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Abstract

Elliptic curves are one of the important class of problems in diophantine equations.

In this thesis, we describe how to obtain algebraic points (called Heegner points)

on elliptic curves. We first go over the necessary definitions and theorems in order

to properly study these points and their properties. We pay a particular attention

to the property of these point to have integral coordinates or not. We also explain

how to make explicit computations of these points and discuss the result of extensive

computations made on the elliptic curves of conductor less than 3000, and give a list of

the curves that were found to always have Heegner points with integral coordinates.
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Résumé

Les courbes elliptiques sont une classe de problèmes importante d’équation diophanti-

enne. Dans ce mémoire nous décrirons comment il est possible d’obtenir des points

algébriques, appelés points de Heegner, sur les courbes elliptiques. Quelques éléments

essentiels pour mener à bien la construction de ces points seront d’abord rappelés. On

verra comment faire des calculs explicites de ces points, et on discutera ensuite des

résultats de ces calculs fait sur les courbes de conducteur inférieur à 3000. Une atten-

tion particulière sera réservée l’intégralité des points de Heegner, plus précisement

aux courbes dont les points de Heegner ont toujours des coordonnées intégrales.
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1

Introduction

The diophantine problem consists in finding solutions over the integers or the rational

numbers to polynomial equations. After the linear case (for example ax + by +

c = 0 solved by the euclidian algorithm) and the quadratic case (for example Pell’s

equation), the next degree of complexity comes with elliptic curves. Like the two

first examples where solutions can be seen as an abelian group (albeit a infinite cyclic

group), solutions to the diophantine problem of an elliptic curve form an abelian

group, via the chord and tangent method. Though it has been shown that elliptic

curves over a finite field or a number field K are finitely generated, there is still no

reliable method to find the generators.

In the last decades, there emerged the idea that elliptic curves could be parametrized

by another object. Looking at certain subgroups of SL2(Z) acting by M obius trans-

formations on the complex upper half-plane H, it is possible to form new Riemann

surfaces by the usual quotient operation. These surfaces are not compact, however a

proper compactification turns them into complete complex algebraic varieties, called

modular curves. Thanks to the work of Wiles and all the improvements that have

been made to it, we are now aware that a model over Q of these varieties admits an

algebraic map to a certain class of elliptic curves (see [25], [24], [6], [3], [2] and [7]).

Gross and Zagier used this map to construct points on elliptic curves. The al-

gebraicity of this parametrization gives Galois control on the image of this map.

Heegner points are points on the modular curve of which we know that the image by
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the modular parametrization are going to be algebraic. Apart from being an explicit

method to get an algebraic point on a curve, it is also possible to make actual calcu-

lations of this point. Though these points have been used to prove important results

related to the Birch and Swinnerton-Dyer conjecture, few of them have actually been

computed.

In the following pages we will make a brief recall of the concepts and results

necessary in order to define properly Heegner points and study their basic properties.

In hope of getting more insight on the modular parametrization, explicit computations

of such points have been made on all the elliptic curves of conductor less than 3000.

A question that is of particular concern to us, is whether coordinates of the Heegner

points obtained are algebraic integer or not, and if this is not the case, does the

modular parametrization maps certain points of the modular curve (non-cuspidal

point) to the point at infinity of the elliptic curve.
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Chapter 1

Elliptic Curves

This chapter begins by a very brief recall of the concepts that are necessary to define

Heegner points. A complete discussion of these subjects can be found in [15] and [22].

However, we will go more leisurely over the theory of complex multiplication for it is

crucial in the constructions we wish to make.

1.1 Definitions and Basic Properties

Definition 1.1. An elliptic curve E over a field F (denoted E/F ) is an algebraic

curve of genus 1, possessing a specified base point.

One can show ([22] III.§3) that an elliptic curve over F is isomorphic to the zero

locus in P2(F ) of an equation

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 (1.1)

where ai ∈ F and the specified base point is the “point at infinity” denoted OE =

[0, 1, 0]. This is known as the Weierstrass equation of E. When K ⊇ F , we write

E(K) to denote the zero locus of the same equation in P2(K). To ease notation, it

is convenient to write x = X/Z and y = Y/Z, OE being the only point which cannot
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be described by (x, y). If char(F ) 6= 2 then one can replace y by 1
2
(y − a1x − a3) to

get

E : y2 = x3 + b2x
2 + b4x + b6

where b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, and b6 = a2

3 + 4a6

(1.2)

Definition 1.2. Let b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4, then we define

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6

and ω = dx/(2y + a1x + a3) = dy/(3x2 + 2a2x + a4 − a1y)
(1.3)

as respectively the discriminant and the invariant differential (unique up to scalar

multiplication) of the Weierstrass equation, and

j = (b22 − 24b4)
3/∆ (1.4)

as the j-invariant of the elliptic curve E.

One can check that the only change of variables that preserve the Weierstrass

form and fix OE = [0, 1, 0] are of the form x = u2
0x

′ + u2 and y = u3
0y

′ + u2
0u1x

′ +

u3 for u0, u1, u2, u3 ∈ K and u0 6= 0. When two equations are related by such a

transformation we say that they are equivalent, or that the 2 curves they describe are

isomorphic over K ⊇ F . The quantities we just defined change as follows:

∆ = u12
0 ∆′, u0ω = ω′ and j = j ′ (1.5)

In particular, if ui = 0 for i = 1, 2, 3 then one has that uj0a
′
j = aj and uj0b

′
j =

bj. This makes the j-invariant stand out as a quantity independent of the equation

chosen to represent E. In fact, if two curves have the same j-invariant then they are

isomorphic over F as algebraic curves. Also, since E has genus one, ω is the only

holomorphic non-vanishing differential, up to scalar multiplication, attached to the

Weierstrass equation. Simple calculations ([22] III.§1) reveal that ∆ = 0 if and only

if the curve E is singular.
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Actually if P = (x0, y0) is a singular point, it is instructive to consider the Taylor

expansion of the curve equation at that point. Let f(x, y) = y2 + a1xy + a3y − x3 −
a2x

2 − a4x− a6, then f(x0, y0) = 0, ∂f
∂x

(x0, y0) = 0 and ∂f
∂y

(x0, y0) = 0. Thus,

f(x, y) − f(x0, y0) = ((y − y0) − α(x− x0))((y − y0) − β(x− x0)) − (x− x0)
3 (1.6)

where α and β are at most in a quadratic extension of F . We distinguish two types

of singular points:

Definition 1.3. We say P is a node (resp. cusp) if α 6= β (resp. α = β), it then has

two tangent lines y − y0 = α(x− x0) and y − y0 = β(x− x0) (resp. one tangent line

y − y0 = α(x− x0)).

Further inspection of these cases show that E has a unique cusp when ∆ =

b22 − 24b4 = 0 and a unique node when ∆ = 0, b22 − 24b4 6= 0.

Lastly, since elliptic curves are algebraic varieties with a specified point it makes

sense to define a more refined class of morphisms:

Definition 1.4. Let E/F and E ′
/F be two elliptic curves. An isogeny of E to E ′

over K ⊇ F is a non-constant morphism f : E → E ′ defined over K such that

f(OE) = OE′. Two curves E and E ′ are said to be isogenous if such an isogeny exists

over F .

Since morphisms of curves are either constant or surjective (with each point having

a finite preimage), either f(E) = {OE′} or f(E(K)) = E ′(K). Like all morphism of

curves we can define the (separable, inseparable) degree of an isogeny as the (separa-

ble, inseparable) degree of the extension K(E)/f ∗K(E ′) where K(E) is the function

field of E. Over fields of characteristic p > 0, if the pullback of a differential by an

isogeny is 0, then it is inseparable. Also, if the curve is non-singular and the isogeny

is inseparable, then f = λ◦Fr where Fr is the qth-power Frobenius map (q = degi(f)

is a power of p), and λ is separable (see [22] II and [12]).
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1.2 The Group Law

One of the crucial properties of elliptic curves is that one can explicitly construct a

point on the curve from two other ones. On the real numbers, the method is simple.

First make a change of variables to get E : y2 = x3 + b2x
2 + b4x + b6. Then the

line through two points (say P and Q) on the curve intersects a third point (if one

consider the point at infinity to be on all the lines with x constant). The reflection

of this point by the x-axis is called P + Q. We can extend this construction when

P = Q by taking the tangent at P . Interestingly, we can express the coordinates

P + Q explicitly as an algebraic formula on the coordinates of P and Q (see [22]

III.2). As a consequence, we can extend this construction to any number field F , and

the resulting point is always defined on F . Note that these formulas can be found

without making a change of variables so that even when char(F ) = 2, the points can

be combined.

The most interesting property of the construction + is that it defines an abelian

group law on the points E(F ) with identity element O. This law also enables us

turn the set of isogenies from A to A′ over K, into a group HomK(A,A′) with the

law (f + g)(P ) = f(P ) + g(P ) for f , g isogenies. As usual, we define the ring of

endomorphism EndK(A) = HomK(A,A) by setting multiplication as composition.

It is important to point out that the group law on E gives a map from Z to

EndK(E). For n ∈ Z≥0 we define [n](P ) = P + · · · + P ( n times ) , and for n ∈
Z<0, [n]P = [−n](−P ). This is always an injection, and in fact EndK(E) is Z-

module of rank one, two or four. Over fields of characteristic 0, elliptic curves with

endomorphism ring bigger than Z have many additional properties, and the last

section of this chapter is devoted to their study.

Before going on, we will state 3 important theorems that explain the structure of

the group of E:
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Theorem 1.1. (Singular curves) Let E/F be a elliptic curve defined over a field F by a

singular Weierstrass equation. If the singular point on E is a cusp, then E(F ) ' F +.

