and CM by OK . Then OK splits

Rmax, and therefore:

EndF (A) ∼= OK ⊗ Rmax ∼= M2(OK).

By EndF (A) we mean the endomorphisms of A as an algebraic variety over F .

Fixing an isomorphism End(A) ∼= M2(OK) yields an isomorphism A ∼= E × E,

where E is an elliptic curve defined over H, the Hilbert class field of F , with

EndH(E) ∼= OK . Explicitly, one can obtain each of the two copies of E by applying
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to A the endomorphism corresponding to the matrices1 0

0 0

 and

0 0

0 1

 .

In particular, E is an elliptic curve with complex multiplication.

2.4 The p-adic uniformization of Shimura curves

We will use a uniformization result due to Čerednik and Drinfel’d, which gives an

explicit realization of the Shimura curves X and XM as quotients of the p-adic

upper-half plane. Let B be the definite rational quaternion algebra of discriminant

N−, and let R be an Eichler Z[1
p
]-order of level N+ in B. Define the group

Γ:={x ∈ R× | nrd(x) = 1}.

Fix an isomorphism

ιp : Bp = B ⊗Q Qp
∼−→M2(Qp).

Proposition 2.34. The isomorphism ιp identifies the group Γ with a discrete co-

compact subgroup of SL2(Qp).

Proof. See [Shi94, Proposition 9.3].

The previous proposition makes it possible to consider the quotient XΓ:=Γ\Hp.

The celebrated result of Čerednik-Drinfel’d gives a deep relationship of the Shimura

curves X and XM defined above, with XΓ.

Theorem 2.35 (Čerednik-Drinfel’d). There is an isomorphism of rigid-analytic

varieties:

(XQur
p

)an ∼= XΓ:=Γ\Hp.

Moreover, for any integer M ≥ 3, let ΓM be the subgroup of units of reduced norm

congruent to 1 modulo M . There is an isomorphism of rigid-analytic varieties:

(XM)anQur
p

∼= Γ\
(
Hp × (R/MR)×

) ∼= ∐
(Z/MZ)×

ΓM\Hp,
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which exhibits XM as a disjoint union of Mumford curves, and hence it is semistable.

Proof. Although the result is original of Čerednik and Drinfel’d, a more detailed

exposition of the proof can be found in [BC91, Chap. III, 5.3.1].

2.5 Modular forms on a Shimura curve

Let n ≥ 0 be an even integer. In later chapters we will exclude n = 0 for technical

reasons, but in this and the following section we can afford to be more general.

We want to explain the different ways of identifying modular forms with sec-

tions of certain sheaves associated to the Shimura curve X:=XN+,pN− as defined in

Definition 2.26.

Definition 2.36. Let K be a field of characteristic 0. A modular form of weight

n + 2 on X defined over K is a global section of the sheaf Ω
⊗1+n/2
XK/K

on XK . We

denote by Mn+2(X,K) the space of such modular forms.

Let K be either Qur
p or any complete field contained in Cp which contains Qp2 .

Using the result of Čerednik-Drinfel’d stated in Theorem 2.35 we can give a more

concrete description of Mn+2(X,K).

Definition 2.37. A p-adic modular form of weight n + 2 for Γ is a rigid analytic

function f : Hp(Cp)→ Cp, defined over K, such that

f(γz) = (cz + d)n+2f(z) for all γ = ( a bc d ) ∈ Γ.

Denote the space of such p-adic modular forms by Mn+2(Γ) = Mn+2(Γ, K).

Proposition 2.38. There is a canonical isomorphism

Mn+2(Γ, K)
∼−→Mn+2(X,K),

which maps f to ωf :=f(z)dz⊗1+n/2.
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2.6 The Jacquet-Langlands correspondence

In order to justify our interest in modular forms over Shimura curves, we would

like to relate them to more familiar objects. Let T be the abstract Hecke algebra

generated by the Hecke operators T` for ` - N and U` for ` | N . The Hecke algebra

T acts naturally on the space Mn+2(X,K), on which also act the Atkin-Lehner

involutions.

Theorem 2.39 (Jacquet-Langlands). Let K be a field. There is a canonical (up to

scaling) isomorphism

Mn+2(X,K)
∼−→ Sn+2(Γ0(N), K)pN

−-new,

which is compatible with the action of T and the Atkin-Lehner involutions on each

of the spaces.

Therefore to a classical modular pN−-new eigenform f∞ on the modular curve

X0(N), there is associated an eigenform f on the Shimura curve X. In Chapter 4

we will see the construction of a p-adic L-function attached to f which interpolates

special values of the classical L-function associated to f∞.
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Chapter 3

Cohomology

In this chapter we present and develop the cohomological tools needed for the con-

structions and computations in this thesis. In Section 3.1 we describe harmonic

cocycles. Section 3.2 introduces the category of filtered Frobenius monodromy

modules, a linear algebra category whose objects encode all necessary information

from suitable p-adic representations. In Section 3.3 we describe the comparison

isomorphisms of Fontaine. A computationally important result is explained in Sec-

tion 3.4. In Sections 3.5 and 3.6 we follow [IS03] in introducing convergent filtered

F-isocrystals on a formal curve. These are sheaves equipped with various extra

structures (a connection, filtration, Frobenius action); they are allowable coeffi-

cients for the de Rham cohomology to have the structure of a filtered Frobenius

monodromy module. In Section 3.7 this structure is described as in [CI03]. The

previous constructions are specialized to the situation that applies to this work in

Section 3.8. Finally, in Section 3.9 we define the p-adic Abel-Jacobi map, following

mainly [IS03].

3.1 Harmonic cocycles

Let Γ be a cocompact subgroup of PSL2(Qp), and let M be a Cp[Γ]-module. By T =

(V(T ),E(T )) we denote, as in Subsection 1.2.1, the Bruhat-Tits tree of PGL2(Qp).
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Definition 3.1. An M -valued 0-cocycle (resp. 1-cocycle) on T is an M -valued

function c on V(T ) (resp. on E(T ), such that c(e) = −c(e)). The Cp-vector space

of M -valued 0-cocycles (resp. 1-cocyles) is written C0(M) (resp. C1(M)).

Definition 3.2. An M -valued 0-cocycle c is called harmonic if it satisfies, for all

v ∈ V(T ), ∑
e∈E(T ),o(e)=v

c(o(e))− c(t(e)) = 0.

The Cp-vector space of M -valued harmonic 0-cocycles is written C0
har(M).

Definition 3.3. An M -valued 1-cocycle c is called harmonic if it satisfies∑
o(e)=v

c(e) = 0,

for all v ∈ V(T ).

The Cp-vector space of M -valued harmonic 1-cocycles is written C1
har(M).

The group Γ acts on Ci
har(M) on the left, by

γ · c:=γ ◦ c ◦ γ−1, for γ ∈ Γ and c ∈ Ci
har(M).

Let Pn be the n + 1-dimensional Qp-vector space of polynomials of degree at

most n with coefficients in Qp. The group GL2(Qp) acts on Pn on the right, by

P (x) · β:=(cx+ d)nP

(
ax+ b

cx+ d

)
, for β = ( a bc d ) .

In this way its Qp-linear dual Vn:=P∨n is endowed with a left action of GL2(Qp).

Definition 3.4. A harmonic cocycle of weight n+ 2 on T is a Vn-valued harmonic

cocycle.

Define now U as the subspace of M2(Qp) given by matrices of trace 0. They

have a right action of GL2(Qp) given by

u · β:=βuβ,
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where β is the matrix such that ββ = det(β).

There is a map Φ: U → P2 intertwining the action GL2(Qp), given by

u 7→ Pu(x):= tr
(
u
(
x −x2

1 −x
))

= tr (u ( x1 ) ( 1 −x )) = ( 1 −x )u ( x1 ) . (3.1)

Lemma 3.5. The map Φ induces an isomorphism of right GL2(Qp)-modules.

Remark 3.6. Let u = ( a b
c −a ) ∈ U . Suppose that u is invertible. Then u acts on

Hp, and a point x ∈ Hp is fixed by u if it satisfies:

ax+ b

cx− a
= x,

that is if x is a root of the polynomial:

−cx2 + 2ax+ b = Pu(x).

This is why the map u 7→ Pu(x) is introduced.

On U there is a pairing defined by

〈u, v〉:=− tr(uv).

This induces a pairing on P2 by transport of structure, and on the dual V2 of

P2 by canonically identifying P2 with V2 using the pairing itself. Unwinding the

definitions, we can prove the following formula:

Lemma 3.7. Take as basis for V2 the linear forms {ωi}0≤i≤2, dual to the basis

{1, x, x2} of P2. Then the pairing 〈·, ·〉 on V2 is given by:

〈aω0 + bω1 + cω2, a
′ω0 + b′ω1 + c′ω2〉 = 2bb′ − a′c− ac′.

Let now n = 2m be an even integer. The pairing 〈·, ·〉 induces a perfect sym-

metric pairing on Symm V2 = Vn given by the formula:

〈v1 · · · vm, v′1 · · · v′m〉:=
1

m!

∑
σ∈Sn

〈v1, v
′
σ(1)〉 · · · 〈vm, v′σ(m)〉.
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3.2 Filtered (φ,N)-modules

Let K be a field of characteristic 0, which is complete with respect to a discrete

valuation and has perfect residue field κ of characteristic p > 0. Let K0 ⊆ K be the

maximal unramified subfield of K. Concretely, K0 is the fraction field of the ring

of Witt vectors of κ. Let σ : K0 → K0 be the absolute Frobenius automorphism.

Definition 3.8. A filtered Frobenius monodromy module over K (also called a

filtered (φ,N)-module) is a quadruple (D,Fil•, φ,N), where

1. D is a finite dimensional K0-vector space,

2. Fil• = Fil•D is an exhaustive and separated decreasing filtration on the vector

space DK :=D ⊗K0 K over K, called the Hodge filtration,

3. φ = φD : D → D is a σ-linear automorphism, called the Frobenius on D, and

4. N = ND : D → D is a K-linear endomorphism, called the monodromy opera-

tor , satisfying Nφ = pφN .

Sometimes we write D to refer to the tuple (D,Fil•D, φD, ND). The category of

filtered (φ,N)-modules over K is denoted by MF
(φ,N)
K .

Forgetting the monodromy action or, equivalently, setting N = 0, gives a full

subcategory of MF
(φ,N)
K , called the category of filtered F-isocrystals over K. If in

addition we also forget the filtration, the full subcategory thus obtained is called

the category of isocrystals over K0.

Remark 3.9. The particle “iso” is used to remind ourselves that they do not have

an integral structure on them. If one wants to work with “crystals”, then one has

to consider certain types of OK-modules instead.

Example 3.10. The field K0 itself has a structure of filtered (φ,N)-module over

K: the underlying K0-vector space is K0 itself, the Frobenius is φK0 = σ, the
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monodromy N is 0, and for K = K0 ⊗K0 K the filtration is given by:

Fili =

K if i ≤ 0

0 otherwise.

Example 3.11. Let λ = r/s be a rational number, where r and s are chosen so

that (r, s) = 1 and s > 0. Let K0[φ] be the twisted polynomial ring with coefficients

in K0, satisfying φc = σ(c)φ, for c ∈ K0. The quotient:

Mλ = K0[φ]/(K0[φ](φs − pr))

has a natural Frobenius action given by left-multiplication by φ. This is a funda-

mental example of an isocrystal.

Theorem 3.12 (Dieudonné-Manin). Assume that K0 equals W (k)[1/p], with k an

algebraically-closed field. Then the category of isocrystals over K0 is semisimple

(that is, all objects are finite direct sums of simple objects, and all short exact

sequences split). Its simple objects are the isocrystals Mλ of Example 3.11, for

λ ∈ Q.

Proposition 3.13. The category MF
(φ,N)
K is an additive tensor category admitting

kernels and cokernels.

Sketch of proof. Let f : D → D′ be a morphism. Then ker f is defined as follows: As

a K0-vector space, it is just the kernel of the underlying K0-linear map f : D → D′.

If x ∈ ker f , then f(φD(x)) = φD′(f(x)) = φD′(0) = 0, so that φD acts on ker f .

Similarly for the monodromy ND. Finally, one can define F i
ker f ker f := ker f ∩F i

DD.

This gives ker f the structure of a filtered (φ,N)-module. The cokernel is defined

similarly, where the filtration on it is the quotient filtration.

If D and D′ are filtered (φ,N)-modules, we construct the object D ⊗ D′ as

follows. As a K0-vector space, it is D⊗K0D
′. Its base extension to K is DK⊗KD′K ,

and the filtration is given by the tensor product filtration:

F i
D⊗D′(DK ⊗K D′K):=

∑
a+b=i

F a
DDK ⊗ F b

D′D
′
K .
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The Frobenius is given by tensoring the corresponding actions on each factor, and

the monodromy is defined by:

ND⊗D′ :=1D ⊗ ND′ +ND ⊗ 1D′ .

Finally, a sequence is exact if the underlying sequence of K0-vector spaces is

exact. For more details refer to [BC].

Remark 3.14. The notion of short exact sequence coincides with the following:

given a sequence

0→ A
f−→ B

g−→ C → 0

in MF
(φ,N)
K , it is exact if:

1. ker f = 0,

2. coker g = 0, and

3. f induces an isomorphism A
∼−→ ker g, or coker f ∼= C.

Definition 3.15. If D = (D,F •D, φD, ND) is a filtered (φ,N)-module, and j ∈ Z,

we define another filtered (φ,N)-module D[j], the jth Tate twist of D, as D[j] =

(D,F •−jD , pjφD, ND). Here we mean:

F i(D[j]K) = F i−j(DK), for all i ∈ Z.

Remark 3.16. In [BC], the Tate-twist is defined using a different convention. Their

jth Tate twist coincides with our −jth Tate twist. In their notation:

D[−j] = D〈j〉.

This is done because we will be using the covariant Fontaine functors, whereas [BC]

uses their contravariant counterparts.
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3.3 The ring Bst, semistability, and comparison

isomorphisms

We first recall some key facts about the ring Bst of Fontaine. The original construc-

tion can be found in [Fon94]. There is a very detailed exposition of this material in

the paper O. Brinon and B. Conrad [BC].

The ring Bst is a topological K0-algebra, with the following extra structure:

1. A continuous action of GK such that BGK
st = K0.

2. A GK-equivariant embedding Kur
0 ↪→ Bst.

3. A σ-semilinear continuous automorphism φ : Bst → Bst which commutes with

the GK-action.

4. An exhaustive and separated decreasing filtration Fili of the extension of

scalars (Bst)K , stable under the GK-action.

5. A K0-linear operator N : Bst → Bst satisfying Nφ = pφN .

We do not need to know too much about the construction of the ring Bst for

now. For us, its importance lies in the functors that are constructed using Bst, which

establish important equivalences of categories. Consider the category RepQp(GK) of

p-adic representations of GK , whose objects are finite-dimensional Qp-vector-spaces

with a continuous linear GK-action. It is an abelian tensor category, with twists

given by tensoring with powers of the Tate representation Qp(1):=(lim←−n µµpn)⊗ZpQp.

Given a p-adic representation V of GK , consider:

Dst(V ):=(V ⊗Qp Bst)
GK .

This is a K0-vector space, and the actions of φ and N on Bst give actions on Dst(V )

as well. The filtration on Bst induces also a filtration on Dst(V )K = Dst(V )⊗K0 K.
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One checks that it has finite K0-dimension, and so Dst(V ) becomes a filtered (φ,N)-

module. Moreover, for each j ∈ Z,

Dst(V (j)) = Dst(V )[−j].

Conversely, given a filtered (φ,N)-module D, one defines:

Vst(D):= HomMFK(φ,N)(K,D ⊗K0 Bst) ∼= Fil0 (D ⊗K0 Bst)
φ=Id,N=0 .

The assignments Dst and Vst are functorial, as it is easily checked. This provides

functors:

RepQp(GK)
Dst // MFK(φ,N),
Vst

oo

and we are interested in how close these are to providing equivalences of categories.