If the singular point is a node, let α, β be the slopes of the tangent lines at the node,

and set K = F (α) = F (β). If K = F then E(F ) ' F×. If [K : F ] = 2 then

E(F ) ' {x ∈ K× | NK/F (x) = 1}.

Theorem 1.2. (Mordell-Weil) Let E be a non-singular elliptic curve defined over a

number field F . The abelian group E(F ) is finitely-generated. It’s rank over Z is

called the rank of E over F .

Theorem 1.3. (Weierstrass uniformisation) Let E be a non-singular elliptic curve

defined over C, then there is a lattice Λ ⊆ C (i.e. a discrete subgroup of (C,+) of rank

2 over Z) such that there is a complex analytic Lie group isomorphism of E(C) with

C/Λ. The isomorphism is defined as follows: let ωE be the invariant differential of E,

let Ω1 and Ω2 be two closed paths on E(C) that generate the fundamental group, let

ωi = ∫Ωi
ωE, and let ΛE = Zω1⊕Zω1 be the Néron lattice of E. Then the isomorphism

is given by

Φ−1
w : E(C) → C/Λ

P 7→
∫ P

O
ωE (mod Λ)

(1.7)

Conversely, if Λ is lattice in C, then

Φw : C/Λ → E(C) : y2 = 4x3 − g2(Λ)x− g3(Λ)

z 7→ Φw(z) = (℘Λ(z), ℘′
Λ(z))

0 7→ O

(1.8)

where ℘Λ(z) = 1
z2

+
∑

λ∈Λ−{0}

(
1

(z−λ)2
− 1

λ2

)

and g2(Λ) = 60
∑

λ∈Λ−{0}

1
λ4

g3(Λ) = 140
∑

λ∈Λ−{0}

1
λ6

(1.9)

is the inverse isomorphism, with Φ∗
w(dx/y) = dz.
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The full strength of the last theorem is summarized as the equivalence of the

following categories:





Elliptic curves over C

with isogenies



 '





tori C/Λ with analytic

maps sending 0 to 0



 (1.10)

This equivalence will be very useful to study EndK(E), as isogenies are more

difficult to characterize a priori than analytic maps from C/Λ to itself.

Since all curves isomorphic over C have the same j-invariant, it is convenient to

denote the j-invariant of E by j(τ) where the lattice Λ associated to E is homothetic

to 〈1, τ〉 := Z ⊕ Zτ , and =(τ) > 0. Similarly ∆(τ) stands for the discriminant of

the equation of the curve Φw(C/〈1, τ〉). Note that the choice of τ is made up to the

action of SL2(Z) as described by A.4.

1.3 Reduction modulo p

Weierstrass uniformisation shows us that we gain insight on curves defined over a

number field by looking at them over a larger field (namely C). One could then

be tempted to do the same but looking at “smaller” fields, namely the finite fields

obtained by looking at the algebraic integers modulo some prime ideal. A naive

idea would be to look at the Weierstrass equation modulo some prime p. Of course,

for such a thing to be possible we first have to make sure the ai are integers in F .

Since the change of variables φ : (x, y) 7→ (u−2x, u−3y) multiplies each ai by ui, it

is always possible to do so. However, taking u ∈ pk for k big enough would make

all the coefficients reduce to 0 (mod p), so we have to find a proper equation before

reducing.

Definition 1.5. Let E/F an elliptic curve defined over F , R be the ring of integers

of F , p be a prime ideal of R, and νp be the valuation at p. The Weierstrass equation
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y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 is said to be minimal for a prime p of R if

of all equations y2 + a′1xy + a′3y = x3 + a′2x
2 + a′4x + a′6 describing the curve E with

a′i ∈ R for i = 1, 2, 3, 4, 6, νp(∆(ai)) ≤ νp(∆(a′i)).

Note that the possible values of νp(∆) form a discrete set (ai ∈ R), thus it takes

a minimal value. Once we have found this minimal equation, we can define the

reduction of E at p (written Ẽp) as the curve over R/p whose equation has the same

coefficients but modulo p. Amongst many thing, this reduced elliptic curve helps to

determine the torsion on the original curve (see [22] V). Sometimes, it may happen

that for a given prime the valuation of ∆E is greater than 0 even when E is described

by the minimal equation. In this case, the reduced curve is singular, ∆ ≡ 0 (mod p).

For these primes we say that E has bad reduction.

Definition 1.6. Let E an elliptic curve defined over F , and p a prime for which the

reduction of E at p is a singular curve. We say that E/F has bad reduction at p.

Furthermore,

1. if Ẽp has a cusp then E/F has additive bad reduction at p.

2. if Ẽp has a node and Ẽp(R/p) ' (R/p)× then E/F has split multiplicative

reduction at p.

3. if Ẽp has a node and Ẽp(R/p) '/ (R/p)× then E/F has non-split multiplicative

reduction at p.

Finally, when Ẽp is non-singular we say that E/F has good reduction at p.

Note that since ∆ is only divisible by finitely many primes, the number of primes

with bad reduction is always finite for a given elliptic curve. There is a ideal that

one usually associates to an elliptic curve E/F to encode the bad and good reduction.

Though a proper definition would require the introduction of many concept from the
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representation theory of local fields (see [23] IV.§10), we can almost always reduce to

the following one:

Definition 1.7. The arithmetic conductor of a curve E/F is N =
∏

prime pCR

pf(p), where

f(p)

is 0 when E/F has good reduction at p

is 1 when E/F has multiplicative reduction at p

is 2 when E/F has additive reduction at p and p | p ≥ 5

is greater or equal to 2 otherwise.

When K = Q we define the conductor to be the positive integer such that (N) = N.

Note that both definition 1.6 and 1.7 depend heavily on the field over which the

curve is defined.

One of the interesting properties of reducing elliptic curves is that when the re-

duction is good, the degree of the isogenies remain unchanged. Another interesting

quality of the reduced curve Ẽp(R/p) is its number of elements, np. As we do not

expect a cubic polynomial to favor squares over non-squares in its value, it seems

reasonable to give |p| + 1 := NF/Q(p) + 1 as an estimate of np (when the reduction

is good), as every square value of the polynomial give two root, and we expect them

to happen 50% of the time (|p| = ]R/p). We then define ap = |p| + 1 − np as our

error term. However, when E/F has bad reduction at p, our estimate should be |p|
as we have to take out the singular point, and one can find, thanks to theorem 1.5,

that ap is 0 (resp. 1, -1) when E/F has additive (resp. split, non-split multiplicative)

reduction.

We can now define the L-series of E/F as

L(E/F , s) =
∏

prime pCR

Lp(E/F , |p|−s)−1 (1.11)
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where Lp(E/F , X) = 1 − apX + |p|X2 when p has good reduction

Lp(E/F , X) = 1 − apX when p has bad reduction
(1.12)

Note that Lp(E/F , |p|−1) = np/|p|.

1.4 Complex Multiplication

As we observed in the first section of this chapter, the nature of the group structure

that we defined on an elliptic curve enables us to embed Z in the ring of endomor-

phisms of the curve. Though in most cases this map is also surjective, there also exist

curves with endomorphism ring bigger than Z. We will devote the rest of this chapter

to the study of these curves, which will be henceforth referred to as CM curves or

curves with complex multiplication.

1.4.1 Endomorphisms rings

Our first step will be to attempt to describe End(E). As we are only concerned about

fields of characteristic 0, it will be enough to do it over C. The general case will follow

from the Lefschetz principle (see [22] VI.§6). We can reduce to an easier problem using

Weierstrass uniformisation. Indeed, since elliptic curves over C are isomorphic to C/Λ

(as Riemann surfaces), where Λ = 〈ω1, ω2〉 is a lattice, it is sufficient to look at their

endomorphism ring.

First, let’s show that End(C/Λ) = {α ∈ C | αΛ ⊆ Λ}. If α ∈ C is such that

αΛ ⊆ Λ then f(z) = αz ∈ End(C/Λ).

Conversely, take f ∈ End(C/Λ), then f is an analytic map sending 0 to 0. There

is a projection p (so also a covering map) from C to C/Λ. From algebraic topology,

namely the general lifting lemma, {1} = (f ◦ p)∗(π1(C)) ⊆ p∗(π1(C)) = {1}, where

π1 is the fundamental group, guarantees the existence of a lift of f : C/Λ → C/Λ to
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f̃ : C → C, such that the diagram commutes:

C
f̃−−−→ C

p

y p

y

C/Λ
f−−−→ C/Λ

(1.13)

But f̃ is easy to describe:

p ◦ f̃(z + λ) = p ◦ f̃(z) ∀z ∈ C, ∀λ ∈ Λ

⇒ f̃(z + λ) ≡ f̃(z) (mod Λ) ∀z ∈ C, ∀λ ∈ Λ

⇒ f̃(z + λ) −f̃(z) ∈ Λ ∀z ∈ C, ∀λ ∈ Λ

(1.14)

However Λ is a discrete set, and f̃(z + λ) − f̃(z) is a holomorphic function, so

it must be a constant possibly depending on λ. Taking the derivative, one has that

f̃ ′(z+λ)−f̃ ′(z) = 0 ∀λ ∈ Λ which means that f̃ ′(z) is bounded on C, and consequently

also a constant (by Liouville’s theorem). We can then conclude that f̃(z) = αz + β.

Finally since f̃(0) ∈ Λ, we get that f(z) = αz + β with αΛ ⊆ Λ and β ∈ Λ. Without

loss of generality we can assume that β = 0

So End(E) = OΛ = {α ∈ C |αΛ ⊆ Λ}. Taking τ = ω2/ω1 of positive imaginary

part, and replacing Λ by 〈1, τ〉 (as they are homothetic) we find that for any α ∈ OΛ

there are a, b, c, d ∈ Z with α = a + bτ and ατ = c + dτ . Simple manipulations give

that α is integral over Z as α2 − (a + d)α + bc = 0. Now since OΛ 6= Z, we have

that for an α ∈| Z the corresponding b 6= 0 so bτ 2 + (d− a)τ + c = 0. Thus Q(τ) is a

quadratic extension, and as τ /∈ R (else Λ is not lattice) it is also imaginary. Finally

since OΛ ⊆ Q(τ) is a ring and is integral over Z, O is an order in a quadratic field.

Theorem 1.4. Let K be a field of characteristic 0, and E an elliptic curve over K

with endomorphism ring different from Z (a CM curve). Then End(E) is an order

in a quadratic field.

There is actually a preferred identification of EndC(E) with OΛ. The lattice iden-

tification of OΛ with EndC(E) consists of associating α ∈ OΛ with the endomorphism
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[α] such that for any invariant differential ω of E, [α]∗ω = αω.

The idea to fix such an identification is simple. To α ∈ O one associates the

endomorphism [α] such that the following diagram commutes:

C/Λ
fα−−−→ C/Λ

Φw

y Φw

y

E
[α]−−−→ E,

(1.15)

where fα is defined by z 7→ αz. To prove that [α]∗ω = αω, we first note that both

any two invariant differentials on C/Λ are equal up to multiplication by a non zero

constant, as their quotient is a function invariant under translation on C. Now tracing

through the diagram, [α] = f ◦ fα ◦ f−1 so

[α]∗(ω) = (Φ−1
w )∗ ◦ f ∗

α ◦ Φ∗
w(ω)

= (Φ−1
w )∗ ◦ f ∗

α(c dz) = (Φ−1
w )∗(αc dz)

= αω

(1.16)

Example 1.1. Here are two classical examples of elliptic curves (over C) with com-

plex multiplication:

1. E : y2 = x3 + x with End(E) = Z[i] and [i](x, y) = (−x, iy)

2. E : y2 = x3 + 1 with End(E) = Z[ρ] and [ρ](x, y) = (ρx, y), where ρ = e2πi/3

1.4.2 Finiteness of Ell(O)

Rather than concentrate on a particular elliptic curve with CM by O, it is useful to

look at all the elliptic curves with CM by some given order. We will further denote

by K = O ⊗Z Q the fraction field of O lies, and by OK the maximal order of K.

For a a lattice in C let us denote Oa = End(C/a) = {α ∈ C | αa ⊆ a}. Further-
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more, for O ⊆ K define

Ell(O) := {elliptic curves with CM by O}/isomorphisms over C

= {j(E) | E has CM by O}

= {lattices a ⊆ C | Oa = O}/C×

= {lattices a ⊆ K | Oa = O}/K×

(1.17)

where the meaning of = is that there is a one to one correspondance. The third

equality comes from the fact that two complex tori are isomorphic is and only if their

lattices Λ,Λ′ are homothetic (i.e. ∃α ∈ C such that Λ = αΛ′.The last equality holds

since if a = 〈1, τ〉 and Oa = O = Z + cZω (where c is the conductor of O) then

cωτ = a+ bτ for some a, b ∈ Z and thus τ ∈ Q(ω) = K.

It is consequently natural to pursue our studies by looking at the set

Lat(O) = {lattices a ⊆ K | Oa = O}.

Lemma 1.1. If a is an invertible fractional O-ideal, then a is in Lat(O).

Proof. Clearly, O ⊆ Oa. On the other hand if α ∈ C is such that αa ⊆ a then

αO = αaa−1 ⊆ aa−1 = O. So α ∈ O.

As a consequence of this lemma, we get that the ideal class group of O,

Cl(O) = {invertible fractional O-ideals}/K× injects in Lat(O)/K× = Ell(O). As

usual one is led to wonder how much of the target is missed by such a map, which is

the goal of our next lemma:

Lemma 1.2. Given a lattice a ⊆ K such that Oa = O then a is an invertible

fractional O-ideal

Proof. Without loss of generality, let a = Z + Zτ for τ in K. τ has a minimal

polynomial of the form Ax2 + Bx + C with gcd(A,B,C) = 1. Let D = B2 − 4AC,
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and τ̄ be the Galois conjugate of τ . We have τ + τ̄ = −B/A and τ · τ̄ = C/A, so if

we define ā =< 1, τ̄ >, we get

aā = 〈1, τ, τ̄ , τ τ̄ 〉

= 〈1, τ, τ̄ + τ, C/A〉

= 〈1, (−B +
√
D)/2A,−B/A,C/A〉

= A−1〈A, (−B +
√
D)/2, B, C〉

= A−1〈1, (B +
√
D)/2〉

(1.18)

The last equality holding because gcd(A,B,C) = 1. Now if we have that

O = 〈1, (B +
√
D)/2〉 (1.19)

then our proof is over as Aā is an inverse to a.

Let’s denote ω = (B +
√
D)/2 and M = 〈1, ω〉. Since 1τ ∈ a and

ωτ = −(B2 −D)/4A = C ∈ Z ⊆ a, M ⊆ Oa = O. Now for a z ∈ O = Oa,

za ⊆ a ⇒ za(aA) ⊆ a(aA) ⇒ zM ⊆M (1.20)

In particular z belongs to M . Therefore M = O.

Putting the two lemmas together we get our first significant result

Theorem 1.5. Ell(O) ' Cl(O)

So in particular, since Cl(O) is finite (see lemma A.1 or [14]) we have that Ell(O)

is also finite. An important observation for the proper use of this result is that given

an elliptic curves E : y2 = x3 + ax + b over C with CM by an order O, then for any

automorphism σ of C, σE : y2 = x3 + (σa)x + (σb) possess the same endomorphism

ring, by the identification f 7→ (σf), where σf is obtained from f by applying σ to

the coefficients of the morphism.
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Lemma 1.3. Let A be an elliptic curve with CM by O, and let [·]A, [·]σA denote the re-

spective lattice identifications of O. Then σ([α]A) = [σ(α)]σA ∀α ∈ O and ∀σ ∈ Aut(C).

Furthermore, if A is defined over L and K = Quot(O) then every endomorphism of

E is defined over L ·K

Proof. Let ωE denote the invariant differential of the elliptic curve E. Then one notes

that σωA = ωσA (by Def 1.2) and thus

(σ[α]A)(ωσA) =σ ([α]∗AωA) =σ (αωA)

=σαωσA = [σα]σAωσA

Using the fact that the pullback is an injection of End(E) into the endomorphism of

the space of invariant differentials of E (see [22] II.§4), we conclude that σ([α]A) =

[σ(α)]σA

If A possesses an equation over L, and σ ∈ Aut(C) fixes L, then σA = A. So in

particular, we get that σ([α]A) = [σα]A. If σ also fixes K, then σ([α]A) = [α]A and so

[α]A can be defined over L ·K

The fact that the endomorphism ring remains unchanged when we apply an auto-

morphism of C to an elliptic curve, gives us a way to produce other curves with CM

from an existing one. Using this idea one can already find useful results:

Theorem 1.6. Let E over C be a CM curve, then j(E) is an algebraic number.

Proof. If E is a CM curve, then E ∈ Ell(O) for some O. The algebraic definition of

the j-invariant (see definition 1.2) makes it clear that σj(E) = j(σE), thus if j(E) is

transcendental then there are infinitely many automorphisms of C not fixing j(E),

giving infinitely many non-isomorphic (since their j-invariant is different) elliptic

curves with CM by O, contradicting the finiteness of Ell(O).

Since j(E) is algebraic, it seems reasonable to ask what is the field generated by

all the j-invariants of the curves in O. This theorem also exhibits an action of the



1.4 Complex Multiplication 17

Galois group GK/K on the set Ell(O) via the j-invariants, which deserves a deeper

inspection.

But first, let us define another action of Cl(O), (which is related to GK/Q by class

field theory) in the hope of getting more insights.

1.4.3 The action of Pic(O)

To do so, we need a classical result, namely that Cl(O) is isomorphic to

Pic(O) = {rank one projective O-module, up to isomorphisms}. (1.21)

The group law on the latter is defined as follows:

(a, b) 7→ a ⊗O b (1.22)

The identity is O and the inverse of a is HomO(a,O). The isomorphism Cl(O) →
Pic(O) is then described as [a] 7→ [a], and is a group homomorphism since a ⊗O b =

ab ⊗O O. The proof of this can be found in [13]. This isomorphism is very useful to

define an action of Pic(O) on the set Ell(O).

Let A ∈ Ell(O), and a ∈ Cl(O) such that a is coprime to the conductor of O, so

that a is invertible in O. Since it is always possible to choose such an ideal in every

equivalence class (see remark A.1), we can define the action of Pic(O) on Ell(O) as

a ? A = HomO(a, A) (1.23)

for a an invertible ideal. However this only makes sense if HomO(a, A) is an elliptic

curve. To see this, we will consider A(C) = C/Λ. Then we look at the following exact

sequences:

0 → Λ → C → C/Λ → 0

0 → HomO(a,Λ) → HomO(a,C) → HomO(a,C/Λ)
(1.24)
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But the second one is also right exact since a is a projective O-module (for it is

invertible). To make explicit the structure of modules of the form HomO(a,−) we

need some lemmas:

Lemma 1.4. Let a be an invertible O-ideal. Then the ideal ap = aOp is principal for

every prime p of O.