In order to obtain such an equivalence, we need to restrict both categories.

Definition 3.17. A p-adic representation V of GK is semistable if the canonical

injective map:

α : Dst(V )⊗K0 Bst = (V ⊗Qp Bst)
GK ⊗K0 Bst ↪→ (V ⊗Qp Bst)⊗K0 Bst

Id⊗m−→ V ⊗Qp Bst

is surjective. The category of semistable representations, denoted Repst(GK) is the

full subcategory of RepQp(GK) of semistable objects.

Remark 3.18. Let X/K be a proper variety with a semi-stable model. Consider

the étale cohomology groups:

H i
et(X,Qp):=

(
lim←−
n

H i
et(X,Z/pnZ)

)
⊗Zp Qp.

These vector spaces are naturally finite-dimensional continuous GK-representations.

Results of Fontaine-Messing, Hyodo-Kato, Faltings and Tsuji imply that these rep-

resentations are semistable. They constitute in fact the main source of semistable

representations.

Definition 3.19. A filtered (φ,N)-module D is admissible if it is isomorphic to

Dst(V ) for some semistable representation V of GK . The full subcategory of admis-

sible filtered (φ,N)-modules is denoted MFad
K (φ,N).
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The property of a filtered (φ,N)-module being admissible can also be phrased

in terms of intrinsic properties of D itself. In this setting this property was origi-

nally called weak-admissibility, but was proven to be equivalent to admissibility by

Fontaine and Colmez in [CF00]. They also prove:

Theorem 3.20 ([CF00, Theorem A]). The functors Dst and Vst give an equivalence

of categories between Repst(GK) and MFad
K (φ,N), which is compatible with exact

sequences, tensor products and duality.

The main use that we have for this fact is the following:

Corollary 3.21. Let V,W be two objects in Repst(GK). The functors Dst and Vst

induce a canonical group isomorphism

Ext1
Repst(GK)(V,W ) ∼= Ext1

MFad
K (φ,N)

(Dst(V ),Dst(W )) ,

where Ext1
C denotes the extension-group bifunctor in the category C.

3.4 Extensions of filtered (φ,N)-modules

Let D be a filtered (φ,N)-module over K0, where K0 = W (k)[1/p] with k alge-

braically closed. Given a rational number λ = r/s, where r, s ∈ Z are such that

(r, s) = 1 and s > 0, define Dλ to be the largest subspace of D which has an

OK0-stable lattice M satisfying φs(M) = prM . The subspace Dλ is called the iso-

typical component of D of slope λ. The slopes of D are the rational numbers λ such

that Dλ 6= 0, and D is called isotypical of slope λ0 if D = Dλ0 . As a corollary to

Theorem 3.12 we obtain a decomposition of isocrystals (that is, after forgetting the

filtration and monodromy):

D =
⊕
λ∈Q

Dλ.

Note also that N(Dλ) ⊆ Dλ−1 for all λ ∈ Q. The following result appears in [IS03,

Lemma 2.1], although its proof is mostly omitted. We present here a fully detailed

proof.
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Lemma 3.22. Let D be a filtered (φ,N)-module, n an integer, and assume that

N induces an isomorphism between the isotypical components Dn+1 and Dn. Then

there is a canonical isomorphism

Ext1

MF
(φ,N)
K

(K[n+ 1], D) ∼= D/Filn+1 D,

that maps the class of an extension

0→ D
ι−→ E

π−→ K[n+ 1]→ 0

to (s1(1)− s2(1)) + Filn+1 DK, where:

1. s1 : K[n + 1] → E is a splitting of π which is compatible with the Frobenius

and monodromy operator, but not necessarily with filtrations, and

2. s2 : K[n + 1] → E is splitting of π compatible with the filtrations, but not

necessarily with the Frobenius and monodromy operators.

Remark 3.23. The fact that the splittings s1 and s2 exist is part of the statement

of the lemma.

Proof. First, note that by applying the snake lemma to the following diagram with

exact rows:

0 // Filn+1DK
//

� _

��

Filn+1EK
//

� _

��

Filn+1K // 0

0 // DK
// EK // K // 0,

we get an isomorphism DK/Filn+1 DK
∼= EK/Filn+1EK , and hence we just need

to find an element in EK/Filn+1 EK . Explicitly, once we get s1(1) ∈ EK , we can

consider s1(1)− s2(1), where s2 is a splitting of the extension which is compatible

with the filtrations. Such a splitting s2 exists because the category of K-vector

spaces is semisimple. Since π(s1(1) − s2(1)) = 0, we can view s1(1) − s2(1) as an

element of DK (via ι), thus making the isomorphism explicit.
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The filtered (φ,N)-module K[n + 1] is pure of slope n + 1, and the hypothesis

on the monodromy action N on D gives a commutative diagram with exact rows:

0 // Dn+1
//

N∼=
��

En+1

N
��

// K0
//

��

0

0 // Dn
// En // 0 // 0.

An application of the snake lemma and the fact that the left vertical arrow is an

isomorphism yields another isomorphism

π| : ker
(
En+1

N−→ En

)
∼−→ K0,

and we define s1 : K → EK as its inverse. Then s1 is compatible with the action of

φ and N , by construction.

We check that the assignment of s1(1) + Filn+1EK to an extension 0 → D →

E → K[n+ 1]→ 0 is well-defined: if the extension is trivial, then s1 can be chosen

to be compatible with Fil, and we then get

s1(1) ∈ s1(FilnK[n+ 1]) ⊆ Filn+1EK .

Conversely, given d+Filn+1DK ∈ DK/Filn+1DK , we construct a filtered (φ,N)-

module E(d) as an extension of K[n+ 1] by D. We define E
(d)
0 = D0 ⊕ (K0[n+ 1]),

as (φ,N)-modules. The filtration on E
(d)
K = E

(d)
0 ⊗K0 K is defined as follows:

Filj E
(d)
K :=

{
(x, t) ∈ DK ⊕K | t ∈ Filj−n−1K, x+ td ∈ Filj D

}
.

Consider the isomorphism class of the extension

Ξ: 0→ D
ι−→ E(d) π−→ K[n+ 1]→ 0,

where the map ι is the canonical inclusion, and the map π is the canonical projec-

tion. Note that this sequence is exact and well defined, since

π(Filj E
(d)
K ) = Filj−n−1K = FiljK[n+ 1].

55



Moreover, if d ∈ Filn+1DK , then the map

1 7→ (0, 1)

splits the extension Ξ in the category of filtered (φ,N)-modules. Hence the map

DK/Filn+1DK → Ext1(K[n+ 1], D)

which assigns the extension Ξ to d ∈ D/Filn+1D is well defined.

To end the proof, we need to check that the two assignments are mutually

inverse. Starting with d + Filn+1DK , the vector space splitting 1 7→ (0, 1) is com-

patible with the Frobenius and monodromy actions. Also the vector space split-

ting 1 7→ (−d, 1) is compatible with the filtrations. We obtain the class of d in

DK/Filn+1DK , as wanted.

Conversely, start with an arbitrary extension

0→ D
ι−→ E

π−→ K[n+ 1]→ 0.

Choose s1 and s2 two splittings of π as before, and define d ∈ DK such that

ιK(d) = s1(1)− s2(1). Consider now the map E(d) → E sending

(x, t) 7→ ι(x) + s1(t) = ι(x+ td) + s2(t).

The first expression shows that this is a map of (φ,N)-modules. The second ex-

pression shows that it respects the filtrations. Its inverse is the map

y 7→
(
ι−1(y − s1(π(y))), π(y)

)
=
(
ι−1(y − s2(π(y)))− π(y)d, π(y)

)
.

Again, the first expression shows that it is respects the Frobenius and monodromy

actions, while the second shows that it respects the filtrations. This concludes the

proof.

3.5 Convergent filtered F -isocrystals

Let κ, K0 and K be as before. In [Ogu] it is show how to extend the constructions

in Section 3.2 to formal schemes. Let Z be a formal OK-scheme. The construction
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in Section 3.2 is the particular case of Z = SpfOK . In this section we follow the

exposition of [IS03]. For simplicity, assume that K = K0.

Recall that a p-adic formal OK-scheme is a formal scheme obtained by gluing

affine opens of the form Spf R, where R is a quotient of OK〈X1, . . . , Xn〉 for some

n.

Definition 3.24. An enlargement of Z is a pair (T, zT ) consisting of a flat p-adic

formal OK-scheme T and a morphism of formal OK-schemes zT : T0 → Z (where

T0 is the closed subscheme of T defined by the ideal pOT , with the reduced scheme

structure).

A morphism of enlargements of Z, say (T ′, zT ′) → (T, zT ) is an OK-morphism

g : T ′ → T such that zT ◦ g0 = zT ′ .

Definition 3.25. A convergent isocrystal E on Z is the following data:

1. For every enlargement T = (T, zT ) of Z, a coherent OT ⊗OK K-module ET .

2. For every morphism of enlargements g : (T ′, zT ′) → (T, zT ), an isomorphism

of OT ′ ⊗OK K-modules

θg : g∗(ET )→ ET ′ ,

such that the collection {θg} satisfies the cocycle condition.

Let σ : W (κ) → W (κ) be the Frobenius automorphism. This can be lifted to

the absolute Frobenius F : Z → Zσ. Given an enlargement (T, zT ) of Z, the pair

(T, F ◦ zT ) is an enlargement of Zσ and hence (T σ
−1
, (F ◦ zT )σ

−1
) is an enlargement

of Z. Define then F ∗E as the isocrystal which on Z which assigns to (T, zT ) the

OT ⊗OK K-module:

α(σ)∗E(Tσ
−1 ,(F◦zT )σ−1 ).

Here, α(σ) is the morphism T σ → T such that the following square commutes:

T σ
α(σ) //

��

T

��
SpecOK σ // SpecOK .
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Definition 3.26. A convergent F -isocrystal on Z is a convergent isocrystal E on

Z together with an isomorphism of crystals Φ: F ∗E → E .

Assume from now on that Z is analytically smooth over OK . The Gauss-Manin

connection is a natural connection on Ean = Ean
Z . It can be defined as a certain

connecting homomorphism in the Hodge to de Rham spectral sequence for Z. A

precise definition can be found in [KO68], and the required facts about its properties

can be found in [Ogu].

Definition 3.27. A filtered convergent F -isocrystal on Z consists of a convergent F -

isocrystal E together with an exhaustive and separated decreasing filtration Fil•Ean

of coherent OZan-submodules, such that

∇(FiliEan) ⊆ (Fili−1Ean)⊗Oan
Z

Ω1
Zan .

This condition is called Griffiths’ transversality and is required in order to be able

to define a filtration on the de Rham cohomology with coefficients in Ean.

The category of filtered convergent F -isocrystals on Z is an additive tensor

category.

Example 3.28. 1. The identity object OZ in this category is the assignment

T 7→ OT ⊗ K. The Frobenius is the canonical one. The connection is the

trivial one, given by the usual derivation d. The filtration is given by

Fili =

OZ
an if i ≤ 0

0 otherwise.

2. Let f : X → Z = Spf(OK) be smooth proper morphism of p-adic formal

schemes. One can define an F -isocrystal Rqf∗OX/K using crystalline coho-

mology sheaves tensored with K. This is a convergent filtered F -isocrystal

in a natural way: its analytification (Rqf∗OX/K)an is a coherent OZan-module

isomorphic to the relative de Rham cohomology Hq
dR(Xan/Zan), and the con-

nection is the Gauss-Manin connection∇. The filtration is given by the Hodge
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filtration, induced from the Hodge to de Rham spectral sequence, as explained

in [KO68].

3.6 Filtration, Frobenius and monodromy

Let X → Spec(OK) be a proper semistable curve with connected fibers. Suppose

that its generic fiber X is smooth and projective, that the irreducible components

C1, . . . , Cr of the special fiber C are smooth and geometrically connected, and that

there are at least two of them. Assume also that the singular points of C are

κ-rational ordinary double points.

Denote by Xan the rigid analytification of X. We want to describe an admissible

covering of Xan. Consider the special fiber C of X, and let G = (V(G), ~E(G)) be

the (oriented) intersection graph of C: there is one vertex for each irreducible

component Ci, and the oriented edges are triples e = (x,Ci, Cj), where x is a

singular point of C, and Ci and Cj are the two components on which x lies. We set

o(e) = Ci and t(e) = Cj, and write ē for the opposite edge (x,Cj, Ci).

For each vertex v = Ci of G, let Uv:= red−1(Ci) be the tube associated to it.

Here red: Xan → C(k̄) is the reduction map. For each edge e = (x,Ci, Cj), let Ae

be the wide open annulus red−1(x) = Uo(e) ∩ Ut(e), together with the orientation

given by e. This gives an admissible covering of Xan:

Xan =
⋃

v∈V(G)

Uv.

Define an involution (·) on ~E(G) which maps an edge e = (x,Ci, Cj), to

e:=(x,Cj, Ci).

Write E(G) for the set of unoriented edges of G, which can be thought as the set

of equivalence classes of ~E(G) by this involution.

Let E be a coherent locally free sheaf of OX-modules, with a connection

∇ : E → E ⊗OX Ω1
X ,
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and filtration Fil•E by OX-submodules satisfying Griffiths transversality. That is,

such that

∇(FiliE) ⊆ (Fili−1E)⊗OX Ω1
X .

Assume from now on that E comes from a convergent filtered F -isocrystal E on the

special fiber X of X. Consider the de Rham cohomology of X with coefficients in

E. This is defined as the hyper-cohomology of the complex of sheaves:

The de Rham cohomology of X with coefficients in E, which will be defined in

the following subsections, can be given the structure of a filtered (φ,N)-module.

Moreover, if S is a finite set of points of X and U :=X\S, one can also give this struc-

ture to H1
dR(U,E). This construction is detailed in [CI03, Section 2], and we recall

it in the next two subsections. One needs to assume that the filtered F -isocrystal E

is regular , which is a condition on the characteristic polynomials of Frobenius act-

ing on various crystalline cohomology groups. For the precise definition, see [CI03,

Definition 2.3].

3.6.1 H1
dR(X,E) as a filtered (φ,N)-module

The (algebraic) de Rham cohomology of X with coefficients in E, denoted by

H∗dR(X,E), is defined to be the hypercohomology of the complex of sheaves of

OX-modules:

0→ E
∇−→ E ⊗ Ω1

X → 0.

By rigid-analytic GAGA, this coincides with the rigid-analytic cohomology. We

describe explicitly the space H1
dR(X,E), using the admissible covering described

above: an element x ∈ H1
dR(X,E) can be represented by a 1-hypercocycle

ω =
(
{ωv}v∈V(G); {fe}e∈~E(G)

)
,

where the ωv ∈ (Ean ⊗ Ω1
Xan)(Uv), and fe ∈ Ean(Ae) satisfy

ωo(e)|Ae − ωt(e)|Ae = ∇(fe), and fē = −fe.
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Two such 1-hypercocycles represent the same element x ∈ H1
dR(X,E) if their dif-

ference is of the form(
{∇(fv)}v∈V(G); {fo(e)|Ae − ft(e)|Ae}e∈~E(G)

)
,

for some family {fv}v∈V(G) with fv ∈ Ean(Uv).

Assume from now on that the admissible opens Uv and Ae appearing in the

covering are acyclic for coherent sheaf cohomology. Consider the maps induced by

inclusion:

f :
∐

v∈V(G)

Uv → X, g :
∐

e∈~E(G)

Ae → X.