Proof. Let b be such that ab = O, then for some ai ∈ a and bi ∈ b, where i = 1, . . . k,
k∑
i=1

aibi = 1. Thus it is impossible for all aibi to be in pOp. Suppose a1b1 /∈ pOp. Then

it is a unit. Take any a ∈ a, then b1a ∈ bap = Op. It follows that ab1(b1a1)
−1a1 ∈ a1Op

so ap = a1Op.

Lemma 1.5. Let a be an invertible O-ideal, and M a torsion-free O-module. Then

the map

f : a−1 ⊗O M → HomO(a,M)

α⊗O m 7→ (φα,m : x 7→ (αx)m),
(1.25)

extended by O-linearity is an isomorphism

Proof. It is trivial to show that this is a group homomorphism. Bijectivity requires

more work; we need to study the localization at every prime of O. To do so, recall

that there is a natural isomorphism (Op is the localization of O at p)

Op ⊗O HomO(a,M) ' HomOp
(Op ⊗O a,Op ⊗O M)

(β, f) 7→ (φ : a⊗O m 7→ βa⊗O f(m))
(1.26)

under the hypothesis that a is finitely presented. But the sequence

0 → a−1(α2,−α1) → O ⊕O → a → 0 (1.27)

where a−1(α2,−α1) = {(aα2,−aα1) for a ∈ a−1}, is exact. But since a−1 is also a

fractional ideal, it has at most two generators, thus is contained in O ⊕ O, so a is

finitely presented. Alternatively, we recall that all finitely generated modules over

noetherian rings are finitely presented.
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Using 1.25 we can localize (i.e. tensor over O by Op) the sequence

0 → K → a−1 ⊗O M
f→ Hom(a,M) → C → 0 (1.28)

and still get an exact sequence (we denote by C = Coker(f) and by K = Ker(f)).

The idea is to show that at every localization the map is bijective, so Kp and Cp are

trivial for every p ∈ O. A classical result will then imply that K and C are trivial.

Take a prime p C O, and denote by −p the local version of −.

By the previous lemma, ap := aOp is principal for it is invertible. Say ap = αpOp,

then we also have that a−1
p

= α−1
p
Op. Then the localized sequence is

0 → Kp → α−1
p
Op ⊗Op

Mp → HomOp
(αp,Mp) → Cp → 0 (1.29)

We begin by showing injectivity. An element u of a−1
p ⊗Mp can be written as

u =
∑
α−1

p ai/si ⊗mi/ti

= α−1
p

⊗
∑

aimi

siti

(1.30)

where ai ∈ O, mi ∈M and si, ti ∈ O \ p. Then for x ∈ ap

f(u)(x) = (α−1
p
x)

∑
aimi

siti
(1.31)

If f(u)(x) = 0 for all x then it follows that
∑

aimi

siti
= 0 for M is torsion-free. Therefore

u = α−1
p

⊗ 0 = 0

As for surjectivity, let φ ∈ HomOp
(ap,Mp), then φ(αp) = mp determines com-

pletely the map as it is a Op homomorphism. So α−1
p ⊗Op

mp ∈ a−1
p ⊗Op

Mp is a

preimage of φ, and the map is surjective.

Replacing the two first elements in the second line of 1.24 by their equivalent

module we get

0 → a−1Λ → a−1C → HomO(a,C/Λ) → 0 (1.32)
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Thus HomO(a,C/Λ) can be identified with C/a−1Λ (for a−1C = C) which is an elliptic

curve with CM by O. Interestingly one has a natural map A ' C/Λ to a?A ' C/a−1Λ

of kernel

a−1Λ/Λ = {P ∈ A | aP = O ∀a ∈ a} =: A[a] (1.33)

We will now prove a basic fact on invertible ideals in order to get more information

this kernel (and on the kernel of [α]A).

Lemma 1.6. Let a, b be integral invertible ideals of O, such that b ⊆ a, then

O/ba−1 ' a/b.

Proof. Let b =
k∏
i=1

p
fi

i , with fi > 0, and a =
k∏
i=1

pei
i , with 0 ≤ ei ≤ fi. Pick xi ∈

pei
i \ pei+1

i , and let k be the solution of x ≡ xi (mod pei+1
i ) ∀i (which exists by the

Chinese remainder theorem). Then the valuation of k ∈ O (well-defined for Opi

is a discrete valuation ring) at pi is ei (i.e. νpi
(k) = ei). We can then define a map

m : O/ba−1 → a/b, by sending x ∈ O to kx (well defined as kba−1 ⊆ b). Localization

is an exact functor, so if we prove that the map m is injective and surjective at every

prime of O, its kernel and cokernel will be trivial (a O-module is trivial if and only

if all its localization are).

Since a and b are invertible, then every localization is principal (see lemma 1.4) so

denote αp and βp as a principal element in ap and bp respectively. If p = pi for some

i, then k = upαp where up is a unit in Op and the multiplication map by αp from

Op/(βpα
−1
p
Op to αpOp/βpOp is easily seen to be bijective. If p 6= pi ∀i then localizing

at p yields a trivial map: Op = aOp = bOp, which is also bijective.

Up to a isomorphism of A we can make a−1Λ into an integral O-ideal. It then

follows that ]A[a] = NK/Q(a). Similarly one can get that ]Ker([α]A) = NK/Q(α).

The action of Pic(O) we defined is simple and transitive. Transitive for if two

elements of Pic(O) give the same elliptic curve then they are equal up to homothety
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in Cl(O):

a ? A = b ? A ⇔ C/a−1Λ ' C/b−1Λ

⇔ a−1Λ is homothetic to b−1Λ

⇔ a−1 is homothetic to b−1

⇔ [a−1] = [b−1]

It is simple since the sets Pic(O) and Ell(O) have the same cardinality. As promised,

we now inspect the relation between this action and the one from GK/K .

Theorem 1.7. Let σ ∈ GK/K , and a ∈ Pic(O) then σ(a ? A) = a ? (σA)

Proof. From the isogeny A → A/A[a] one gets σA →σ (A/A[a]). Since σA also has

CM by O, there is another isogeny σA → (σA)/(σA)[a]. However, by lemma 1.3 their

kernel ( σ(A[a]) and (σA)[a] ) are equal. But for a given finite subgroup L of E there

is an unique elliptic curve and an isogeny f : E → E ′ such that Kerf = L (see [22]

III.§4). It follows that the images of the two maps are equal and thus that the two

action commutes.

Remark 1.1. The action of Pic(O) we introduced might seem awkward due to the

work involved in proving the commutativity of the actions. Indeed, one could be

tempted to define directly a ? A = A/A[a]. Though this last definition makes com-

mutativity easy to prove, it does not respects so clearly the properties of an action

(ba ? A
?
= b ? (a ? A)).

Since the action of Pic(O) is simply transitive, we can define for a given A ∈ Ell(O)

a map ηA : GK/K → Pic(O) by the rule ηA(σ) ? A = a ? A.

Lemma 1.7. ηA is a group homomorphism independent of A.

Proof. Independence follows from the commutativity of the actions:

ηA(σ) ? A′ = ηA(σ) ? a ? A = a ? ηA(σ) ? A

= a ? (σA) =σ (a ? A)

=σA′

(1.34)
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where A′ = a ? A And as a simple consequence is a group homomorphism:

η(στ) ? A =στ A =σ (η(τ) ? A) = η(σ) ? η(τ) ? A

Thus we get our first piece of information by looking at

Ker(η) = {σ ∈ GK/K |σA = A} = {σ ∈ GK/K |σ j(A) = j(A)} (1.35)

for then K(j(A)) = K̄Ker(η) =: H. More importantly GH/K = Im(η) ⊆ Pic(O), and

so H is an abelian extension of K.

1.4.4 Explicit Galois Action on j(E)

To get more information about H, we need to use class field theory. As a recall

when L/K is an abelian extension of number fields, p ⊆ K a prime ideal unramified

in L, ℘ a prime of L above (or dividing) p, l = OL/℘ and k = OK/p, we have an

isomorphism between the decomposition group of ℘, D℘, and the galois group Gl/k.

It is determined by sending the frobenius in Gl/k to σ℘ ∈ GL/K where the restriction

of σ℘ to OK/p corresponds to the frobenius (raising to the |l|th power). Actually σ℘

is unique with this property and is independent of ℘, so we will write it σp instead.

The assignment p 7→ σp is actually a isomorphism of Cl(K) with GKur/K where

Kur,ab is the maximal unramified abelian extension of K. When O is not maximal

the isomorphism is slightly different: we only consider primes p of K prime to the

conductor c of O, then

rec : Pic(O) → GHO/K

p 7→ σpOK

(1.36)

is an isomorphism, where HO is an abelian extension of K unramified outside the

primes dividing c.
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Theorem 1.8. H = HO

Proof. Let L = H ·HO, then it is an abelian extension of K. Furthermore we have

homomorphisms GL/K

π
� GHO/K

rec' Pic(O), so we define ξ = r ◦ π. On the other

hand, since GK/L ⊆ Ker(η) we might as well restrict η to GL/K . Then LKer(η) = H

and LKer(ξ) = HO, so what we really need to prove is that η|GL/K
= ξ. To prove this

we will first have to describe GL/K properly.

When L/K is a finite extension of number fields, we can define the Tchebotarev

density δS of a set S of primes of L. The properties of this density that are of interest

to us are the following:

1. If T ⊆ S is a finite set then δS = δ(S \ T ).

2. If T = {℘ in S with NL/Q(℘) a rational prime} then δS = δ(T ).

3. If δS = 1 then GL/K = {σp | ∃℘ ∈ S such that p divides ℘}.

Note that since every ℘ ∈ L divides some p ∈ K, and that σ℘ = σp by definition,

it is more convenient to speak of the set S as a set of primes of K. The set S that

we will use is define as all the primes p of O satisfying:

C1− p is prime to c the conductor of O.

C2− p is unramified in L.

C3− Every elliptic curve A ∈ Ell(O) has good reduction at all ℘ | p.

C4− NK/Q(p) is a rational prime.

C5− p does not divide NL/K(j(A) − j(A′))OK ∀A,A′ ∈ Ell(O) such that A 6= A′.

So our set S has density 1 (at every step except C4 we took out a finite number of

prime, and C4 is a condition that does not affect δS). The purpose of these conditions

will be made clear as we go trough the proof. According to the third property of the

density, and using our first condition on S, one notes that we now only need to show

that η(σp) = ξ(σp) = [p] to have η = ξ.
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Let β ∈ p \ p2 and q be such that pq = pO for p ∈ Z (exists by C1, C2 and C4).

Then, by the Chinese remainder theorem, there is a α ∈ O such that

α ≡ β (mod p2), α ≡ 1 (mod q), α ≡ 1 (mod c) (1.37)

Consequently αO = ap for some a C O such that a is prime to both c and p. For

some A ∈ Ell(O) consider the maps

A
ϕ→ p ? A

ψ→ ap ? A = (α) ? A
µ' A (1.38)

Then µ ◦ ψ ◦ ϕ = [α]A, so in particular the isogeny is of degree NK/Q(α) and (µ ◦ ψ ◦
ϕ)∗ω = αω. For some ℘ | p, we now reduce everything modulo ℘ | p (note that no 2

j-invariants become equal due to C5), and denote by −̃℘ the reduced version of −.

Then [̃α]℘ = µ̃℘ ◦ ψ̃℘ ◦ ϕ̃℘ is inseperable since ℘ |α (α ∈ p) and [̃α]∗℘ω̃℘ = α̃℘ω̃℘. The

degree of the isogenies is not changed by good reduction (C3) and α ∈ p. Furthermore,

deg(µ̃℘) = deg(µ) = 1 since µ is an isomorphism, and deg(ψ̃℘) = deg(ψ) = NK/Q(a) is

separable since a is coprime to p. Thus, ϕ̃℘ is of degree p (C4)and must be inseparable.

It can be expressed as Fr ◦ λ, where Fr is the pth-power Frobenius map and λ is

separable. Since the Frobenius is of degree at least p it follows that λ is of degree

one, so an isomorphism. Consequently, p ? Ã℘ = ϕ̃℘(Ã℘) = Fr(Ã℘) = Ã
(p)
℘ , where

Ã
(p)
℘ is the curve Ã℘ with all the coefficients to the pth power. By definition of j, we

have j(Ã
(p)
℘ ) = j(Ã℘)

p, so

j(p ? A) = j(p̃ ? A℘) = j(Ã(p)
℘ ) = j(Ã℘)

p ≡ σpj(Ã℘) ≡ j(σpÃ℘) (mod ℘) (1.39)

But then

j(p ? A) ≡ j(σpA) (mod ℘) (1.40)

So since the j-invariants stay different (C5), we have that

j(E) ≡ j(E ′) (mod ℘) ⇔ E ' E ′

⇒ p ? A ' σpA = η(σp) ? A
(1.41)

Thus ξ(σp) = [p] = η(σp), η = ξ and H = HO
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In fact we have proved much more: we have an explicit relation between the action

of GHO/K with that of Pic(O) by

σpj(A) = j(p ∗ A) (1.42)

Now if we let ΛA be the lattice associated to A, then ΛA ' 〈1, τ〉 with =(τ) > 0 ,

then we define j(A) = j(τ). Since Λp?A = p−1ΛA we will write

σpj(τ) = j(p ? τ), (1.43)

where 〈1, p ? τ〉 ' p−1ΛA.

Furthermore, since 〈1, τ〉 homothetic to 〈cτ+d, aτ +b〉 if ( a bc d ) ∈ SL2(Z), one sees

that τ is only well-defined up to an action by SL2(Z) defined by


a b

c d


 τ =

aτ + b

cτ + d
(1.44)

These observations enables us to rewrite Ell(O) as the set

{τ ∈ SL2(Z)\H | O〈1,τ〉 = O} (1.45)

where H = {z ∈ C | =(τ) > 0} and using the usual equivalence between latices and

elliptic curves.
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Chapter 2

Heegner Points

A crucial tool in the construction of Heegner points is the modular parametrization.

We will briefly describe the properties of this parametrization and the objects that are

necessary to define it. We will follow by the definition of Heegner points, their prop-

erties, how to compute them, and a quick survey of the results of our computations

on curves of conductor less than 3000.

2.1 Modular Parametrization

Through the work of many mathematicians there emerged the remarkable conjecture

that elliptic curves over Q could be in some sense parametrized by other objects,

namely cusp forms. This insight has now been confirmed to be true. Consequently,

we will devote this first section to a very short outline of the results that will be

needed to make proper definitions of Heegner points and their properties.

There are many reasons to consider the upper-half plane H = {z ∈ C | =(z) > 0}
and the action of SL2(Z) that one defines on it. One of them is introduced in

the appendix, where (quadratic) points in the upper half plane represent a positive

definite primitive binary quadratic form, and another one comes from the description
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of representatives for Ell(O), as seen in 1.44. These notions of equivalence then yield

the action of SL2(Z) on H, and we can obtain a fundamental domain F for SL2(Z)\H
(see A.5).

On the other hand H is also a Riemann surface, and the group of matrices of

positive determinant GL+
2 (R) acts on H as in A.4 or 1.44. Since scalar multi-

ples of the identity act trivially on H, we can consider this as the action of the

group PGL+
2 (R) = GL+

2 (R)/R×I. Furthermore, this action leave both the hyper-

bolic line element ds2 = dz dz̄/y2 = (dx2 + dy2)/y2 and the hyperbolic surface ele-

ment dµ = dz ∧ dz̄/2iy2 = dx ∧ dy/y2 unchanged (here x + iy = z ∈ H). Indeed for

γ = ( a bc d ) ∈ GL+
2 (R), one has

d(γz) = dγz
dz
dz

= ((cz + d)a− (az + b)c)h(γ, z)−2dz

= Det(γ)h(γ, z)−2dz

where h(γ, z) = cz + d, and similarly d(γz̄) = Det(γ)h(γ, z̄)−2dz̄. Since =(γz) =

y|h(γ, z)|−2 it follows that the action of GL+
2 (R) is a hyperbolic isometry. Since the

riemannian structure is invariant under these transformations, it can also be defined

on the quotient of H by any subgroup of GL+
2 (R). In fact, for some subgroups, this

quotient is also a Riemann surface. The subgroups that are of interest to us are the

Hecke congruence subgroups:

Γ0(N) = {γ ∈ SL2(Z) | γ is upper triangular (mod N)}

The quotients Γ0(N)\H are not compact (see for example the description of SL2(Z)\H
in A.5). This can be corrected by considering H∗ = H∪Q∪{∞}. We call the points

added to H the cusps. One can check that the action of SL2(Z) extends properly to

these points given that ( a bc d )∞ = a/c. To make H∗ a topological space, we define the

neighborhoods of ∞ to be the points of imaginary value greater than a given constant.

For compatibility, their image under SL2(Z) gives the neighborhood of points in Q.
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It can be shown (see [15] Ch.XI or [19] Ch.II) that the quotients X0(N) := Γ0(N)\H∗

can be given the structure of a compact Riemannian surface.

Remark that since T = {( 1 k
0 1 ) |k ∈ Z} forms an infinite subgroup of SL2(Z), every

finite index subgroup of SL2(Z) possess a non-trivial subgroup of T . It is useful to

call the width of a cusp x = α−1∞ the positive integer kα such that
(

1 kα
0 1

)
generates

T ∩ αΓ0(N)α−1. It does not depend on the matrix α, but only on the cusp x.

To study a compact Riemannian surface, it is natural to consider its holomor-

phic differentials. In the case of X0(N) they can be seen as very explicit objects

namely cusp forms of weight 2 for Γ0(N). For α ∈ GL+
2 (R), denote by f |α (z) :=

Det(α)h(α, z)−2f(αz).

Definition 2.1. A cusp form of weight 2 for Γ0(N) is a function f : H → C such

that

1. f(z) = f(γz) h(γ, z)−2 for all γ ∈ Γ0(N).

2. For all α ∈ SL2(Z), the function f |α(z) = h(α, z)−2f(αz) possesses a Fourier

expansion of the form

f |α=
∑

n>0

a(α)
n e2πinz/kα (2.1)

In particular, since ( 1 1
0 1 ) ∈ Γ0(N), a cusp forms f can be written as

∑
anq

n with

q = e2πiτ and a1 = a∞1 . Cusp forms form a vector space over C denoted by S2(N).

To describe the relation that these objects have with elliptic curve we still need to

introduce more notations.

First, note that if f ∈ S2(N) then, for s ≥ 1, f is also in S2(sN) . Furthermore,

if αs = ( 1 0
0 s ) and g(z) = f |αs (z) = s−1f(s−1z) then g ∈ S2(sN). Indeed, since

α−1
s Γ0(sN)αs ⊆ Γ0(N), then f |αs|γ= f |α−1

s γαs
|αs= f |αs for any γ ∈ Γ0(sN). Cusp

forms in S2(N) obtained from cusp forms in S2(N
′) for some N ′ |N and N ′ 6= N ,

are called old forms, and the space they generate is denoted Sold
2 (N). These are the
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elements that are not of interest to us, and in order to define a complementary space

we need some extra structure on the vector space.