They give an exact sequence of sheaves on Xan:

0→ Ean → f∗f
∗Ean → g∗g

∗Ean → 0,

which induces the Mayer-Vietoris long exact sequence:

0→ H0
dR(X,E)→ ⊕v∈V(G)H

0
dR(Uv, E

an)→ ⊕e∈E(G)H
0
dR(Ae, E

an)→

→ H1
dR(X,E)→ ⊕v∈V(G)H

1
dR(Uv, E

an)→ ⊕e∈E(G)H
1
dR(Ae, E

an)→ · · ·

We extract a short exact sequence

0→ (H0
E)−/H0

V
ι−→ H1

dR(X,E)
γ−→ ker

(
H1

V → H1
E

)
→ 0, (3.2)

where

H i
E =

⊕
e∈~E(G)

H i
dR(Ae, E

an), H i
V =

⊕
v∈V(G)

H i
dR(Uv, E

an),

and the superscript − indicates the subspace of H0
E consisting of elements {fe}e such

that fē = −fe for all e ∈ ~E(G). The maps ι and γ are given by the following recipe:

1. Let {fe}e∈~E(G) with fe ∈ H0
dR(Ae, E

an) satisfying fe = −fe. Then ι sends the

class of {fe} to the 1-hypercocycle ({0}v; {fe}). Note that this is indeed a

hypercocycle, since ∇fe = 0.
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2. Let ({ωv}v; {fe}e) be a 1-hypercocycle representing a class x ∈ H1
dR(X,E).

Then γ sends x to the class of {ωv}v in
⊕

vH
1
dR(Uv, E

an).

In the following paragraphs we describe the structure as a filtered (φ,N)-module

of H1
dR(X,E). The Hodge filtration is defined as

FiliH1
dR(X,E):= img

(
H1(X,FiliE

∇−→ Fili−1E ⊗ Ω1
X)→ H1(X,E ⊗ Ω•)

)
.

where the map H1(X,FiliE
∇−→ Fili−1E ⊗ Ω1

X) → H1(X,E ⊗ Ω•) is induced by

functoriality from the inclusion of complexes

FiliE� _

��

∇ // Fili−1E ⊗OX Ω1
X� _

��

// · · ·

E
∇ // E ⊗OX Ω1

X
// · · ·

Note that this filtration coincides with the one induced from the Hodge to de Rham

spectral sequence computing H∗dR(X,E).

The Frobenius operator is defined by first splitting the exact sequence in Equa-

tion (3.2) and defining it in the outer terms. To define the splitting, we will use

the Coleman integrals, so fix once and for all a branch of the p-adic logarithm. The

map ι admits a retraction P defined as follows: let x ∈ H1
dR(X,E) be represented

by the 1-hypercocycle ({ωv}v; {fe}e). For any v ∈ V(G), define Fv to be a Coleman

primitive of ωv, as introduced in Chapter 1. Then the map P assigns to x (the class

of) the family {ge}e∈~E(G), where

ge:=fe − (Fo(e)|Ae − Ft(e)|Ae).

Note that this map is well defined because the integrals Fv are defined up to a rigid

horizontal section of Ean|Uv .

There is an action of Frobenius on the left and right terms of the exact se-

quence (3.2). That is, there are lattices inside the space H0
dR(Ae, E

an) and inside

H1
dR(Uv, E

an), and respective actions of Frobenius. Concretely, if e = (x,Ci, Cj),

then H0
cris(x,E

an) is a K0-lattice with a natural Frobenius. Also, H1
dR(Uv, E

an) has

a natural lattice and action of Frobenius induced from the action on E .
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Using the splitting P we obtain a lattice inside H1
dR(X,E), together with a

Frobenius that will be called Φ.

Lastly, we define the monodromy operator N . Associated to each open annulus

Ae such that (Ean|Ae) has only constant horizontal sections, there is a natural

annular residue map rese = resAe as in Definition 1.21:

rese : H1
dR(Ae, E

an)→ H0
dR(Ae, E

an) ∼= (Ean|Ae)
∇=0 .

For a fixed edge e0 ∈ ~E(G) there is a natural map he0 : H1
dR(X,E)→ H1

dR(Ae0 , E
an)

which sends ({ωv}v; {fe}e) to the class of ωo(e0)|Ae . Note that this coincides with

the class of ωt(e0)|Ae . The monodromy operator N on H1
dR(X,E) is defined as:

N :=ι ◦ (⊕e(rese ◦he)) : H1
dR(X,E)→ H1

dR(X,E).

The following expected lemma is reassuring.

Lemma 3.29. The operator N defined above satisfies NΦ = pΦN .

Proof. Let ({ωv}v; {fe}e) be a 1-hypercocycle representing a class x ∈ H1
dR(X,E).

We first compute ΦNx: note that N(x) is the class of the 1-hyper-cocycle

({0}v; {rese ωo(e)}e).

Then γ sends this element to 0, so Φ acts as ι ◦ φ ◦ P . That is, ΦN(x) is the class

of the 1-hypercocycle ({0}v; {φ(rese ωo(e))}).

Next we compute NΦx. Note that N ◦ ι = 0, so that this is:

NΦx = (N ◦ t ◦ φ ◦ γ)(x),

where t is the right inverse to γ corresponding to the retraction P . Then γ(x) is

the class of {ωv}v, and φ acts on it component-wise, to get the class of {φωv}v. The

map t sends this to a 1-hypercocycle of the form ({φωv}v; {f ′e}e), for some family

{f ′e}e which is irrelevant to us. Lastly, N acts on it by taking the residues of φωv,

to get the class of ({0}v; {rese φωo(e)}e).

The lemma follows now from the following claim:
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Claim.

(rese) ◦ φ = p(φ ◦ rese).

Proof. Let ω =
∑
ant

ndt be a local expression for a differential form, where t is a

local parameter on the annulus corresponding to e. Then:

φω =
∑

φ(an)tpnptp−1dt = p
∑

φ(an)tp(n+1)−1dt.

The coefficient of t−1dt in this expression is precisely pφ(a−1) = pφ(rese ω).

3.6.2 H1
dR(U,E) as a filtered (φ,N)-module

Let S be a finite set of K-rational points on X which are smooth (when considered

as points on X), and which specialize to pairwise different smooth points on C.

Let U = X \ S. One can define, in a similar way as in the previous section,

a structure of a filtered (φ,N)-module on H1
dR(U,E). The monodromy operator is

defined as in the previous subsection. To define the Frobenius, one needs to work

with logarithmic isocrystals. There is again an exact sequence

0→ (H0
E)−/H0

V
ι−→ H1

dR(U,E)
γ−→ ker

(
H1

V → H1
E

)
→ 0,

where this time

H i
E =

⊕
e∈~E(G)

H i
dR(Ae, E

an), H i
V =

⊕
v∈V(G)

H i
dR(Uv \ S,Ean).

The left-most term is the same as before, because the zeroth cohomology does

not change by removing a finite set of points. So to define the Frobenius on

H1
dR(U,E) one has to define it on the right-most term. This is done in [CI03,

Section 5], where the de Rham cohomology H1
dR(Uv \ S,Ean) is described in terms

of the log-crystalline cohomology with coefficients in j∗E of the component Ci = v of
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C, where j is the canonical morphism of formal log-schemes j : (X̂, log structure)→

(X̂, trivial).

The Gysin sequence

0 // H1
dR(X,E) // H1

dR(U,E)
⊕ resx //

⊕
x∈S Ex[1]

becomes in this way an exact sequence of filtered (φ,N)-modules.

Let f : Y→ X be a smooth proper morphism, and let Y be the generic fiber of

Y. The relative de Rham cohomology

Hq
dR(Y/X):=Rqf∗OŶ/K

can be given the structure of a convergent filtered F-isocrystal, as in Example 2.

Consider the GQ-representation

H1
et(X,R

qf∗Qp),

and the filtered (φ,N)-module

H1
dR (X,Hq

dR(Y/X))

defined above. The following result relates these two objects. Its proof can be found

in [CI03, Theorem 7.5].

Theorem 3.30 (Faltings, Coleman-Iovita). Using the previous notations:

1. The representation H1
et(X,R

qf∗Qp) is semistable, and there is a canonical

isomorphism of filtered (φ,N)-modules

Dst

(
H1

et(X,R
qf∗Qp)

) ∼= H1
dR (X,Hq

dR(Y/X)) .

2. More generally, let S be a finite set of smooth sections of f : X→ Spec(OK),

which specialize to pairwise different (smooth) points on C, and let U = X \S,

U = U ⊗K K, and Yx be the geometric fiber of f : Y → X over x ∈ S. Then

there is an exact sequence of semistable Galois representations

0→ H1
et(X,R

qf∗Qp)→ H1
et(U,R

qf∗Qp)→
⊕
s∈S

Hq
et(Yx,Qp(−1)),
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which becomes isomorphic to the sequence

0→ H1
dR(X,E)→ H1

dR(U,E)→
⊕
x∈S

Ex[1]

after applying the functor Dst (and setting E = Hq
dR(Y/X)).

3.7 The filtered (φ,N)-module H1
dR(XΓ, E(V ))

We want to specialize the constructions made in the previous sections to the sit-

uation in our work. We will assume that the curve X is a certain quotient of

the p-adic upper-half plane, and we will restrict also the class of filtered conver-

gent F -isocrystals that we consider. Let V be an object of RepQp(GL2×GL2). In

[IS03, Section 4] the authors associate to V a convergent filtered F -isocrystal on the

canonical formal Zur
p -model of the upper-half plane Ĥ, which is denoted E(V ). Also,

for every Qp2-rational point Ψ ∈ Hom(Qp2 ,M2(Qp)) of Ĥ they compute the stalk

E(V )Ψ as a filtered (φ,N)-module VΨ ∈ MFQur
p

(φ,N). The assignment V 7→ E(V )

is an exact tensor functor.

The previous construction can be descended to give isocrystals on Mumford

curves: if Γ is a discrete cocompact subgroup of SL2(Qp), let XΓ be the associated

Mumford curve over Qur
p , so that Xan

Γ = Γ\Hp. Denote the new filtered isocrystal

on XΓ by the same symbol E(V ) as well.

Let E(V ) be the coherent locally free OXΓ
-module with connection and filtration

corresponding to E(V ), so that E(V ) = E(V )an.

In [IS03] the authors give a concrete description of the filtered (φ,N)-module

H1
dR(XΓ, E(V )) and, if U ⊆ XΓ is an open subscheme as before, also of the filtered

(φ,N)-module H1
dR(U,E(V )). This is possible because both the curve XΓ and the

coefficients E(V ) are known explicitly. We will assume that Γ is torsion free. We

can reduce to this situation as follows: choose Γ′ ⊂ Γ a free normal subgroup of

finite index. The group Γ/Γ′ acts on the filtered (φ,N)-modules H1
dR(XΓ, E(V ))
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and H1
dR(U,E(V )) as automorphisms preserving the operators and the filtration.

Hence it induces a structure of filtered (φ,N)-module on

H1
dR(XΓ, E(V )):=H1

dR(XΓ′ , E(V ))Γ/Γ′ ,

and similarly for H1
dR(U,E(V )).

3.7.1 The structure of H1
dR(XΓ, E(V ))

The fact that Hp is a Stein space in the rigid-analytic sense allows for the computa-

tion of H1
dR(XΓ, E(V )) as group hyper-cohomology, via the Leray spectral sequence.

More precisely, the K-vector space H1
dR(XΓ, E(V )) can be computed as the first

group hyper-cohomology:

H1
dR(X,E(V )) = H1(Γ,Ω• ⊗ V ),

where Ω• is the de Rham complex

Ω• : 0→ OHp(Hp)→ Ω1
Hp(Hp)→ 0.

Concretely, the elements in H1
dR(X,E(V )) are represented by pairs (ω, fγ), where

ω belongs to Ω1(Hp) ⊗ V and fγ is a OHp(Hp) ⊗ V -valued 1-cocycle for Γ. They

are required to satisfy the relation

γω − ω = dfγ, for all γ ∈ Γ.

Recall the definition of the Γ-representations C0(VQur
p

) and C1(VQur
p

) and of their

harmonic sub-representations C0
har(VQur

p
) and C1

har(VQur
p

) attached to the Bruhat-Tits

tree T as introduced in Definition 3.1. We define a map ε : C1(VQur
p

)Γ → H1(Γ, VQur
p

),

as follows: given a 1-cocycle f ∈ C1(VQur
p

)Γ, the element ε(f) is defined as the

cohomology class of the 1-cocyle

γ 7→ γF (γ−1(?)),

where ? ∈ V(T ) is a choice of a vertex of T , and F ∈ C0(VQur
p

) satisfies ∂F = f

and F (?) = 0. One easily checks that this definition does not depend on the choice

of the vertex ?.
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Proposition 3.31. The map ε induces an isomorphism:

ε : C1(VQur
p

)Γ/C0(VQur
p

)Γ → H1(Γ, VQur
p

).

Proof. Consider the short exact sequence

0→ VQur
p
→ C0(VQur

p
)

∂−→ C1(VQur
p

)→ 0.

The map ε is the map induced from the connecting homomorphism δ in the Γ-

cohomology long exact sequence:

0→ C0(VQur
p

)Γ ∂−→ C1(VQur
p

)Γ δ−→ H1(Γ, VQur
p

)→ H1(Γ, C0(VQur
p

))→ · · ·

Since Γ is torsion-free, H1(Γ, C0(VQur
p

)) = 0, and the result follows.

Note that there is a canonical isomorphism

C1
har(VQur

p
)Γ ∼= C1(VQur

p
)Γ/C0(VQur

p
)Γ,

and we will identify these two spaces from now on. Let γ 7→ fγ be a 1-cocycle on Γ.

The group C0(VQur
p

) is Γ-acyclic, so that there is a 0-harmonic cocycle F ∈ C0(VQur
p

)

satisfying, for all γ ∈ Γ,

j(fγ) = γF − F.

Consider then ∂(F ) ∈ C1(VQur
p

). It is fixed by Γ, since:

(γ∂(F ))− ∂(F ) = ∂(γF − F ) = ∂(j(fγ)) = 0.

Then the class of the 1-hypercocycle given by ({0}v; {F (o(e)) − F (t(e))}e) is an

element of H1
dR(XΓ, E(V )). We thus obtain an injection:

ι : H1(Γ, VQur
p

)→ H1
dR(XΓ, E(V )).

Next we construct a map I : H1
dR(XΓ, E(V )) → C1

har(VQur
p

)Γ which is due to

Schneider. It is called “Schneider integration” in [IS03], [dS89] and [dS06], and it

is induced from the map ΩII
Xan

Γ
⊗OXΓ

V → C1(VQur
p

):

ω 7→ (e 7→ rese(ω)) .

Because of the residue theorem, the image lies actually in C1
har(VQur

p
)Γ.
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Lemma 3.32 (de Shalit). Suppose that Γ is arithmetic. Then the sequence

0 // H1(Γ, VQur
p

) ι // H1
dR(X,E(V ))

I // C1
har(VQur

p
)Γ // 0

[fγ]
� // [(0, fγ)]

[(ω, fγ)]
� // (e 7→ rese(ω))

(3.3)

is exact.

There is a retraction P of ι, given by Coleman integration. This assigns to

(ω, fγ) the 1-cocycle

γ 7→ fγ + γFω − Fω,

where Fω is a Coleman primitive for ω as in Theorem 1.42. Note that the VQur
p

-

valued function γFω − Fω is constant, so that we can think of it as a well-defined

element of VQur
p

.

The splitting P thus defines actions of Frobenius on the left and right terms of

the exact sequence (3.3), as follows: there is a natural action φ1 of Frobenius on

H1(Γ, VQur
p

). Define an action φ2 on C1
har(VQur

p
)Γ as φ2:=p(ε−1 ◦ φ1 ◦ ε), so that the

following equality holds:

εφ2 = pφ1ε.

We have now all the maps needed in the definition of the Frobenius and mon-

odromy operators. Define first N to be the composition ι ◦ (−ε) ◦ I. Since I ◦ ι = 0

it follows that N2 = 0. Actually, Lemma 3.32 implies that kerN = imgN . Let T

be the right-inverse to I corresponding to P :

0 // H1(Γ, VQur
p

) ι //

φ1

��
H1

dR(XΓ, E(V ))
I //

P

ww SY_ek

C1(VQur
p

)Γ/C0(VQur
p

)Γ //

T

vv VZ_dh
φ2

��

0.

Define the Frobenius operator Φ on H1
dR(XΓ, E(V )) as:

Φ(ω):=ιφ1(Pω) + T (φ2(Iω)).
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We check that:

NΦ(ω) = Nιφ1Pω +NTφ2Iω

= NTφ2Iω (since Nι = 0)

= −ιεITφ2Iω (definition of N)

= −ιεφ2Iω (since T is a splitting of I)

= −pιφ1εIω (εφ2 = pφ1ε)

= pιφ1Pι(−ε)Iω (since P is a retraction of ι)

= pΦ(Nω) (since IN = 0).

Remark 3.33. The definition of Φ has been made so that it is compatible with

the maps P and ι, and such that it satisfies NΦ = pΦN . There is a unique such

definition, for if Φ1 and Φ2 satisfied these two conditions, then their difference f

would satisfy:

1. fι = 0 = Pf ,

2. Nf = pfN = pfι(−ε)I = 0.

But the second condition implies that If = 0, because ι ◦ (−ε) is injective. Now

just write

IdH1
dR(XΓ,E(V )) = ιP + TI,

so f = ιPf + TIf = 0 + 0 = 0.

3.7.2 The structure of H1
dR(U,E(V ))

Let S be a finite set of points of XΓ, and let U = XΓ \S be the open subscheme ob-

tained by removing the points in S. The space H1
dR(U,E(V )) is identified with the

space of V -valued differential forms on Xan
Γ which are of the second kind when re-

stricted to U . The monodromy is defined in the same way as before. The Frobenius

is defined so that the Gysin sequence

0 // H1
dR(XΓ, E(V )) // H1

dR(U,E(V ))
⊕x∈S resx //

⊕
x∈S VΨx [1] (3.4)
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is a sequence of (φ,N)-modules, and such that P is compatible with the Frobenii.

3.7.3 Poincaré duality on H1
dR(XΓ, E(V ))

Let V be a finite-dimensional representation of Γ over K endowed with a Γ-invariant

perfect pairing 〈·, ·, 〉V . We first describe a pairing 〈·, ·〉Γ:

〈·, ·〉Γ : C1
har(V )Γ ⊗ H1(Γ, V )→ K,

given as follows: choose a free subgroup Γ′ ⊂ Γ of finite index, and let F be a good

fundamental domain for Γ′ as in Definition 1.15. Let b1, . . . , bg, c1, . . . , cg be the free

edges for F. For and f ∈ C1
har(V )Γ and [z] ∈ H1(Γ, V ), the pairing is given by the

formula:

〈[z], f〉Γ =
1

[Γ: Γ′]

g∑
i=1

〈z(γi), f(ci)〉V .

The previous pairing induces a pairing on H1
dR(XΓ, E(V )), and we are interested

in a formula for it, which we now proceed to describe. Let x, y ∈ H1
dR(XΓ, E(V )).

E. de Shalit computed first a formula for this pairing in [dS89] and [dS19], and

Iovita-Spieß proved it in a more conceptual way which allowed for a generalization,

in [IS03]. They obtained the equality:

〈x, y〉XΓ
= 〈P (x), I(y)〉Γ − 〈I(x), P (y)〉Γ. (3.5)

In order to compute the pairing we will later need the following result:

Proposition 3.34. Let f ∈ C1
har(V )Γ and [z] ∈ H1(Γ, V ). Let e be an edge of T

and let γ ∈ Γ. Then:

〈z(γ), rese ω〉V = −〈rese z(γ), Fω〉V .

3.7.4 Pairings between H1
dR(U,E(V )) and H1

dR,c(U,E(V ))

In this subsection we make explicit some of the constructions carried out in [IS03,

Appendix].
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Let U = X \ {x}, where x is a closed point of X defined over the base field

K. Write j : U → X = XΓ for the canonical inclusion. Let z be a lift of x to

Hp(K), taken inside a good fundamental domain F . We assume that the stabilizer

of z under the action of Γ is trivial. Let IndΓ(V ) be the Γ-representation given by

Maps(Γ, V ), with Γ-action:

(γ · f)(τ):=γf(γ−1τ).

Let ad: V → IndΓ(V ) be defined as the constant map: ad(v)(τ):=v. Consider the

complex K•(V ), concentrated on degrees 0 and 1, defined as:

K•(V ) : V
ad−→ IndΓ(V ).

Consider also the complex C•(V ) defined as follows:

C•(V ) : OHp(Hp)⊗ V
(d,evz)−→ Ω1(Hp)⊗ V ⊕ IndΓ(V ).

Definition 3.35. The cohomology with compact support on U with coefficients in

E(V ) is the hypercohomology group:

H1
dR,c(U,E(V )) ∼= H1(Γ, C•(V )).

Fact. The inclusion j induces natural maps:

j∗ : H
1
dR,c(U,E(V ))→ H1

dR(X,E(V ))

and

j∗ : H1
dR(X,E(V ))→ H1

dR(U,E(V )).

There is a pairing 〈·, ·〉U , on:

H1
dR,c(U,E(V ))×H1

dR(U,E(V ))→ K,

induced from the cup-product. It satisfies:

〈j∗y1, y2〉X = 〈y1, j
∗y2〉U .
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The exact triangle:

K•(V )→ C•(V )→ C1
har(V )[−1]→ K•(V )[1]

induces a short exact sequence:

0→ H1(Γ,K•(V ))
ιU,c−→ H1

dR,c(U,E(V ))
IU,c−→ C1

har(V )Γ → 0.

The splitting PU,c is defined as follows. Fix a branch of the p-adic logarithm. Let

F(V ) be the subspace of those V -valued locally-analytic functions on Hp which are

primitives of elements of Ω1(Hp)⊗ V . There is an exact sequence:

0→ V → F(V )
d−→ Ω1(Hp)⊗ V → 0,

and one immediately checks that this implies that the complex

F(V )→ Ω1(Hp)⊗ V ⊕ IndΓ(V )

is quasi-isomorphic to K•.

PU,c : H1
dR,c(U,E(V )) = H1(Γ, C•)→ H1(Γ,K•).

We define now a Γ-module CU(V ). There is a surjective map

δ : C1(V )→ C0(V ),

defined by:

δ(f)(v):=
∑
o(e)=v

f(e).

Let v0:= red(z), and define χ : IndΓ(V )→ C0(V ) by:

χ(f)(v):=

f(γ) if v = γv0, for some γ ∈ Γ,

0 otherwise.

The Γ-module CU(Γ) is defined to be the kernel of the map:

C1(V )
⊕

IndΓ(V )→ C0(V ),
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mapping (f, g) 7→ δ(f)− χ(g). The map IU : H1
dR(U,E(V ))→ CU(V )Γ is naturally

induced from the map ĨU : Ω1(Hp)(log(|z|))⊗ V → CU(V ), defined by:

ĨU(ω)(e, γ):=(rese(ω), resγ(z)(ω)).

Also, the map ιU is induced from the natural inclusion

V → OHp(Hp)(log(|z|))⊗ V.

Finally, we define a splitting PU is defined by the same formula as the one defining

P . We end this section by recalling the explicit description of the pairing

〈·, ·〉Γ,U : H1(Γ,K•(V ))⊗ CU(V )Γ → K.

Proposition 3.36 (Iovita-Spieß). Let x ∈ H1(Γ,K•(V )) be represented by (ζ, f),

such that

ad ◦ ζ = ∂(f),

with ζ ∈ Z1(Γ, V ) a one-cocycle and f ∈ IndΓ(V ) satisfying

(∂f)(γ) = γf − f.

Let (g, g′) ∈ C1(V ) ⊕ IndΓ(V ) be an element in CU(V )Γ, so that δ(g) = χ(g′).

Choose a free subgroup Γ′ ⊂ Γ of finite index, and let F be a good fundamental

domain for Γ′ as in Definition 1.15. Let b1, . . . , bg, c1, . . . , cg be the free edges for F.

Then:

〈[(ζ, f)], (g, g′)〉Γ,U =
1

[Γ: Γ′]

g∑
i=1

〈ζ(γi), g(ci)〉+ 〈f(1), g′(1)〉.

Proof. See [IS03, Appendix].

We have constructed a commutative diagram with exact split rows:

0 // H1(Γ,K•(V ))
ιU,c //

q∗

��

H1
dR,c(U,E(V ))

IU,c //

PU,c

ww TY_ej

j∗
��

C1
har(V )Γ // 0

0 // H1(Γ, V )
ι // H1

dR(X,E(V ))
I //

P

ww TY_ej

j∗

��

C1
har(V )Γ //

���
�
�

0

0 // H1(Γ, V )
ιU // H1

dR(U,E(V ))
IU //

PU

ww TY_ej

CU(V )Γ // 0.

(3.6)
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Here the bent arrows mean splittings of the corresponding maps, and the vertical

dotted arrow means the natural induced map on the quotient.

3.8 A special case of interest

In [IS03] the authors apply the previous constructions to a filtered isocrystal on Hp

denoted by E(M2). It is shown in [CI03, Lemma 5.10] that E(M2) is regular, and

therefore one can define a structure of a filtered (φ,N)-module on its cohomology

groups. Here we make the construction explicit. Consider first the Qp-vector space

of 2× 2 matrices M2. Define two commuting left actions of GL2 on M2 by:

ρ1(A)(B):=AB ρ2(A)(B):=BA,

for A ∈ GL2 and B ∈ M2. The matrix A is such that AA = detA. This gives a

representation:

(M2, ρ1, ρ2) ∈ RepQp(GL2×GL2).

The isocrystal E(M2) is constructed as an isocrystal on the canonical formal model

Ĥ over Zur
p of Hp. We are also interested in its fibers over Qp2-rational points

Ψ ∈ Hom(Qp2 ,M2(Qp)). Let OĤ be the isocrystal attached to Ĥ. As an isocrystal

E(M2) is:

M2(Qp)⊗Qp OĤ.

We need to the define the Frobenius and filtration. First, let φ be the action on

M2(Qp):

( a bc d ) 7→ ( a bc d )
(

0 −p
−1 0

)
=
( −b −pa
−d −pc

)
.

On OĤ there is a Frobenius action ΦOĤ as well. We define the Frobenius on the

tensor product through these two actions.

The next lemma helps us in describing the filtration for E(M2).

Lemma 3.37. The map (M2, ρ1)→ V1 ⊕ V1 defined by:

( a bc d ) 7→ (avx + cv1, bvx + dv1)
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is a GL2-equivariant isomorphism. Here {vx, v1} is the dual basis to {x, 1}.

The filtration is given in degree 1 by:

F 1M2 =
{(

zf(z) zg(z)
f(z) g(z)

)
| f, g ∈ OHp

}
.

3.8.1 The stalks

Let Ψ ∈ Hom(Qp2 ,M2(Qp)). As a Qur
p -vector space, the stalk E(M2)Ψ is just

M2(Qur
p ). The Frobenius acts by φ on M2 and by σ on Qur

p . That is:

Φ (( a bc d )) =
(
−σ(b) −pσ(a)
−σ(d) −pσ(c)

)
.

The filtration is defined in terms of ρ1: for each j, let Vj be defined as

Vj:={A ∈M2(Qur
p ) | Ψ(x)A = xjσ(x)1−jA, ∀x ∈ Qp2}.

Define then:

FiliΨ M2(Qur
p ):=

⊕
j≥i

Vj.

This is an exhaustive and separated filtration on M2(Qur
p ). The monodromy is

trivial.

3.9 The p-adic Abel-Jacobi map

Let X be a smooth projective variety over a field K. Suppose given a closed

immersion i : Z ↪→ X and an open immersion j : U ↪→ X, such that X is the

disjoint union of i(Z) and j(U). Let F be a sheaf on the étale site of X. Then

i∗i
!F is the largest subsheaf of F which is zero outside Z.

The group

Γ(X, i∗i
!F) = Γ(Z, i!F) = ker (F(X)→ F(U))
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is called the group of sections of F with support on Z. The functor which maps

a sheaf F to Γ(Z, i!F) is left-exact, so it makes sense to consider its right-derived

functors.

Definition 3.38. The functors

Hk
|Z|(X,F):=F 7→ RkΓ(Z, i!F)

are called the étale cohomology groups of F with support on Z.

Proposition 3.39. Let F be a sheaf on the étale site of X. There is a long exact

sequence

0→ (i!F)(Z)→ F (X)→ F (U)→ · · ·

· · · → Hk
et(X,F)→ Hk

et(U,F)→ Hk+1
|Z| (X,F)→ · · ·

Proof. This follows immediately by applying the cohomology functor to the exact

sequence of sheaves on the étale site of X:

0→ j!j
∗F → F → i∗i

∗F → 0.

Let K be the separable closure of K, and let X = X ⊗K K be the base change

of X to K. Assume also that Z is smooth over K. Let c be the codimension of Z

in X. That is, each of the irreducible components of Z is of codimension c inside

the corresponding component of X.

Let F be a locally constant torsion sheaf on X, such that its torsion is coprime

to char(K). In our applications, charK = 0, so this condition will be void. As a

special case of cohomological purity, (see [Mil80] VI.5.1), we have:

Theorem 3.40. For every k ∈ Z there is a canonical isomorphism

Hk
|Z|(X,F) ∼= Hk−2c

et (Z, i∗F(−c)).
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Corollary 3.41. For 0 ≤ k ≤ 2c − 2, Hk
et(X,F) ∼= Hk

et(U,F). Moreover, if

d = dim(X), there is a long exact sequence:

0→ H2c−1
et (X,F)→ H2c−1

et (U,F)→ H2c
|Z|

(
X,F

) i∗−→ H2c
et (X,F)→ · · · (3.7)

· · · → H2d
|Z|

(
X,F

)
→ H2d

et (X,F)→ H2d
et

(
U,F

)
→ 0.

Remark 3.42. In the previous corollary we could replace the group H2c
|Z|

(
X,F

)
with H0

et

(
Z, i∗F(−c)

)
, and the group H2d

|Z|

(
X,F

)
with H

2(d−c)
et

(
Z, i∗F(−c)

)
.

3.9.1 The l-adic Abel-Jacobi Map

Assume now that K is a field of characteristic 0, and let ` be a prime. Let X

be a smooth projective variety over K, and let CHc(X) be the Chow group of

X, consisting of codimension-c cycles with rational coefficients, modulo rational

equivalence. The Chow group will be revisited again in Chapter 5 when discussing

a category of relative motives with arbitrary coefficients, but here we work with

a simpler setting. Consider the locally-constant sheaves Fn = Z/`nZ(c) in the

previous section, and take projective limits with respect to n, to get Z`-valued

cohomology. Inverting ` we get Q`-valued cohomology, which will be denoted with

Het as well.

The Gysin map i∗ in Equation 3.7 induces by restriction to rational cycles the

cycle class map (see [Mil80, Chapter VI.9]):

cl : CHc(X)→ H2c
et

(
X,Q`(c)

)GK
,

where X:=X⊗KK. Let CHc
0(X):= ker cl. Given a class [Z] ∈ CHc

0(X), represented

by a cycle Z, consider the short exact sequence of GK-modules:

0→ H2c−1
et

(
X,Q`(c)

)
→ H2c−1

et

(
X \ |Z|,Q`(c)

)
→ H2c

|Z|

(
X,Q`(c)

)
0
→ 0, (3.8)

where

H2c
|Z|

(
X,Q`(c)

)
0

:= ker
(
H2c
|Z|

(
X,Q`(c)

) i∗−→ H2c
et

(
X,Q`(c)

))
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is the kernel of the Gysin map i∗.

Consider the map α : Q` 7→ H2c
|Z|
(
X,Q`(c)

)
0

which sends

1 7→ clX
Z

(Z) ∈ H2c
|Z|

(
X,Q`(c)

)
.

Set U :=X \ |Z|. Pulling back the exact sequence (3.8) by α we obtain an extension

0 // H2c−1
et

(
X,Q`(c)

)
// E //

��

Q`
//

α
��

0

0 // H2c−1
et

(
X,Q`(c)

)
// H2c−1

et

(
U,Q`(c)

)
// H2c
|Z|

(
X,Q`(c)

)
0

// 0.