Definition 2.2. The Peterson scalar product for f, g ∈ S2(N) is

〈f, g〉 =

∫

H/Γ0(N)

f(z)g(z)dx dy (2.2)

The region Γ0(N)\H is described as follows: we write SL2(Z) = ∪iβiΓ0(N) and

obtain a fundamental domain for Γ0(N)\H as ∪β−1
i F , where F is the fundamental

domain of SL2(Z)\H. It is not too hard to check that the integral is convergent (due

to the behavior at the cusp) and that it is well-defined (i.e. that it does not depend

on the choice of the fundamental region). It is also non-degenerate (see [20]).

It is now possible to define a perpendicular subspace to Sold
2 (N). It is denoted

Snew
2 (N). One is then led to consider a family of self-adjoint operators (Hecke oper-

ators see [15]) for this new space. Since these operators commute, it is possible to

find a basis of simultaneous eigenvectors of S2(N). We say f is a newform of level

N when it is a simultaneous eigenvector and its first Fourier coefficient a1 is 1. It

is actually possible to choose a basis for S2(N) consisting of newforms with integer

Fourier coefficients.

To a newform of level N we attach an L-function by setting

L(f, s) =
∞∑

n=1

ann
−s (2.3)

This function satisfies many of the properties that the one defined for elliptic curves

does.

Theorem 2.1. (Eichler-Shimura construction) Given f a newform of level N with in-

teger Fourier coefficients there exists an elliptic curve Ef over Q such that L(Ef , s) =

L(f, s)

For a discussion of this construction see [6], [15] or [21]. An important step in

the proof is to realize that X0(N) is an algebraic curve over C that possess a model
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over Q. Simply said it is in bijection with a curve described by the vanishing of a

polynomial with coefficients in Q. In this model, points on the modular curve X0(N)

are given by a pair of elliptic curves (actually, their j-invariant) related together by

a cyclic N -isogeny (an isogeny whose kernel is cyclic and of cardinality N)

Crucial to our aims is the fact that this construction also gives an algebraic map

ΦN : X0(N) → Ef where Ef is obtained by the Eichler-Shimura construction. Fur-

ther, one has that Φ∗
N(ω) = c2πif(τ)dτ where ω is the Néron differential of Ef ,

c ∈ Q∗ is a constant (called the Manin constant of Ef), and f(τ)dτ is the differential

of X0(N) given by f . This map can be actually be made explicit:

Theorem 2.2. Let ΛE be the Néron lattice of Ef and let c be the Manin constant

attached to Ef . Let Φw : C/ΛE → E(C) be the Weierstrass uniformisation. Then for

τ ∈ H∗,

ΦN(τ) = Φw(zτ ) where zτ = c

∫ τ

i∞
2πif(z)dz = c

∞∑

n=1

an
n
qn, with q = e2πiτ (2.4)

Though the description given here is purely analytic, this is actually an algebraic

map between X0(N) and Ef . It can also be showed that this maps sends cusps to

torsion points (see [15] XI). One question naturally raised from this construction is

which curves can be obtained in such a manner. It has been recently solved thanks

to a fundamental breakthrough of Wiles. Indeed, every isogeny class possesses an

elliptic curve which can be constructed from a newform, and this specific curve is

called the strong Weil curve. If a curve is not a strong Weil curve then we say it is a

weak Weil curve in the isogeny class.

2.2 Definition

Considering that we have an algebraic map from X0(N) to an elliptic curve E of

conductor N , and that our aim is to produce a point in E defined over Q, it seems
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reasonable to look at points on X0(N) on which we have some Galois theoretic control.

The definition then comes naturally (see also [10]):

Definition 2.3. A Heegner point (onX0(N)) associated to the order O (of a quadratic

imaginary field K) is a point (j(A), j(A′)) where A, A′ both have complex multipli-

cation by O and are, like all points of X0(N), related by a cyclic N -isogeny.

Alternatively, using Weierstrass description of elliptic curves over C, we can see the

isogeny as a map A ' C/Λ → C/Λ′ ' A′ where Λ and Λ′ are the lattices associated

to A and A′. Since the isogeny is cyclic and we can use a homothety of C× (i.e. an

isomorphism over C), to have that Λ ⊆ Λ′ ⊆ O and Λ′/Λ ' Z/N . Then n = Λ · Λ′−1

is an integral ideal. A consequence of interest to lemma 1.6 is that we can get a nice

description of n:

O/n = O/Λ · Λ′−1 ' Λ′/Λ ' Z/N (2.5)

It follows that n is of norm NK/Q(n) = N and yields a cyclic quotient.

The first question that one should ask is whether or not it is possible choose such

a pair of elliptic curves. The above discussion already gives us part of the answer:

Theorem 2.3. For a given an order O of discriminant D, and a conductor N ∈ Z,

the following are equivalent:

1. A Heegner point exists on X0(N).

2. There exists an ideal n of O such that n is cyclic of norm N, i.e. O/n = Z/N .

3. The equation D = B2 − 4NC has a solution (B,C) with gcd(N,B,C) = 1.

Proof. The fact that 1 ⇔ 2 follows from discussion we just made: we have that given

a Heegner point we can produce the required ideal as n = Λ · Λ′−1. Conversely given
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an ideal nCO, then any invertible ideal aCO will be a lattice, thus yields an elliptic

curve. Taking Λ′ = a · n−1 and Λ = a we have the required pair of elliptic curves.

The proof of 2 ⇔ 3 comes from the theory of binary quadratic form, thus it has

been relegated to appendix A, lemma A.3.

Remark 2.1. It is important to point out that this theorem also gives us a complete

description of a Heegner point as a triplet (O, n, a), since the last two elements give

all the information that is contained in the pair (A, A′) and the cyclic N -isogeny

that relates them, and O is their endomorphism ring. Furthermore, as the curve

C/a is defined up to isomorphism, the ideal a is only defined up to principal ideals

(homothety of lattices). As a consequence we will write Heegner points as (O, n, [a])

where [a] is the equivalence class of a in the class group Cl(O). The conductor of

the order O is often referred to as the conductor of the Heegner point.

Let c be the conductor of O and suppose that gcd(c, N) = 1, then condition

3 in theorem 3.2 is just D ≡ B2 (mod 4N). Indeed, write D = c2 · d (where d

is a fundamental discriminant) and suppose that D = B2 − 4NC. If there is a

p | gcd(N,B,C) then p2 | d which is impossible unless p = 2. If this is the case, then

one notes that d ≡ 8 or 12 (mod 16) and B2 ≡ 0 or 4 (mod 16) a contradiction.

Definition 2.4. We say that an order O ⊆ K of discriminant D and conductor c

satisfies the Heegner Hypothesis (HH) for a given elliptic curve of conductor N if D

is a square mod4N and gcd(c, N) = 1.

This definition is actually slightly weaker than the usual one, in which we ask

for the discriminant to be coprime to N. We will refer to the latter as the Strong

Heegner Hypothesis (SHH). Note that some cases fall outside HH, for example, a

curve of conductor N = 40 with D = −96 has a cyclic ideal of norm 40, namely

〈40, 4 + 2
√
−6〉. Remark that this is not an invertible ideal, and is consequently very

awkward to work with.
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2.3 Galois action on Heegner points

Now that we have defined a proper point on X0(N), we can start to apply the tools

that come from CM theory. As a recall, we had a curve E ′ with CM by O, and we

defined τ such that 〈1, τ〉 is homothetic to the lattice associated to E ′. We then had

to consider O = O〈1,τ〉, so that ∀α ∈ Cl(O), j(α ? τ) = rec(α)−1j(τ). An important

point in the proof of this result is that j(τ) belongs to the Hilbert class field of O, HO.

Since we will want to apply this theorem to the point (j(A), j(A′)) on X0(N)

we first have to describe the action on the two j-invariants. First, let’s define υ

and τ such that Λ ' 〈1, υ〉 and Λ′ ' 〈1, τ〉. Note that we can choose them so that

υ = Nτ , as there is a cyclic N -isogeny A → A′, to avoid the need of specifying

both of them. We are then led to consider the order Oτ,N = O〈1,Nτ〉 ∩ O〈1,τ〉 as

its class field HOτ,N
contains both j(τ) and j(Nτ). This can be seen using the

description 1.43 of the action of the Galois group of HOτ,N
. Thus the Heegner point

Xτ = (j(Nτ), j(τ)) is in X0(N)(HOτ,N
). The following corollary follows directly since

the map ΦN : X0(N) → E is a map of algebraic curves defined over Q.

Corollary 2.1. The image of the Heegner point Xτ by ΦN lies in E(HOτ,N
).

So far, we have found a point on E in a specific number field. As we wish to

obtain a point on E(Q) from this, we will now look at the Galois action. Using the

reciprocity map, this will translate to the familiar action of Cl(Oτ,N):

rec(a)−1(j(Nτ), j(τ)) = (rec(a)−1j(Nτ), rec(a)−1j(τ))

= (j(a ? Nτ), j(a ? τ))

= (j(υ′), j(τ ′))

(2.6)

Where υ′ and τ ′ are both defined modulo the action of SL2(Z). However there is still

a cyclic N -isogeny between the elliptic curves represented by υ ′ and τ ′ thus they can

again be chosen so that υ′ = Nτ ′.
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It is convenient to write this action as a ?N τ = τ ′ to emphasize it is a level N

lift of the ? action. Also note that the result τ ′ is defined up to Γ0(N). Indeed, if

(( a bc d ) ∈ Γ0(N) then 〈1, ( a bc d ) τ〉 and 〈1, N ( a bc d ) τ〉 are both homothetic (by a factor of

cτ + d) to 〈1, τ〉 and 〈1, Nτ〉. It then makes sense to define the set of Heegner points

as HP(O) = {τ ∈ H/Γ0(N) | Oτ,N = O}. In fact, written like this, the elements in

HP(O) are just different representatives of the elements in Ell(O). We will now make

explicit the relation between this description and the previous one (O, n, [a]), and

doing so will enable us to get a very simple method to determine the Galois action

and the Heegner points.