(3.9)

Definition 3.43. The l-adic étale Abel-Jacobi map is the map

AJet
` : CHc

0(X)→ Ext1
Rep(GK)

(
Q`, H

2c−1
et

(
X,Q`(c)

))
,

which assigns to a class [Z] the class of the extension (3.9) in the category of

continuous representations of the Galois group GK .

3.9.2 The case ` = p

Assume now that the variety X is defined over a p-adic field K. Fix then ` = p.

Bloch and Kato in [BK90] and Nekovar in [Nek93] have defined, for any Galois

representation V of GK , a subspace

H1
st(K,V ):= ker

(
H1

et(K,V )→ H1
et(K,V ⊗Qp Bst)

)
.

When V is semistable, this is identified with the group of extension classes of V by

Qp in the category of semistable representations of GK .

The following result can be found in [Nek00] and will be used in a crucial way

in this work.

Lemma 3.44. The image of AJet
p is contained in

H1
st

(
K,H2c−1

et

(
X,Qp(c)

)) ∼= Ext1
Repst(GK)

(
Qp, H

2c−1
et

(
X,Qp(c)

))
.
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As seen in Section 3.3, the Fontaine functors Dst and Vst give a canonical com-

parison isomorphism:

Ext1
Repst(GK)

(
Qp, H

2c−1
et (X,Qp(c))

) ∼= Ext1

MFad,φ,N
K

(
K[c],Dst(H

2c−1
et (X,Qp))

)
,

which will make the computation of the Abel-Jacobi map possible.
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Chapter 4

The anti-cyclotomic p-adic

L-function

This chapter is based mostly on [BDIS02]. In Section 4.1 we relate modular forms

on a Shimura curve to certain harmonic cocycles. In Section 4.2 these are in turn

related to distributions. Section 4.3 ties the distributions back to modular forms. In

Section 4.4 the anti-cyclotomic p-adic L-function attached to a modular form f and

to a quadratic imaginary field K is defined, in the case that p is inert in K. This is

the object that will be geometrically interpreted. Section 4.5 ends the chapter by

showing how this L-function interpolates special values of classical L-functions.

4.1 Modular forms and harmonic cocycles

Recall the definitions of harmonic cocycles as given in Section 3.1, as well as the

definition of the representation Vn = P∨n . Let B be a definite quaternion algebra

unramified at p, and let R ⊂ B be an Eichler Z[1/p]-order of level N+. Fix an

isomorphism ι : B⊗Qp
∼−→M2(Qp), which induces a group homomorphism on the

respective groups of units. Let Γ = ι(R×1 ) ⊆ SL2(Qp), where R×1 is the subgroup of

R× of units of reduced norm 1.
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Let f be a rigid-analytic modular form of weight n + 2 on Γ, as defined in

Section 2.5. To f one can associate a harmonic cocycle cf ∈ C1
har(Vn), defined by:

cf (e)(r):= rese(f(z)r(z)dz), r ∈ Pn.

Here rese is the p-adic annular residue along the oriented wide open annulus U(e)

corresponding to the edge e ∈ ~E(T ). The p-adic residue formula implies that cf is

a cocycle.

There is a pairing on Γ-invariant harmonic cocycles of weight n+2 on T , defined

by:

〈c1, c2〉:=
∑

e∈Γ\E(T )

we〈c1(e), c2(e)〉,

where the pairing on the right was defined in the previous section, and we is the

size of the stabilizer of e in Γ. It can be checked that this pairing is non-degenerate,

and that the Hecke operators Tl, for l - N are self-adjoint with respect to it.

Definition 4.1. An eigenform f ∈Mn+2(Γ) is said to be normalized if its associated

cocycle cf satisfies 〈cf , cf〉 = 1.

4.2 Harmonic cocycles and distributions

Let X be a compact subset of P1(Cp). Note that the space P1(Cp) has a natural non-

archimedean metric: given α = [a1 : a2] and β = [b1 : b2] with (a1, a2) = (b1, b2) = 1,

we set d(α, β):=p− ordp(a1b2−a2b1). For each N ≥ 1, define the affinoid subdomain

X[N ]:={x ∈ P1(Cp) | ∃y ∈ X, d(x, y) ≤ p−N} ⊆ P1(Cp).

The Qp-algebra of rigid analytic functions on X[N ], which here we write A(X[N ]),

is a Banach algebra over Qp for the spectral norm, and we let

A(X):= lim−→
N

A(X[N ]),

where the transition maps are just restrictions. This is called the Qp-algebra of

locally analytic functions on X. Write also A:=A(P1(Qp)), and denote by An the
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set of Cp-valued functions on P1(Qp) which are locally analytic except for a pole of

order at most n at ∞.

Given a Γ-invariant harmonic cocycle c ∈ C1
har(Vn)Γ, we wish to associate to it

a distribution on the space An.

Schneider defined in [Sch84] a continuous linear functional µc on the space of

locally analytic functions which are supported on compact subsets U ⊂ Qp. The

distribution µc is characterized by the formula:

µc(r · χU(e)):=

∫
U(e)

r(x)dµc(x):=c(e)(r),

for all e ∈ E∞(T ) satisfying ∞ /∈ U(e), and all r ∈ Pn. In [Tei90], Teitelbaum

extended uniquely the distribution µc to the space An.

4.3 Distributions associated to modular forms

Let f be a rigid analytic modular form of weight n + 2 on Γ. By combining the

constructions of the two previous sections one associates to f a distribution µf on

An.

Definition 4.2. The distribution associated to f is given by

µf (P · χU(e)):=

∫
U(e)

P (x)dµf (x):=cf (e)(P (X)),

where cf is the Γ-invariant harmonic cocycle associated to f , the polynomial P

belongs to Pn, and e is an end in E∞(T ) such that ∞ /∈ U(e).

This distribution extends uniquely to An, and one obtains:

Lemma 4.3. If P ∈ Pn, then∫
P1(Qp)

P (x)dµf (x) = 0.
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Proof. Write first

P1(Qp) =

p∐
i=0

U(ei),

where e0, . . . , ep are the p+ 1 edges leaving the origin vertex v0. Then:∫
P1(Qp)

P (x)dµf (x) =

(
p∑
i=0

cf (ei)

)
(P (X)) = 0,

because cf is a harmonic cocycle.

The group GL2(Qp) acts also on An with weight n, by the rule:

(ϕ ∗ β)(x):=(cx+ d)nϕ(β · x), ϕ ∈ An, and β ∈ PGL2(Qp).

The following proposition allows one to recover a modular form f from its as-

sociated distribution.

Proposition 4.4 (Teitelbaum). Let f be a rigid analytic modular form of weight

n+ 2 on Γ, and let µf be the associated distribution on P1(Qp). Then

f(z) =

∫
P1(Qp)

1

z − t
dµf (t).

Proof. See [Tei90, Theorem 3].

4.4 The definition

The goal in this section is to construct a p-adic distribution that allows the definition

of the anti-cyclotomic p-adic L-function, as done in [BDIS02]. The construction is

slightly different depending on the splitting of p in K, and we will only need the

case where p is inert in K, which we will assume from now on. Assume also that

the primes dividing N− are inert in K. Fix an isomorphism ι : Bp →M2(Qp).
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4.4.1 Oriented Embeddings

Let OK be the ring of integers of K, and let O = OK [1/p] be its ring of p-integers.

Let R ⊆ B be an Eichler Z[1/p]-order of level N+.

Definition 4.5. An orientation of R is a surjective ring homomorphism

o : R→ (Z/N+Z)×
∏
l|N−

Fl2 ,

and the pair (R, o) is called an oriented Eichler order .

Similarly, an orientation of O is a surjective ring homomorphism

O → (Z/N+Z)×
∏
l|N−

Fl2 .

Remark 4.6. Note that to give an orientation of O is equivalent to the choice of

a prime ideal of K above each prime l dividing N+, and an identification of the

residue field of K at l with Fl2 for each l dividing N−.

Fix an orientation for R and for O.

Definition 4.7. An oriented optimal embedding of O into R is an embedding

Ψ: K → B of an oriented Eichler order (R, o) into the quaternion algebra B such

that

1. Ψ(K) ∩R = Ψ(O), so that Ψ induces an embedding of O into R, and

2. Ψ is compatible with the chosen orientations for R and O.

The group R× acts by conjugation on the set of oriented optimal embeddings,

as well as its subgroup Γ:=R×1 , of elements of reduced norm equal to 1. Denote by

emb(O, R) the set of oriented optimal embeddings of O into R, modulo this action.

Let ∆:= Pic(O) be the Picard group of projective modules of rank one over O.

There is a natural action of ∆ on emb(O, R) which is described in detail [BDIS02,

Section 2.3]. We omit here the exposition of this action, which would require us to

introduce notation coming from class field theory that is not needed in the sequel.
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4.4.2 The partial p-adic L-function

What will be called the partial p-adic L-function depends on a pair (Ψ, ?), of an

optimal embedding Ψ: K → B and a base-point ? ∈ P1(Qp). Fix such a pair. The

embedding Ψ induces an embedding Ψ: Kp → Bp (where we write Kp:=K ⊗ Qp).

Recall that we have fixed an isomorphism ι : Bp →M2(Qp). The composition ι ◦Ψ

induces an embedding of K×p /Q×p into PGL2(Qp), which is also noted ι ◦ Ψ. This

gives an action ∗ of K×p /Q×p on the boundary P1(Qp) of Hp:

α ∗ x:=(ι ◦Ψ)(α)(x),

for α ∈ K×p /Q×p and x ∈ P1(Qp). Since p is assumed to be inert in K, this action

is simply-transitive.

The base point ? ∈ P1(Qp) gives an identification

ηΨ,? : K×p /Q×p
∼=−→ P1(Qp),

by sending 1 to ?. The torus ι ◦ Ψ(K×p ) has two fixed points in Hp, which are

denoted z0 and z0. They belong to Kp and are interchanged by Gal(Kp/Qp). In

fact, having fixed an embedding of H(µM) ↪→ Q (recall that H is the Hilbert class

field of K), it is shown in [BD98, Section 5] how to distinguish z0 from z0. At

the cost of an ambiguity in the sign of the subsequent formulas, we can omit this

subtlety.

There is a natural homeomorphism G ∼= K×p /Q×p , where G:=K×p,1 denotes the

subgroup of K×p of elements of norm 1. This identification induces an isomorphism

ηΨ,? : G
∼=−→ P1(Qp).

When ? =∞, this is given explicitly by:

ηΨ,∞(α) =
z0α− z0

α− 1
, η−1

Ψ,∞(x) =
x− z0

x− z0

.

The function ηΨ,? induces in turn a continuous isomorphism:

(ηΨ,?)∗ = (η−1
Ψ,?)

∗ : A(G)→ A,
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from the ring of locally-analytic functions on G to A.

Consider the polynomial P
n
2

Ψ(
√
−DK)

, where PΨ(
√
−DK) has been defined in Equa-

tion (3.1) of Chapter 3. Given ϕ ∈ A(G), we define

µf,Ψ,?(ϕ):=µf

(
P

n
2

Ψ(
√
−DK)

· (η−1
Ψ,?)

∗(ϕ)
)
.

This is a locally analytic distribution on G. Now, fix a branch logp of the p-adic

logarithm such that logp(p) = 0. This induces a homomorphism log : K×p → Kp

which vanishes at the roots of unity, thus giving a homomorphism G → Kp. For

s ∈ Zp and x ∈ G, define then

xs:= exp(s log x).

Let [Ψ] ∈ emb(O, R) and let ? ∈ P1(Qp) be a fixed base point.

Definition 4.8 ([BDIS02, Definition 2.20]). The partial p-adic L-function attached

to the datum (f, (Ψ, ?)) is the function of the p-adic variable s ∈ Zp defined by:

Lp(f,Ψ, ?, s):=

∫
G

xs−
n+2

2 dµf,Ψ,?(x).

4.4.3 Definition of the p-adic L-function

We have so far constructed a distribution on G, to which we attach a partial p-

adic L-function. In order to define the anticyclotomic p-adic L-function we need to

consider anticyclotomic extensions of number fields, which we recall now.

Definition 4.9. An abelian extension L/K is called anticyclotomic if it is Galois

over Q and if the involution in Gal(K/Q) acts (by conjugation) as −1 on Gal(L/K).

Let K∞ denote the maximal anticyclotomic extension of K unramified outside

p. Let H be the Hilbert class field of K. Let Kn be the ring class field of K of

conductor pn (so that K0 = H). We have a tower of extensions:

Q ⊂ K ⊂ H ⊂ K1 ⊂ · · · ⊂ Kn ⊂ · · · .
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Assume for simplicity that O×K = {±1}. By class field theory, the p-adic group

G is isomorphic to Gal(K∞/H). Let Gn:= Gal(K∞/Kn), and let ∆:= Gal(H/K).

Write also G̃:= Gal(K∞/K). These fit into an exact sequence:

1→ G→ G̃→ ∆→ 1,

and in [BDIS02, Lemma 2.13] it is shown how the natural action of ∆ on emb(O, R)

lifts to an action of G̃ on the same set. The logarithm logp extends uniquely to G̃,

and thus one can define xs for s ∈ Zp and x ∈ G.

Let α ∈ G̃ be an element of G̃. Given a function ϕ : G̃→ Cp, denote by ϕα the

function G→ Cp sending x to ϕ(αx).

For each δ ∈ ∆, fix once and for all a lift αδ of δ to G̃.

Definition 4.10. A function ϕ : G̃ → Cp is locally analytic if ϕαδ ∈ A(G) for all

δ ∈ ∆. The set of locally-analytic functions on G̃ is denoted by A(G̃).

Define a distribution µf,K on A(G̃) by the formula:

µf,K(ϕ):=
∑
δ∈∆

µf,Ψδ,?δ(ϕαδ),

where (Ψδ, ?δ):=αδ(Ψ, ?).

Finally, define the anticyclotomic p-adic L-function:

Definition 4.11 ([BDIS02, Definition 2.19]). The anticyclotomic p-adic L-function

attached to the modular form f and the field K is:

Lp(f,K, s):=

∫
G̃

αs−
n+2

2 dµf,K(α), s ∈ Zp.

4.5 Interpolation of classical values

Let f∞ be a classical cusp form of weight n+ 2 on Γ0(N). Assume now that f∞ is

pN−-new, and let Oc be the order of K of conductor c and Gc = Pic(Oc) be the

Picard group of rank one projective Oc-modules.
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Let εK be the quadratic Dirichlet character attached to K, and for each positive

integer m let ra(m) be the number of integral ideals of norm m in the ideal class of

a. For a character χ : Gc → C×, set:

L(f∞/K, χ, s):=
∑

χ(a)L(f∞/K, a, s),

where the sum runs over all classes in Gc, and where:

L(f∞/K, a, s):=

 ∞∑
m=1,(m,N)=1

εK(m)

m2s−n−1

( ∞∑
m=1

amra(m)

ms

)

is the partial L-function associated to the class [a] ∈ Gc. Here, εK is the quadratic

character associated to K, and the coefficients am are those in the q-expansion of

f∞:

f∞ =
∞∑
m=1

amq
m, a1 = 1.

Although L(f∞/K, a, s) does not have Euler products, the complete L-function

L(f∞/K, χ, s) does have an Euler product and a functional equation relating s to

n+ 2− s.

Let f ∈Mn+2(XΓ) be the modular form on the Shimura curve XΓ associated to

f∞ via Theorem 2.39. The following proposition gives the interpolation property

for the p-adic distribution µf,K and the p-adic L-function defined above.

Proposition 4.12 ([BDIS02, Section 2.5]). Assume that n is even. Let χ : G̃→ C×p
be a continuous finite-order character. Then:∣∣∣∣∫

G̃

χ(x)dµf,K(x)

∣∣∣∣2 = M(χ)(−DK)
n+1

2
L(f∞/K, χ,

n+2
2

)

(f∞, f∞)
,

where M(χ) is a simple explicit constant (it is one if χ is unramified), and (·, ·) is

the Pettersson inner product.
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Part II

Results
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Chapter 5

A motive

In this chapter we define a certain Chow motive Dn, which will allow for the geo-

metric interpretation of the p-adic L-function defined in the previous chapter. We

will then calculate its realizations. Section 5.1 introduces some notions on Chow

motives that will be used in this chapter and the following. Section 5.2 recalls the

motive described in [IS03]. In Section 5.4 this definition is modified in the spirit

of [BDP09], thus yielding the motive Dn. The goal of the final Section 5.5 is to

compute the realizations of Dn.