It is actually very easy to state the actual relation between these two notations.

From n and a we produce the lattice Λ, and then get a homothetic lattice whose

generators are 1 and τ . However the choice of τ is not fortuitous, since we must make

sure that Oτ,N = O.

Oτ,N = O〈1,Nτ〉 ∩ O〈1,τ〉

= {α ∈ O|α · 〈1, Nτ〉 ⊆ 〈1, Nτ〉 and α · 〈1, τ〉 ⊆ 〈1, τ〉}
= {α ∈ O|∃ ( a bc d ) ,

(
a′ b′

c′ d′

)
∈M2(Z) such that α

(
Nτ
1

)
=

(
a′ b′

c′ d′

) (
Nτ
1

)

and α
(
τ
1

)
= ( a bc d )

(
τ
1

)
}

= {α ∈ O|∃ ( a bc d ) ,
(
a′ b′

c′ d′

)
∈M2(Z) such that α

(
τ
1

)
=

(
1/N 0
0 1

) (
a′ b′

c′ d′

)
(N 0

0 1 )
(
τ
1

)

and α
(
τ
1

)
= ( a bc d )

(
τ
1

)
}

= {α ∈ O|∃ ( a bc d ) ∈M2(Z) and N |c such that α
(
τ
1

)
= ( a bc d )

(
τ
1

)
}

= {( a bc d ) ∈M2(Z) and N |c such that τ = ( a bc d ) τ := aτ+b
cτ+d

}
(2.7)

It is convenient to define M0(N) = {( a bc d ) ∈ M2(Z) and N | c}, the set of upper

triangular matrices modulo N . In the last step we replace the usual quadratic imag-

inary order by an order of matrices. Note that one can pass from one to the other by

looking at the eigenvalues of such matrices. Their eigenvectors are
(
τ
1

)
and

(
τ̄
1

)
, and

by taking the eigenvalue associated to the first one , we recover an element of Oτ,N .
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From this one can explicitly describe a Heegner point. Suppose O = 〈1, ωD〉. We

will use 2.7 to find a τ such that ON,τ = O. Since the identity matrix is always in

ON,τ , it suffices to find another one A = ( a bc d ) with N | c that behaves like ω, i.e.

satisfies A2 − TrK/Q(ωD) ·A+NK/Q(ωD) = 0. From small calculations one finds that

this is equivalent to Tr(A) = TrK/Q(ωD) and Det(A) = NK/Q(ωD). τ can finally

be obtained by solving τ = Aτ so τ = ((2a − TrK/Q(ω)) +
√
D)/2c where D is the

discriminant of O. Interestingly (2a − TrK/Q(ωD))2 = −4bc + D ≡ D (mod 4N).

Thus s = 2a− TrK/Q(ωD) is a square root of D modulo 4N .

Though the preceding method is very efficient to compute one Heegner point, and

does not rely on the more cumbersome (O, n, [a]) notation, it does not help expressing

the Galois action on such points. For this, it is more useful to proceed using binary

quadratic forms. As in the appendix, here I will denote the map that sends a form f

to its associated integral ideal.

To get τ from (O, n, [a]) one has to proceed with more care than simply picking a

point in H with 〈1, τ〉 ' an−1. For a start, 〈1, τ〉 must have endomorphism ring O; it

is a fractional O-ideal. As such, it is associated to a primitive binary quadratic form f

of discriminant D = Disc(O) (i.e. f(τ, 1) = 0). Indeed, if f(x, y) = Ax2 +Bxy+Cy2

is such that τf = τ , we must have that N | A and B2 ≡ D (mod 4N), in order to

have Oτ,N = O. Furthermore, as 〈1, τ〉 ' Λ′, I(f) ∈ [Λ′] = [an−1]. The ideal n−1 is

in turn represented by a form g(x, y) = Nx2 − sxy + jy2 where s is a square root of

D mod 4N and 4Nj = s2 − D (see lemmas A.2 and A.3, note the −s as opposed

to s when we are looking at n). Let h(x, y) be the form associated to some i ∈ [a],

then Λ′ = in−1 is equivalent to f = g · h. Finally, to have that N | A and B2 ≡ D

(mod 4N) (so B is determined mod2N), it follows that i must be chosen so that the

Dirichlet composition of g and h is possible (it always exists by remark A.1). So τ

is obtained as the point in H associated to g · h where I(g) = n−1, and I(h) = i (i

chosen as above).



2.3 Galois action on Heegner points 37

We work out the inverse correspondence as follows. First, from τ we recover

O = Oτ,N . Second, we find the binary quadratic form of τ = s+
√
D

2kN
∼ f(x, y) =

kN x2 + s xy + j y2. Then we define n−1 as the ideal represented by g(x, y) =

Nx2 + (s mod 2N)xy + j ′y2, and i ∼ h(x, y) = kx2 + (s mod 2k)xy + j ′′y2. Since

gcd(N, k, s) = 1, Dirichlet composition of g and h is possible and f = g ·h⇒ 〈1, τ〉 '
in−1. Consequently (O, n, [i]) is just the long notation for τ .

Theorem 2.4. Let (O, n, [a]) be a Heegner point, and b ∈ Cl(O) then

rec(b)−1(O, n, [a]) = (O, n, [ab−1]) (2.8)

Proof. This result is direct from the translation of the two notations and the definition

of ?N . Indeed, n−1[a] is related to τ by the usual homothety. On the other hand,

τ ′ = b ?N τ is defined so that 〈1, τ ′〉 = 〈1, τ〉I−1 where I is a representative of [b]. τ ′

then translates back to a representative of n−1[ab−1].

As a consequence of this, one can note that the ?N action on HP(O) is simply

transitive. We are now also able to produce a point on E(Q): first we can make a

point PK ∈ E(K) simply by adding all the points in ΦN(HP(O)), and then PK + PK

yields the desired point. Unfortunately, we have no guarantee that this point is not

the point at infinity.

However, getting a point on E(Q) is almost nothing when compared to the prop-

erties of PK . Gross and Zagier [11] made an impressive link between this a priori

algebraic data and the first derivative of the L-function of E(K). They proved that

〈PK, PK〉, where 〈 , 〉 denotes the Néron-Tate height on E(K), is proportional to

L′(E/K, 1), and as a consequence, PK is torsion ⇔ L′(E/K, 1) = 0. Kolyvagin ([16]

and [17]) then showed that we can get an upper bound on the Mordell-Weil group

E(K). Indeed, if PK is non-torsion, then it generates a finite-index subgroup of E(K).

However, this also shows that PK cannot be properly used on curves with rank bigger

than one. Combining these two important facts about PK, it is possible to prove that
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if the analytic rank of the curve E(Q) is 0 or 1, then it is equal to the algebraic rank

of E.

2.4 Calculation of Heegner Points

One of the most exceptional properties of Heegner points is that they are very simple

to compute as was sketched in the preceding section. Indeed, they are described only

in terms of binary quadratic forms, and by virtue of theorem 2.2, we can explicit the

point to which they map to. In order to illustrate this, we will produce some examples,

beginning trivial class group examples before moving to slightly more complex cases.

Example 2.1. Let’s begin by the first curve on Cremona’s table (see [5]):

by2 + y = x3 − x2 − 10x− 20 of conductor 11. First we must find a D (discrimi-

nant of a quadratic field) which is a square modulo 4 ·N = 44. A nice choice would

be −43, as its class group is trivial and its square root mod4N is 1. So ]HP(O) = 1,

and we can get τ by the first method mentioned: −43 = 12 (mod 44) ⇒ s = 1, and

A = ( 1 11
1 0 ) ⇒ τ = (1 +

√
−43)/22. The zτ in theorem 2.2 is then given by

∑

n≥1

an · qn/n = q − q2 − q3/3 + . . . (2.9)

(the Manin constant for the strong Weil curves of conductor less than 8000 has been

found to be one) where q = e2πiτ . The result of this sum maps to a point on the elliptic

curve using Weierstrass uniformisation: Φw(z) = (53− 4
√
−43,−347 + 44

√
−43). Of

course, we have not proved that this is the image, but it numerically fits to a few

thousands of digits, and is an exact solution to the Weierstrass equation.

Example 2.2. Let’s take the first curve of rank one that appears in the tables:

y2 + y = x3 − x of conductor 37. If we pick -67 (≡ 92 (mod 148)) as our discriminant

for the quadratic field, we again conveniently find ourself in a trivial class group case,
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thus we need only to find one τ = (9 +
√
−67)/74. Summing up the ane

2πniτ/n and

using Φw we are given the point (6,−15). One can check that this point is of infinite

order.

When the class group is non-trivial, it becomes more convenient to see Heegner

points as the triplet (O, n, [a]). If for each equivalence class of Cl(O), we take a

representative say ai for i = 1, . . . , h(O), we can associate to each of them a distinct

τi ∈ HP(O) as described in the previous section. For these computations, one can

rely only on binary quadratic forms. We first compute the class group hi(x, y) as in

Remark A.2, and find the form g(x, y) associated to our ideal of norm N . If hi cannot

be composed with g using Dirichlet composition, then we replace it by an equivalent

form for which it is. Once we have a proper set of representatives for Cl(O), we have

our τi ∼ fi(x, y) = g(x, y) · hi(x, y).