5.1 Relative motives with coefficients

In this section we introduce the category of relative Chow motives with coefficients

in an arbitrary field. We follow the exposition given in [Kün01, Section 2].

Let K be a field of characteristic 0. Let S be a smooth quasiprojective connected

scheme over K. For simplicity, assume that S is of dimension 1, as this is the only

situation that we will need in the following. Denote by Sch(S) the category of

smooth projective schemes X → S. Let F be any field of characteristic 0.

Definition 5.1. The ith Chow group ofX, written CHi(X), is the group of algebraic

cycles on X of codimension i, modulo rational equivalence.
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Definition 5.2. The Chow ring of X, written CH(X), is the ring of algebraic cycles

on X, modulo rational equivalence. The product is given by intersection of cycles.

There is an obvious decomposition, as abelian groups:

CH(X) =
d+1⊕
i=0

CHi(X),

where d is the relative dimension of X over S. Write also

CH(X,F ):= CH(X)⊗Z F.

Definition 5.3. Given X, Y two smooth projective S-schemes, the ring of S-

correspondences with coefficients in F is defined as:

CorrS(X, Y ):= CH(X ×S Y, F ).

For α ∈ CH(X1×S X2, F ) and β ∈ CH(X2×S X3, F ), the composition of α and

β is defined as:

β ◦ α:= pr13,∗ (pr∗12(α) · pr∗23(β)) ,

where prij is the projection of X1 ×S X2 ×S X3 to Xi ×Xj.

Definition 5.4. A projector on X over S is an idempotent in the ring of relative

correspondences CorrS(X,X) = CH(X ×S Y, F ). If p belongs to the ith graded

piece CHi(X ×S X,F ) we say that p is of degree i.

We first introduce the category Mot(S, F ) of Chow motives over S with coeffi-

cients in F , with respect to ungraded correspondences. Its objects are pairs (X, p),

where X → S is in Sch(S), and p is a projector with coefficients in F . We set:

HomMot(S,F ) ((X, p), (Y, q)) :=q ◦ CH(X ×S Y, F ) ◦ p,

and composition is induced by composition of correspondences. For i ∈ Z, we say

that q ◦ α ◦ p ∈ HomMot(S) ((X, p), (Y, p)) is homogeneous of degree i if

q ◦ α ◦ p ∈
⊕
ν

CHdν+i(Xν ×S Y, F ),
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where X =
∐

ν Xν is the decomposition of X into connected components and

dν = dim(Xν/S). This makes HomMot(S,F ) into a graded ring, with multiplication

given by composition. Also, given (X, p) and (Y, q) two objects in Mot(S, F ), we

can define (X, p)⊕S (Y, q):=(X
∐
Y, p

∐
q) and (X, p)⊗S (Y, q):=(X ×S Y, p⊗S q).

Fact. The category of motives Mot(S, F ) is an additive, pseudo-abelian F -linear

tensor-category.

Next, we define the category Mot0
+(S, F ) of effective relative Chow motives

with coefficients. Its objects are those objects (X, p) in Mot(S, F ) such that p is

homogeneous of degree 0. As morphisms one takes the degree-zero morphisms:

HomMot0
+(S,F ) ((X, p), (Y, q)) :=

(
HomMot(S,F ) ((X, p), (Y, q))

)0
.

Given an S-scheme X, one associates to it an object of Mot0
+(S, F ):

h(X):=(X,∆X),

where ∆X is the diagonal of X in X ×S X. Given a map f : Y → X of S-schemes,

we can consider (the class of) the transpose of its graph [ tΓf ] as an element of

CH(X ×S Y ). Concretely, we consider the map

γf : X → X ×S Y, γf = Id× f,

and we set [Γf ]:=(γf )∗[X]. This can be seen as a morphism

[Γf ] ∈ CHd(X ×S Y, F ) = HomMot0
+(S) (h(X), h(Y )) ,

and hence [ tΓf ] ∈ HomMot0
+(S,F )((h(Y ), h(X)). Assigning to f the morphism [ tΓf ]

we obtain a contravariant embedding of categories:

h : Sch(S)→Mot0
+(S, F ).

Lastly, define the category Mot0(S, F ) of relative Chow motives over S with

coefficients over F . Its objects are triples (X, p, i), where X is a smooth projective
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S-scheme, p is a projector on X, and i is an integer. Given (X, p, i) and (Y, q, j)

two such objects, we define

HomMot0(S,F ) ((X, p, i), (Y, q, j)) := Homj−i
Mot(S,F ) ((X, p), (Y, q)) .

Composition is again induced from composition of correspondences. In this way,

the category Mot0
+(S, F ) can be seen as a full subcategory of Mot0(S, F ).

Fact. The category Mot0(S, F ) is an additive, pseudo-abelian F -category with a

canonical tensor product given by:

(X, p,m)⊗ (Y, q, n):= = (X ×S Y, p⊗ q,m+ n).

There is also duality: given M = (X, p,m), with X pure of relative dimension

n over S, define M∨:=(X, pt, n−m). Then we have:

Hom(P ⊗M,N) = Hom(P,M∨ ⊗ N).

Twisting in Mot0(S, F ) is defined by

(X, p,m)(n):=(X, p,m+ n).

One has a form of Poincaré duality: if d is the relative dimension of X over S, then:

h(X)∨ = h(X)(d).

One also has direct sums, which can be described explicitly. Consider first the Lef-

schetz motive LS:=(P1
S, π2, 0), where π2 is the Künneth projector onto R2, coming

from any section to P1
S → S. Since for m ≤ 0 the motive (X, p,m) is isomorphic to

(X, p, 0)⊗S L−mS , and since the direct sum for motives of degree 0 is easy:

(X, p, 0)⊕ (Y, q, 0):=(X
∐

Y, p
∐

q, 0),

we can define the direct sum for general objects in Mot0(S, F ) as follows: let

r ≥ max(m,n). Then (X, p,m)⊕S (Y, q, n) is, by definition:((
X ×S (P1

S)r−m
)∐(

Y ×S (P1
S)r−n

)
,
(
p⊗ π⊗(r−m)

2

)∐(
q ⊗ π⊗(r−n)

2

)
, r
)
.
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The importance of Chow motives lies in their universality for the realization

functors . For us, this means that given a motive (X, p, i), the correspondence

p induces a projector on any Weil cohomology H∗(X), and therefore we obtain

functors H∗ from the category Mot0(S, F ) to the same category where H∗(X)

would live, by sending (X, p, i) to pH∗(X). These functors are called realization

functors . We will concentrate on the l-adic étale and de Rham realizations, in the

next sections.

5.2 The motive M(M)
n of Iovita and Spieß

5.2.1 Decomposition of the universal abelian surface

Fix M ≥ 3, and let XM/Q be the Shimura curve parametrizing abelian surfaces

with quaternionic multiplication by Rmax ⊆ B and level-M structure, as described

in Section 2.2. Let π : A → XM be the universal abelian surface with quaternionic

multiplication. Consider the relative motive h(A) as an object of Mot(XM , F ),

where h is the contravariant functor

h : Sch(XM)→Mot0
+(XM , F )

from the category of smooth and proper schemes over XM to the category of Chow

motives with coefficients in F , as explained above. In general, the realization func-

tors of a motive give the corresponding cohomology groups, as graded vector spaces

with extra structures, and one cannot isolate the ith cohomology groups at the

motivic level, without assuming what are known as “standard conjectures”. If

the underlying scheme has extra endomorphisms then one can hope to annihilate

some of these groups and thus obtain only the desired degree. The following result

establishes this for abelian schemes:

Theorem 5.5 (Deninger-Murre, Künnemann). The motive h(A) admits a canon-
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ical decomposition

h(A) =
4⊕
i=0

hi(A),

with hi(A) ∼=
∧i h1(A) and hi(A)∨ ∼= h4−i(A)(2).

Proof. This is originally proved in [DM91, Theorem 3.1, Proposition 3.3] using the

so called “Fourier theory for abelian schemes”. An explicit closed formula is given

in [Kün01].

5.2.2 Definition of M(M)
n for even n

Fix an integer M ≥ 3. In [IS03, Appendix] the authors define a motive M(M)
n for

even n ≥ 2. In this section we recall this construction. Let e2 be the unique nonzero

idempotent in End(
∧2 h1(A)) = End(h2(A)) such that

x · e2 = nrd(x)e2, for all x ∈ B.

Define ε2 to be the projector in the ring CorrXM (A,A) such that

(A, ε2) = M̃(M)
2 := ker(e2).

Set m as n/2 and define M̃(M)
n := Symm M̃(M)

2 . There is a symmetric pairing, given

by the cup-product,

h2(A)⊗ h2(A)→
4∧
h1(A) ∼= Q(−2).

Let 〈·, ·〉 be its restriction to M̃(M)
2 ⊗ M̃(M)

2 . It induces a Laplace operator

∆m : M̃(M)
n → M̃(M)

n−2(−2),

given symbolically by

∆m(x1x2 · · ·xm) =
∑

1≤i<j≤m

〈xi, xj〉x1 · · · x̂i · · · x̂j · · ·xm.

Lemma 5.6 ([IS03, Section 10.1]). ker(∆m) exists (as a motive).
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Sketch of proof. We will rewrite ker(∆m) as the kernel of a certain projector, and

use the fact that, even if the category of motives is not abelian, at least it has

kernels of projectors.

Let λm−2 be the morphism

λm−2 : M̃(M)
n−2 → M̃(M)

n (2)

given symbolically by λm−2(x1x2 · · ·xm−2) = x1x2 · · ·xm−2µ, where

µ : Q→ M̃(M)
2 (2)

is the dual of 〈·, ·〉 twisted by 2.

Clearly ∆m ◦ λm−2 is an isomorphism. Let then

pr :=λm−2 ◦ (∆m ◦ λm−2)−1 ◦∆m,

which is a projector, so ker ∆m = ker(pr) can be written as the kernel of a projector.

Define the correspondence εn in CorrXM (Am,Am) to be such that

(Am, εn) = (Mn)(M):= ker(∆m).

5.3 Extending M(M)
n to all weights

We propose a uniform construction ofM(M)
n for all integers n ≥ 1, which is expected

to coincide with the definition given above when n is even. Fix a quadratic field

F splitting B, and fix an embedding q : F ↪→ B. For instance, F could be taken

to be the imaginary quadratic field K. The construction we give is not as natural

as the definition given for even n, since it depends on the choice of the embedding

q : F ↪→ B.

The Rmax-action on A induces an embedding B ↪→ End(h1(A)) which gives an

action of F× on h1(A). Let e′1 be the unique nonzero idempotent in End(h1(A)) such
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that for all x ∈ F× one has x · e′1 = xe′1. Define the projector ε′1 ∈ CorrXM (A,A)

via the formula

(A, ε′1) = e′1.

More concretely, write F = Q(α) where α ∈ F is chosen to have trace 0. The

projector ε′1 is defined by the formula:

1

2α
(q(α) + α) .

For each integer n ≥ 1, define ε′n ∈ CorrXM (An,An) by

M′(M)
n :=(An, ε′n):= Symn(A, ε′1).

The projector ε′n can be expressed in a more concrete way: let Sn be the sym-

metric group on n letters, which acts on An by permuting the copies. Also the

action of ε′1 can be extended to An by making it act on each of the copies. Then:

ε′n =

(
1

n!

∑
σ∈Sn

σ

)
◦ ε′1.

Note that ε′n defined by the above formula is a projector, because ε′1 commutes with∑
σ∈Sn σ.

Example 5.7. Let α ∈ B \Q be an element of trace 0. Assume for simplicity that

nrd(α) = 1, and let F :=Q(α). Then F embeds in B via

a+ bα 7→
(
a −b
b a

)
.

Consider then H1
dR(Aτ ) ∼= M2. The projector ε′1 will act on H1

dR(Aτ ) so that

ε′1
(
H1

dR(Aτ
)
⊗ F ) = {( x αxy αy )} ,

since this is the subspace of matrices A ∈M2(F ) satisfying

A
(
a b
−b a

)
= (a+ bα)A,

for all a, b ∈ Q.
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Let M denote the motive h1(A). There is a commutative diagram:

M⊗M
ε′1⊗ε′1

��

M⊗M
pA

��

M(M)
1 ⊗M(M)

1

pS

��

∧2M
ε2

��

Sym2M(M)
1

ψ //
(∧2M

)
− .

Here, the projectors pA and pS are the natural projectors onto the alternating square

and the symmetric square, respectively. The map ψ is given symbolically by:

x · y 7→ 1

2
(x ∧ βy + y ∧ βx).

In [Bes95, Theorem 5.8 (ii)] it is shown that this map is an isomorphism, for the

complex de Rham realization. The second statement, again for the de Rham re-

alization, is proven in [Bes95, Theorem 5.8 (iii)]. This leads us to the following

conjecture:

Conjecture 5.1. There is an isomorphism of motives:

Sym2(A, ε′1) ∼= (M2)(M).

Moreover, for each even integer n, there is an isomorphism of motives:

Symn(A, ε′1) ∼= (Mn)(M)

5.4 The motive Dn

5.4.1 Symmetric powers of a CM curve

Fix A an abelian surface with quaternionic multiplication. Assume also that A has

CM. By Remark 2.33, A is isomorphic to E × E. Fix such an isomorphism.

Let Sn be the symmetric group on n letters, and consider the wreath product

Ξn:=µ2 oSn, which can be described as the semidirect product

Ξn:=(µ2)n oSn,
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with σ ∈ Sn acting on (µ2)n by (x1, . . . , xn)σ = (xσ(1), . . . , xσ(n)). This is isomorphic

to the group of signed permutation matrices of degree n.

The group Ξn acts on En as follows: each of the copies of µ2 acts by multipli-

cation by −1 on the corresponding copy of E, and Sn permutes the n copies.

Let j : Ξn → {±1} be the homomorphism which sends −1 ∈ µ2 to −1, and

which is the sign character on Sn, and let

εE:=
1

2n(n)!

∑
σ∈Ξn

j(σ)σ ∈ Q[Aut(En)],

which is an idempotent in the rational group ring of Aut(En).

By functoriality, εE induces a projector in CorrXM (En, En), inducing an endo-

morphism on the different cohomology groups.

Lemma 5.8.

1. The image of εE action on H∗et(E
n,Ql) is

εEH
∗
et(E

n,Ql) = SymnH1
et(E,Ql).

2. The image of εE acting on H∗dR(En) is

εEH
∗
dR(En) = SymnH1

dR(E).

Proof. Denote by H either HdR or Het. First note that −1 acts as the identity

on H0(E,Ql) and H2(E,Ql) and as −1 on H1(E,Ql). Therefore all terms in the

Künneth decomposition

H∗(En) =
⊕

(i1,...,in)

H i1(E)⊗ · · · ⊗ H in(E)

vanish under the action of εE except for H1(E)⊗n. The action of Sn on this factor

is the permutation twisted by the sign character, and thus it induces the projection

onto SymnH1
? (E).

See also the discussion in [BDP09, Lemma 1.8].
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5.4.2 A new motive

We want to generalize the construction of [IS03] in the spirit of [BDP09]. Let n be

a positive even integer, and set m:=n/2.

Definition 5.9. The motive D(M)
n over XM is defined as:

D(M)
n :=(Am × En, ε(M)

n ):=M(M)
n ⊗ (En, εE),

where En → XM is seen as a constant family En ×XM , with fibers En.

We descend this construction to the Shimura curve X. For that, consider the

group G = (Rmax/MRmax) ∼= GL2(Z/MZ), which acts canonically (through X-

automorphisms) on XM , on Am and on En. Hence we can consider the projector

pG:=
1

|G|
∑
g∈G

g ∈ CorrX(Am × En,Am × En).

The projector pG commutes with both εn and εE. In fact, pG acts trivially on

En. So the composition of these projectors is also a projector, which will be denoted

ε.

Definition 5.10. The generalized Kuga-Sato motive Dn is defined to be

Dn:=(Am × En, ε):=pG
(
D(M)
n

)
= pG

(
M(M)

n

)
⊗ (En, εE).

5.5 Realizations

We are interested in the p-adic étale and de Rham realizations of Dn.

5.5.1 The p-adic étale realization

Consider the p-adic étale sheaf R2π∗Qp, which has fibers at each geometric point

τ → XM given by H2
et(Aτ ,Qp). We want to work with a subsheaf of R2π∗Qp. For

this, note that the action of Rmax on A induces an action of B× on R2π∗Qp.
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Consider the p-adic étale sheaf

L2:=
⋂
b∈B×

ker
(
b− nrd(b) : R2π∗Qp → R2π∗Qp

)
⊆ R2π∗Qp,

which is the subsheaf on which B× acts as the reduced norm nrd of B. It is a

3-dimensional locally-free sheaf on XM . Set m to be n/2, and consider the map

∆m : Symm L2 →
(
Symm−2 L2

)
(−2) given by the Laplace operator. That is,

∆m(x1 · · ·xm) =
∑

1≤i<j≤m

(xi, xj)x1 · · · x̂i · · · x̂j · · · xm,

where (·, ·) is the non-degenerated pairing induced from the cup product and the

trace: (x, y) = tr(x ∪ y). Define also

Ln:= ker ∆m,

and

Ln,n:=Ln ⊗ SymnH1
et(E,Qp).

The following lemma gives the p-adic étale realization of the motive Dn.

Lemma 5.11. Consider Dn as an absolute motive over Q. Let Hp(−) be the p-adic

realization functor. Then:

Hp(Dn) ∼= H1
et

(
XM ,Ln,n

)G
= H1

et

(
XM ,Ln

)G ⊗ SymnH1
et(E,Qp).

Proof. First, note that the p-adic realization of the motive D(M)
n , as thought of as

in the derived category, is the complex of Qp-sheaves

Ln[−n]⊗ SymnH1
et(E,Qp).

concentrated in degree −n. Then, we just need to compute:

Hp(Dn) = (pG)∗
(
H∗
(
XM ,Ln[−n]⊗ SymnH1

et(E,Qp)
))

= H∗−2n
et

(
XM ,Ln

)G ⊗ SymnH1
et(E,Qp).

which follows from the cohomology of Ln being concentrated in degree 1 and from

the Künneth formula.
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5.5.2 The odd case

Since all prime divisors v dividing the discriminant of B are non-split (actually,

inert) in K, the field K splits B. Let q : K ↪→ B be an inclusion, and let q′ be its

conjugate (that is, the composition q ◦ c where c is the nontrivial automorphism of

K). Let β ∈ B0 be such that β ◦ q = q′ ◦ β. Let Kp be the completion of K at p.

The inclusion q induces an action of K× on R1π∗Kp. At the same time, R1π∗Kp

has a natural structure of K-module. Let L′1 be the subsheaf of R1π∗Kp on which

K× acts by multiplication.

For each integer n ≥ 1, define

L′n:= Symn L′1.

Similarly to the construction for motives, we have:

Conjecture 5.2. The map ψ : L′2 = Sym2 L′1
∼−→ L2 defined by

xy 7→ 1

2
(x ∧ βy + y ∧ βx)

is an isomorphism. Moreover, the induced map

Symm ψ : Symm
(
Sym2 L′1

)
→ Symm L2

identifies L′n = Symn L′1 with ker ∆m = Ln.

5.5.3 Semistability and the de Rham realization

The Hodge filtration on H1
dR(E):=H1

dR(E,Qp), which is equivalent to the exact

sequence

0→ H0(E,Ω1
E/Qp)→ H1

dR(E)→ H1 (E,OE)→ 0

induces a filtration on SymnH1
dR(E). Write Hj for its jth step:

Hj:= Filj
(
SymnH1

dR(E)
)
.
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The definition of the filtration of the symmetric powers gives:

Hj =


SymnH1

dR(E) if j ≤ 0

img
(
Symj H0(E,Ω1

E)⊗ Symn−j H1
dR(E)

)
if 1 ≤ j ≤ n

0 otherwise.

(5.1)

Recall the uniformization result of Theorem 2.35. It provides with a map

π : Hp → (XM)an
Qur
p

. Recall also the filtered isocrystal E(M2) defined in Section 3.8.

Theorem 5.12 (Faltings, Iovita-Spieß). There is a canonical isomorphism of fil-

tered isocrystals on Hp:

π∗H1
dR(A/XM) ∼= E(M2).

This isomorphism takes the B×Qur
p

-action on the left-hand side to the action by ρ2 in

the right-hand side.

Proof. See [IS03, Lemma 5.10].

Consider the representation (Vn, ρ1) of GL2 constructed in Section 3.1, and let

ρ2 be the one-dimensional representation of GL2 given by detm. Then the pair

(Vn, ρ1, ρ2) induces a convergent filtered F -isocrystal Vn = E(Vn{m}) as described

in the first paragraph of Section 3.7 and in [IS03, Section 4].

Lemma 5.13 (Iovita-Spieß). The filtered F -isocrystal Vn is regular.

Sketch of proof. Note that XΓ is a Mumford curve, and that detm is pure of weight

2m: an element ( a 0
0 a ) in the center of GL2 acts by multiplication by:

(det ( a 0
0 a ))m = a2m.

Then it is shown in [IS03], after Lemma 4.3, how this implies that Vn is regular.

A simple computation using the compatibility of the isomorphism of Theo-

rem 5.12 with tensor products gives the following consequence:
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Corollary 5.14.⋂
x∈B×

ker

(
(x− nrd(x)) : E

(
∧2M2

)
→ E

(
∧2M2

)) ∼= V2.

We believe that one has a similar result for odd n, but we will not formulate a

precise statement for it.

There is a map from the space of modular forms on XΓ of weight n + 2 to

Filn+1H1
dR(XΓ,Vn), given by f(z) 7→ ωf :=f(z) evz ⊗dz, where evz is the functional

R(X) 7→ R(z). Identifying these spaces, one obtains the filtration of H1
dR(XΓ,Vn):

Proposition 5.15 ([IS03, Proposition 6.1]). The filtration of H1
dR(XΓ,Vn) is given

by:

Filj H1
dR(XΓ,Vn) =


H1

dR(XΓ,Vn) if j ≤ 0,

Mk(Γ) if 1 ≤ j ≤ n+ 1,

0 otherwise.

Define the convergent filtered F -isocrystal Vn,n as:

Vn,n:=Vn ⊗ SymnH1
dR(E).

Understanding the structure of DstQur
p

(Hp(Dn)) will allow us to compute the Abel-

Jacobi map in an explicit way. Write H2n+1
dR (Dn) for the filtered (φ,N)-module

Dst,Qur
p

(Hp(Dn)). The following key result is a consequence of the facts shown so

far.

Theorem 5.16. The GQp-representation H2n+1
p (Dn) is semistable, and there is a

(canonical up to scaling) isomorphism of filtered (φ,N)-modules

Dst(H
2n+1
p (Dn)) = H2n+1

dR (Dn) ∼= H1
dR(XΓ,Vn,n) = H1

dR(XΓ,Vn)⊗ SymnH1
dR(E).

Moreover, writing Filj for Filj H2n+1
dR (Dn) we have:

Filj =



H1
dR (XΓ,Vn,n) if j ≤ 0,

H1
dR (XΓ,Vn)⊗ Hj +Mk(Γ)⊗ SymnH1

dR(E) if 1 ≤ j ≤ n+ 1

Mk(Γ)⊗ Hj−n−1 if n+ 2 ≤ j ≤ 2n+ 1,

0 otherwise.
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In particular,

Filn+1 H2n+1
dR (Dn) ∼= Mk(Γ)⊗ SymnH1

dR(E).

Proof. To prove semistability, we can extend the base to Qur
p . In this case the curve

X is isomorphic to a disjoint union of Mumford curves, and hence it is semistable.

By Corollary 5.14, there is an isomorphism:⋂
x∈B×

ker
(
x− nrd(x) : E

(
∧2M2

)
→ E

(
∧2M2

)) ∼= V2.

Applying Theorem 3.30 and functoriality, we see that the filtered (φ,N)-module

Dst,Qur
p

(
H1

et(XM ,Ln)⊗ SymnH1
et(E,Qp)

)
is isomorphic to

H1
dR((XM)Qur

p
,Vn)⊗ SymnH1

dR(E/Qp).

This isomorphism can then be descended to Dn by taking G-invariants.

Putting together Proposition 5.15 with Equation (5.1) we obtain the formula

for the filtration.

5.6 The p-adic Abel-Jacobi for Dn

Consider the generalized Kuga-Sato motive Dn = (Am×En, ε) as in Definition 5.10.

The construction of the p-adic Abel-Jacobi map of Section 3.9 can be easily extended

to the motive Dn, by applying the projector at the appropriate places. This can be

done for each realization, and we are interested in the de Rham realization of Dn,

which we have computed to be

H1
dR(XΓ,Vn,n).

This fits in a short exact sequence as in Theorem 3.30:

0→ H1
dR(XΓ,Vn,n)→ H1

dR(U,Vn,n)→
⊕
z∈S

(Vn,n)z[1], (5.2)
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where S is a finite set of points in XΓ lying in distinct residue classes, and U is the

complement in XΓ of S. In Chapter 6 we will define certain cycles on Am×En which

are supported on a fiber above a point P ∈ X. These cycles are of codimension

n+ 1, and therefore sending 1 to their cycle class yields a map:

K[n+ 1]→ (Vn,n)z[1].

Pulling back the extension (5.2) we obtain another extension:

0→ H1
dR(XΓ,Vn,n)→ E → K[n+ 1]→ 0.

Using Lemma 3.22, and the fact that the space

Filn+1H1
dR(XΓ,Vn,n)

is self-orthogonal, we obtain:

H1
dR(XΓ,Vn,n)/Filn+1 H1

dR(XΓ,Vn,n) ∼=
(
Mn+2(Γ)⊗ SymnH1

dR(E)
)∨

The composition map will be denoted AJK :

AJK : CHn+1(Dn)→
(
Mn+2(Γ)⊗ SymnH1

dR(E)
)∨
.

In the next chapter we will compute this map in certain cases.
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Chapter 6

Geometric interpretation of the

values of L′p(f,K, s)

This chapter contains the main result of this thesis. In Section 6.1 we obtain a

formula for the values of the derivative of the p-adic L-function, in terms of Coleman

integrals on the p-adic upper-half plane. In Section 6.2 we define a family of cycles

on the motive Dn introduced in the previous chapter, whose image under the p-adic

Abel-Jacobi map will be calculated. Finally, in Section 6.3 we calculate this image

and explain the main result.

6.1 Values of L′p(f,K, s) in terms of Coleman in-

tegration on Hp

In Chapter 4 we saw how to attach to an eigenform f of weight n+ 2 a distribution

µf,K on the group G̃ = Gal(K∞/K). We defined Lp as:

Lp(f,K, s):=

∫
G̃

αs−
n+2

2 dµf,K(α), s ∈ Zp,

Recall also the p-adic group G = Gal(K∞/Hp) ∼= K×p,1, which fits in the exact

sequence:

1→ G→ G̃→ Gal(Hp/K)→ 1,
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where the right-most group if finite. If p is inert in K, then Lp(f,K, j + 1) = 0 for

all 0 ≤ j ≤ n. One is then interested in the first derivative. Write first

L′p(f,K, j + 1) =

∫
G̃

log(α)αj−
n
2 dµf,K(α) =

h∑
i=1

L′p(f,Ψi, j + 1),

where

L′p(f,Ψi, j + 1):=

∫
G

log(α)αj−
n
2 dµf,Ψi(α).

The following formula is a generalization of [BDIS02, Theorem 3.5] which, although

immediate, is not currently present in the literature:

Theorem 6.1. For all j with 0 ≤ j ≤ n, the following equality holds:

L′p(f,Ψ, j + 1) =

∫ z0

z0

f(z)(z − z0)j(z − z0)n−jdz,

where the right hand side is to be understood as a Coleman integral on Hp.

Proof. Start by manipulating the expression for L′p(f,Ψi, j + 1):

L′p(f,Ψi, j + 1) =

∫
G

log(α)αj−
n
2 dµf,Ψi(α)

=

∫
P1(Qp)

log

(
x− z0

x− z0

)(
x− z0

x− z0

)j−n
2

P
n
2

Ψi
(x)dµf (x)

=

∫
P1(Qp)

(∫ z0

z0

dz

z − x

)(
x− z0

x− z0

)j−n
2

P
n
2

Ψi
(x)dµf (x)

where the second equality follows from the change of variables x = ηΨi(α) and the

third from the definition of the logarithm. Note that from Lemma 4.3 it follows

that:

∫
P1(Qp)

(
x−z0
x−z0

)j−n
2
P

n
2

Ψi
(x)

z − x
dµf (x) =

∫
P1(Qp)

(
z−z0
z−z0

)j−n
2
P

n
2

Ψi
(z)

z − x
dµf (x), (6.1)

since the expression: (
z−z0
z−z0

)j−n
2
P

n
2

Ψi
(z)−

(
x−z0
x−z0

)j−n
2
P

n
2

Ψi
(x)

z − x

is a polynomial in x of degree at most n. Using Equation (6.1), a change of order

of integration and Proposition 4.4 we obtain:
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L′p(f,Ψi, j + 1) =

∫
P1(Qp)

∫ z0

z0

dz

z − x

(
x− z0

x− z0

)j−n
2

P
n
2

Ψi
(x)dµf (x)

=

∫ z0

z0

(∫
P1(Qp)

dµf (x)

z − x

)(
z − z0

z − z0

)j−n
2

P
n
2

Ψi
(z)dz

=

∫ z0

z0

f(z)

(
z − z0

z − z0

)j−n
2

P
n
2

Ψi
(z)dz.

A justification for the validity of the change of the order of integration can be

found in the proof given in [Tei90, Theorem 4].

6.2 Cycles on Dn

6.2.1 Definition of the cycles

We will define a cycle class (or rather a family of them) in CHn+1(Dn), indexed by

isogenies ϕ : E → E ′.

Let E be an elliptic curve with complex multiplication by O. Recall that O =

EndRmax(E) is an order in an imaginary quadratic number field K. Consider an

isogeny ϕ from E to another elliptic curve with complex multiplication E ′, of degree

coprime to N+M . If there is a level-N+ structure and full level-M structure on E,

we obtain the same structures on E ′, and also on A′:=E ′×E ′, by putting this level

structures only on the first copy. Hence we obtain a point PA′ in XM , together with

an embedding:

iA′ : A
′ → A,

defined over K. Let Υϕ be the cycle

Υϕ:=( tΓϕ)n ⊆ (E ′ × E)n ∼= (A′)m × En ↪→ Am × En,

where the last inclusion is induced from the canonical embedding iA′ , and Γϕ is the

graph of ϕ. Finally, apply the projector ε defined in Chapter 5.
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Definition 6.2. The cycle

∆ϕ:=εΥϕ ∈ CHn+1(Dn)

is called the generalized Heegner cycle attached to the isogeny ϕ : E → E ′.

Remark 6.3. Since Hp(Dn) is concentrated in degree 2n + 1, the cycle ∆ϕ is

null-homologous. Therefore it makes sense to study the image of ∆ϕ under any

Abel-Jacobi map, in particular the p-adic version discussed in Section 3.9.

6.3 The main theorem

In this section we derive a formula for the image of the Abel-Jacobi map of general-

ized Heegner cycles, and we compute it in a special setting, thus giving a geometric

interpretation of values of the derivative of the anticyclotomic p-adic L-function.

6.3.1 Set-up for the computation

We have defined a family ∆ϕ of generalized Heegner cycles of dimension n, attached

to isogenies ϕ : E → E ′. Let P̃A′ be the point of XM attached to A′ through the

isogeny ϕ. The cycle ∆ϕ lies in the (2n+ 1)-dimensional scheme Am × En, and so

it has codimension n+ 1. As described in Section 5.6, we obtain a map:

AJK : CHn+1(Dn)→
(
Mn+2(Γ)⊗ SymnH1

dR(E)
)∨
,

Let ωf be the differential form associated to a modular form f ∈ Mn+2(Γ) as

explained in Section 2.5. Fix α ∈ SymnH1
dR(E). We want to compute the value:

AJK(∆ϕ)(ωf ∧ α) ∈ Cp.

Write clPA′ (∆ϕ) for the cycle class of ∆ϕ on the fiber above PA′ ∈ XM :

clPA′ (∆ϕ):= clA
m×En
|∆ϕ|

(∆ϕ) ∈ H2n+2

|∆ϕ|
(Am × En,Qp(n+ 1)) .
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Consider the sequence of filtered (φ,N)-modules:

0→ H1
dR(XΓ,Vn,n)→ H1

dR(U,Vn,n)
resPA′−→ (Vn,n)PA′ [1]→ 0. (6.2)

Lemma 6.4. The sequence of Equation (6.2) is exact.

Proof. From its construction, the sequence is left-exact. The cokernel of the map

resPA′ injects in:

H2
dR(XΓ,Vn,n) ∼= H0

dR(XΓ,V∨n,n),

where the isomorphism is given by Serre duality. But Vn,n (and therefore V∨n,n) does

not have Γ-invariants, since it is isomorphic to n copies of the standard representa-

tion of Γ. Therefore the cokernel of resPA′ vanishes, as desired.

Remark 6.5. Here is where we needed to exclude the case of weight 2, which would

correspond to n = 0: in that case resPA′ is always zero, since the restriction map

induces an isomorphism

H1
dR(XΓ)→ H1

dR(U).

We argued that the sequence in Equation (6.2) is exact. Its pull-back under the

map 1 7→ clPA′ (∆ϕ) yields then a short exact sequence:

0→ H1
dR(XΓ,Vn,n)→ E → K[n+ 1]→ 0

Lemma 3.22 ensures that if one forgets the filtration, the resulting sequence of

(φ,N)-modules is split, say by a map s1 : K[n + 1] → E. If we write ([η1], x) for

s1(1), note then:

1. For ([η1], x) to be a splitting of the given extension, necessarily x = 1, and η1

has to satisfy:

(a) NU([η1]) = 0, and

(b) Φ([η1]) = pn+1[η1].
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2. For ([η1], 1) to be in

E = H1
dR(U,Vn,n)×(Vn,n)PA′

[1] K[n+ 1],

necessarily resPA′ (η1) = clPA′ (∆ϕ).

So let η1 be a Vn,n-valued 1-hypercocycle on U satisfying the conditions:

resPA′ (η1) = clPA′ (∆ϕ), NU([η1]) = 0, Φ(η1) = pn+1η1 +∇G,

where G is a Vn,n-valued rigid section over U . Consider next

[η2] ∈ Filn+1 H1
dR(U,Vn,n)

such that resPA′ (η2) = clPA′ (∆ϕ). This element exists as well, because it is the

image of 1 under the splitting s2 of Lemma 3.22. Let

[η̃ϕ]:=[η1 − η2] ∈ H1
dR(U,Vn,n).

Then [η̃ϕ] can be extended to all of XΓ. That is, there is [ηϕ] ∈ H1
dR(XΓ,Vn,n) such

that

j∗([ηϕ]) = [η̃ϕ] ≡ [η1] (mod Filn+1H1
dR (U,Vn,n)).

Write [ηϕ] = ι(c) + t, with t ∈ Filn+1 H1
dR(XΓ,Vn,n). Then one can replace [η2] by

[η2] + t without changing the properties required for [η2], and hence we can assume

that [ηϕ] = ι(c) for some c ∈ H1
dR(XΓ,Vn,n). Recall the maps I and PU as appearing

in diagram of Equation (3.6). We can prove:

Proposition 6.6. With the previous notation, the following equality holds:

AJK(∆ϕ)([ωf ] ∧ α) = 〈I([ωf ] ∧ α), PU([η2])〉Γ . (6.3)

Proof. Using the definition of the Abel-Jacobi map and following the recipe given

in Lemma 3.22, together with the pairings on H1
dR(X,Vn,n), we obtain the following

equality:

AJK(∆ϕ)([ωf ] ∧ α) = 〈[ωf ] ∧ α, [ηϕ]〉XΓ
.
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The assumption of ηϕ = ι(c) implies that I(ηϕ) is zero. So the right-hand side can

be rewritten, using Equation (3.5) and the diagram of Equation 3.6, as:

−〈IU,c([ωf ] ∧ α), PU([ηϕ])〉Γ .

Now the result follows from observing that on U one can write [ηϕ] = [η1] − [η2],

and that PU([η1]) = 0.

The following result computes a formula the right-hand side of Equation (6.3):

Theorem 6.7. Let Ff be a Coleman primitive of ωf , and let z′0 ∈ Hp be a point in

the p-adic upper-half plane such that P ′A = ΓMz
′
0. Then:

〈I([ωf ] ∧ α), PU([η2])〉Γ =
〈
Ff (z

′
0) ∧ α, clz′0(∆ϕ)

〉
Vn,n

.

Proof. Observe first that the spaces

Filn+1 H1
dR,c(U,Vn,n) and Filn+1H1

dR(U,Vn,n)

are orthogonal to each other. Therefore:

0 = 〈[ωf ] ∧ α, [η2]〉U = 〈PU,c([ωf ] ∧ α), IU([η2])〉Γ,U − 〈I([ωf ] ∧ α), PU([η2])〉Γ ,

and hence we obtain:

〈I([ωf ] ∧ α), PU([η2])〉Γ = 〈PU,c([ωf ] ∧ α), IU([η2])〉Γ,U .

In order to show that the right-hand side of the previous equation coincides with

〈
Ff (z

′
0) ∧ α, clz′0(∆ϕ)

〉
Vn,n

,

we use the explicit formula for the pairing as found in Proposition 3.36. Since η2

has only nonzero residue at PA′ , the right hand side of the formula appearing in

Proposition 3.36 reduces to pairing the primitive of ωf ∧α with that residue, at the

point corresponding to PA′ , yielding the desired formula.
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6.3.2 Computation and application

From here on, let z0 be a point in the p-adic upper-half plane Hp such that the

orbit PA:=Γz0 corresponds to A = E × E in X. Consider the map

g = (IdnE, ϕ
n) : En → En × (E ′)n,

Then ∆ϕ is the projection via ε of the image g(En). The functoriality of the cycle

class map gives:

〈
Ff (z

′
0) ∧ α, clz′0(∆ϕ)

〉
Vn,n

= 〈ϕ∗Ff (z0), α〉Vn ,

where now the pairing is the natural one in the stalk Vn = (Vn)z0

Now, to compute this last quantity we first do it on a horizontal basis for

SymnH1
dR(E/K) = (Vn)z0 .

Let {u, v} be a horizontal basis for V1, normalized so that 〈u, u〉 = 〈v, v〉 = 0 and

〈u, v〉 = −〈v, u〉 = 1. This induces a basis {vi:=uivn−i}0≤i≤n of Vn.

Choose a global regular section ωn in the lowest piece of the filtration which

transforms with respect to ΓM as of weight n, and scale it so that ωn corresponds

to
∑n

i=0(−1)i
(
n
i

)
zivi, which is a regular section in Filn Vn. Note that ωn = (u−zv)n,

and so:

〈ωn, vi〉 = 〈u− zv, u〉i〈u− zv, v〉n−i = zi.

We want to obtain a formula for the Coleman primitive Ff of ωf . We proceed

by differentiating the section 〈Ff , vi〉 and using that {vi} is a horizontal basis:

d〈Ff , vi〉 = f(z)〈ωn, vi〉dz = zif(z)dz.

One deduces the formula:

〈Ff (ϕ(z0)),
∑
i

aivi〉 =
n∑
i=0

ai

∫ ϕ(z0)

?

f(z)zidz.
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From now on we concentrate on the stalk of Vn at z0. The chosen regular differential

ω yields a basis element ωz0 for H1
dR(E,K). Choose ηz0 in the span of Φωz0 such

that

〈ωz0 , ηz0〉 = 1.

This yields a basis for SymnH1
dR(E/K), namely {ωjz0η

n−j
z0
}0≤j≤n. We express this

basis in terms of the horizontal basis {vi}. By construction, we have:

ωjz0η
n−j
z0

= (z0 − z0)j−n
∑
i

Pi,j,n(z0, z0)vi,

where

Pi,j,n(X, Y ) =
∑
k

(
j

k

)(
n− j

k + i− j

)
(−1)n−iXkY n−i−k.

The following lemma can be proven by a simple calculation.

Lemma 6.8. ∑
i

Pi,j,n(z0, z0)zi = (z − z0)j(z − z0)n−j.

The previous lemma gives a formula for a primitive for ωf :

〈
ϕ∗Ff (z0), ωjz0η

n−j
z0

〉
= (z0 − z0)j−n

∫ ϕ(z0)

?

f(z)(z − z0)j(z − z0)n−jdz.

Note that this equality is only defined up to an “integration constant” in Cp, because

in Hp the sheaf Vn,n is trivial. We can now prove the following application:

Theorem 6.9. Let ϕ : E → E ′ be an isogeny of elliptic curves with level-N struc-

ture, and let ϕ be the morphism E → E
′

obtained by from ϕ by applying to E ′ the

nontrivial automorphism of K. Let ∆−ϕ :=∆ϕ−∆ϕ, and write z′0 ∈ Hp for the point

in the p-adic upper-half plane which corresponds to the abelian surface E ′ × E ′.

Then there exist a constant Ω ∈ K such that, for all 0 ≤ j ≤ n:

AJK(∆−ϕ )(ωf ∧ ωjηn−j) = Ωj−nL′p(f,ΨPE′
, j + 1).

Proof. Set Ω to be z0 − z0. Using the previous results, we obtain first:

AJK(∆−ϕ )(ωf ∧ ωjηn−j) =
〈
Ff (z

′
0), ωjz0η

n−j
z0

〉
−
〈
Ff (z

′
0), ωjz0η

n−j
z0

〉
,
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Therefore, the second term in the previous displayed expression becomes〈
Ff (z

′
0), ωn−jz0

ηjz0
〉

= Ωj−n
∫ z′0

?

f(z)(z − z0)j(z − z0)n−jdz.

Combining this with the formula for
〈
Ff (z

′
0), ωjz0η

n−j
z0

〉
yields:

AJK(∆−ϕ )(ωf ∧ ωjηn−j) = Ωj−n
∫ z′0

z′0

f(z)(z − z′0)j(z − z′0)n−jdz.

The result follows now from Theorem 6.1.

Note that the integral appearing in the previous theorem coincides with the

value at s = j+1 of the derivative of the partial p-adic L-function described before.

We obtain the following corollary:

Corollary 6.10. Let H/K be the Hilbert class field of K, and consider a set of

representatives {Ψ1, . . . ,Ψh} for emb(O,R). For each Ψi, let Pi be the correspond-

ing Heegner point on XH , and let ∆Ψi be the cycle corresponding to Pi. Define

∆−:=
∑

i ∆
−
Ψi

. There exists a constant Ω ∈ K such that for all 0 ≤ j ≤ n:

AJK(∆−)(ωf ∧ ωjηn−j) = Ωj−nL′p(f,K, j + 1).

Proof. This follows immediately from the expression given in Theorem 6.9 for the

partial p-adic L-functions:

AJK(∆−Ψi)(ωf ∧ ω
jηn−j) = Ωj−nL′p(f,Ψi, j + 1).

Remark 6.11. There is no canonical choice for the regular differential ω ∈ Ω1
E/K .

If a given ω is changed to ωλ:=λω, with λ ∈ K, we obtain:

AJK(∆−)
(
ωf ∧ (ωjλη

n−j
λ )

)
= Ωj−nλ2j−nL′p(f,K, j + 1).

Note in particular that the formula at the central point j = n/2 does not depend

on the choice of the basis of the differential form ω.

The formula in Corollary 6.10 is the type of result that we were looking for:

it relates the values of the derivative of Lp(f,K, s) evaluated at the integer points

s = 1, . . . , n+ 1 to the image under the p-adic Abel-Jacobi map of a the generalized

Heegner cycle ∆− which is supported above a CM cycle of X.
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Chapter 7

Future directions

This thesis opens many directions to be explored in the future. Here we present

some of them, ordered by increasing generality.

First of all, the motive Dn should be studied more carefully, as well as the

possible families of nontrivial CM cycles on it. The case of odd weight should yield

similar results to those presented in this thesis.

Next, one would like to compute the p-adic Abel-Jacobi image of the cycles ∆ϕ

(instead of just the cycles ∆−ϕ ), and this should be compared to their p-adic heights.

The understanding of the previous questions would shed light on the problem of

finding nontrivial families of cycles in the Chow group of certain algebraic varieties,

which is a widely studied problem.

Moreover, the theory of p-adic L-functions has grown considerably, but lacks a

unified point of view. A much more ambitious project would be to find an elegant

theory that encapsulated all these different instances of L-functions, and which

made clear which interpolation properties each of them satisfies.

In the remainder of this chapter we give some more detail on the immediate

directions that one can pursue from the work presented in this thesis.
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7.1 Modular forms of odd weight

If one wants to extend the results of this thesis to modular forms of odd weight,

one needs to work on the two sides of the equation: on the one hand, the motive

Dn needs to be extended to odd n. This has partially been done in this thesis,

but its realizations need to be completely understood before being able to compute

the p-Abel-Jacobi map. On the other hand, the anti-cyclotomic p-adic L-function

as defined in [BDIS02] does not contemplate possible nebentypes, thus restricting

the construction to even-weight modular forms. One should give a more general

construction which allowed nebentypes, and these should be incorporated in the

definition of the motive Dn as well.

7.2 More general cycles

It would be interesting to compute the image of the Abel-Jacobi map for arbitrary

cycles on Dn supported on CM-points of the Shimura curve. Finding explicit formu-

las for cycles supported at a single point is a more difficult problem than what has

been treated in this thesis, since some of the techniques used above cannot be used.

However similar computations have been carried over in the split case in [BDP09],

and one should be able to adapt them to the setting of this work. A careful choice

of these cycles will yield formulae for other p-adic L-functions.

The underlying philosophy is that all these special values should come from

geometric data, such as algebraic cycles and Abel-Jacobi map.

7.3 Relation with p-adic heights

The focus of this thesis has been put on the study of the relation of the anti-

cyclotomic p-adic L-function to the image of certain cycles under the Abel-Jacobi

map. More germane to the original Gross-Zagier formulas would be to instead
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relate the values of the L-function to p-adic analogues of the Néron-Tate heights

of the cycles. The investigation of the relation of the p-adic Abel-Jacobi map

appearing in this thesis with the p-adic height pairings as in the articles of Gross

and Coleman [CG89] and of Nekovář ([Nek93] and [Nek95]) will certainly be fruitful.

In particular, one should be able to compute the p-adic heights of the cycles

constructed in this thesis, or of generalizations of them, and relate them to values

of the anti-cyclotomic p-adic L-function, or of its derivative. One could also compute

archimedean formulas for the heights that we have defined, and try to relate those

to the classical L-functions.

7.4 Nontrivial families of cycles

In [Bes95], the author defines a family of cycles on a variety similar to what we

studied in this project, and proves that they span an infinite-dimensional subspace

of the Griffiths group of the variety. The author uses the complex Abel-Jacobi map

to show the non-triviality of these cycles.

We hope to be able to obtain a similar result by means of the p-adic Abel-Jacobi

map. Experiments should be carried out in order to collect evidence supporting this

nontriviality statement, and this can be easily done using explicit evaluation of the

p-adic measure attached to a modular form f .
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