Example 2.3. The first curve for which no O with Cl(O) = 1 satisfies the SHH is

y2 + xy + y = x3 + 4x − 6 of conductor 14. We can take D = −31 ≡ 52 (mod 56),

which gives

h1(x, y) = x2 + xy + 8y2,

h2(x, y) = 2x2 − xy + 4y2,

h3(x, y) = 2x2 + xy + 4y2,

g(x, y) = 14x2 + 5xy + y2

(2.10)

Only h2 does not satisfy our requirement (gcd(14, 2, (5− 1)/2) = 2), but it is equiv-

alent to 4x2 + xy + 2y2 that does. As a consequence

f1(x, y) = 14x2 + 5xy + y2 ⇒ τ1 = (−5 +
√
−31)/28

f2(x, y) = 56x2 + 33xy + 5y2 ⇒ τ2 = (−33 +
√
−31)/112

f3(x, y) = 28x2 + 33xy + 10y2 ⇒ τ3 = (−33 +
√
−31)/56

(2.11)

We can then find the 3 points to which they correspond on E(HO), however their

algebraic expression can be very complicated. It is easier to look at the polynomial
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their x and y coordinates satisfy:

X3 +X2

(
5 − 5

√
−31

2

)
+X(−27 + 2

√
−31) + (12 − 3

√
−31) for the x-coordinate

Y 3 + Y 2

(−85 + 5
√
−31

2

)
+ Y (35 + 48

√
−31) + (404 + 11

√
−31) for the y-coordinate

(2.12)

or to compute the point PK =
∑

ΦN (τi) =
((

1−
√
−31

2

)
,
√
−31

)

An interesting thing to point out is that the points we obtained so far on the

elliptic curves have coordinates which are algebraic integers, and none of them are

torsion points. One can ask whether this is always the case. The answer is no. For

example the first strong Weil curve appearing in the tables that has non-integral

Heegner points is 33A1 (with D = −8 for example); note that 11A2 is actually the

first curve in the tables not to possess this property. Also, if one looks at the curve

121A1 (y2 + xy + y = x3 + x2 + x + 1) and pick D = −19, then τ = 49+
√
−19

242
and

ΦN (τ) is the point at infinity.

2.5 Numerical Results

We will now comment on the Heegner points that were calculated on all the elliptic

curves of conductor less than 3000. The actual data being too lengthy to fit in these

pages, it is going to be available on Henri Darmon’s website.
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2.5.1 Modular uniformisation

First there is an interesting application of Heegner points to the Manin constant c.

Here are a few facts (see [1], [8], [9] and [18]) that we know about it:

1 − c is an integer

2 − if p | c then p = 2, 3, 5 or 7

3 − if p | c then p | N
4 − if p | c then p2 | 4N

5 − if 4 | c then 4 | N

So we can only be certain that c = 1 when N is odd and not divisible by 9, 25, and 49.

It has been verified by Cremona that the strong Weil-curve of each isogeny class (the

first one to appear in the tables) has c = 1. Since the points zτ are multiplied by c

before using Weierstrass uniformisation, it could be possible that assuming c = 1 yield

points that are not algebraic. In fact it happens for the curve 27A3 (y2 + xy = x3),

where c = ±3 or ±9 give algebraic points but not c = 1 (at least not the first thousand

digits). Similarly for 32A2 (y2 = x3 − x), and this time c = ±2 or ±4 give algebraic

points.

2.5.2 Integrality

As was mentioned in the preceding section, on some curves the Heegner points are

algebraic integers for a given discriminant. Surprisingly, on some curves these points

seem to be integral for any given discriminant (the first example is 11A1 on Cremona’s

table, for which it has been tested for a hundred discriminants). Sometimes, the

minimal polynomial satisfied by the Heegner points is even defined over the order we

chose to get the points (which is not necessarily maximal), and again some curves

seem to possess this property for any discriminant (the first example is 37A1).

Definition 2.5. (IP) An elliptic curve E of conductorN is said to have the integrality
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property if for all (not necessarily fundamental) discriminant D < 0 with D ≡ B2

(mod 4N) for some B ∈ Z, the Heegner points are integral points of E over the

Hilbert class field of OD, i.e. their coordinates belong to OHD
.

(SIP) If moreover the coordinates of the Heegner points satisfy polynomials in OD[x],

then we say the curve have the strong integrality property.

Of course, squares mod4N coprime to N are infinite, since such numbers need

only give satisfies congruence relations for every primes dividing N . Since we only

tried a finite number of discriminant (the first 18 that satisfies the SHH, the first 12

that satisfy HH but not SHH), the results discussed here are uncertain in nature, but

they indicate some nice behavior.

conductor IP SIP

< 1000 387 183

1000 − 2000 31 22

2000 − 3000 7 4

An interesting thing to note is that the conductor of the integral curves of conductor

bigger than 701 all have a valuation greater or equal to 3 at some prime (forcefully

2 or 3). Furthermore of the 162 conductors (totalling 356 curves) less than 701 with

integral curves, 72 (totalling 232 curves) have high valuation at 2 or 3 and only

50 (totalling 64 curves) are squarefree. In fact, the last curve whose conductor is

squarefree to have this property is 238B1. Lastly, even if at first it seems all the

integral curves of rank 1 have Heegner points that are defined over the order, 11 of

them do not have it and 6 rank 0 curve do.

Lastly, note that whenever a weak Weil curve (one that is not directly obtained

by the modular parametrization) satisfies the integrality property, the strong Weil

curve also does.
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2.5.3 Trivial points

Even if we know that Heegner points are algebraic, one of the disappointing occurrence

is when it is a point at infinity. This means that points that are not cusp in X0(N)

yield a trivial point (recall that cusp always give torsion points). This property of the

parametrization (mapping ”non-cusp” to O) is never in conjunction with integrality.

It has been observed that the Heegner points of a discriminant satisfying HH but not

SHH are more frequently points at infinity.

2.5.4 The point PK

If we sum up all the Heegner points for a given discriminant D, then we get a point PK

which is in K the quotient field of the order of discriminant D. Due to the theorem

of Kolyvagin, we know that if the rank of the curve (over K) is greater than one

then PK is torsion. However, we observed that all the curves of rank 2 (there are no

curve with bigger rank for conductors less than 3000) considered PK = O, the point

at infinity. It thus consolidate the fact that Heegner points (restricted to quadratic

fields) are purely rank one phenomenon, being a completely trivial construction for

higher ranks. Another interesting fact is that for curves of rank 1, the points PK are

always real. This suggests that the PK have complex coordinates only when the rank

of the curve (over Q) is zero (as in example 2.3). One could think that this is expected

by Kolyvagin: when PK is non-torsion then it generates a finite index group in E(K)

and E(Q) is already such a subgroup when the curve is of rank 1 over Q. However

if PK is torsion, nothing guarantees that it should be real, and in general there is no

reason to believe that the torsion-free part over Q is equal to the torsion-free part

over K.



44 Heegner Points



45

Conclusion

In this thesis, we described a method to construct algebraic points on any elliptic

curve, using complex multiplication and the modular parametrization. This con-

struction can be made explicit by simple computations on binary quadratic forms

and coefficients of the L-series of the elliptic curve. The results of these computations

raise a number of questions.

1. Does the fact that the modular parametrization does not map non-cuspidal

point of X0(N) to O imply the integrality property?

2. Is there a finite number of elliptic curves (with squarefree, cube free conductor)

with the integrality property? And if so, how complete is the list given?

3. Why is PK real for any discriminant when we consider a rank one curve?

There are some indications that the first question can be answered positively,

which might also explain why weak Weil curves rarely have this property. There is

still work to do before modular parametrization is fully understood.



46 Conclusion



47

Appendix A

Binary Quadratic Forms

Binary quadratic forms are a concrete object which are intimately related to the

ideals in quadratic orders. They are a very useful tool (if not the most convenient)

to make explicit operations on those ideal. As is seen in the second chapter they are

also useful to calculate Heegner Points.

Definition A.1. A binary quadratic form is a function f of two variables of the form

f(X, Y ) = AX2 +BXY + CY 2 with A,B,C ∈ Z. We say it is

primitive when gcd(A,B,C) = 1

definite when Disc(f) := B2 − 4AC < 0 and A > 0.

reduced when − A < B ≤ A ≤ C and if A = C then B ≥ 0

(A.1)

Furthermore, we say n ∈ Z is represented by f if ∃Xn, Yn ∈ Z such that f(Xn, Yn) = n.

If gcd(Xn, Yn) = 1 then n is said to be properly represented.

Since we will restrict our attention to positive primitive binary quadratic form,

they will henceforth only be called forms. A classical question that led to the study

of these forms was to find what were the integers represented by a given form. The

first thing to remark is that if we make an invertible change of variable then this set
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remains invariant. So we define an action of SL2(Z) on the binary quadratic forms

as follows:

( a bc d ) · f(X, Y ) = f(aX + bY, cX + dY ) = A′X2 +B′XY + C ′Y 2

where A′ = a2A+ acB + c2C,B′ = 2(abA+ bcB + cdC) +B,C ′ = b2A+ bdB + d2C

and B′2 − 4A′C ′ = B2 − 4AC

(A.2)

We say that 2 forms f, g are properly equivalent if there is an M ∈ SL2(Z) such that

M · f = g. Two equivalent forms represent the same integers, however the converse

is not true (take M ∈ GL2(Z) with Det(M) = −1). The reason to favor SL2(Z) over

GL2(Z), is that the former sends positive (resp. primitive) forms to positive (resp.

primitive) forms, but not the latter.

Theorem A.1. Every form is equivalent to a unique reduced form.

Proof. Let f be a form and D = Disc(f), then it is convenient to define

τf =
−B +

√
D

2A
∈ H = {z ∈ C | =(τ) > 0} (A.3)

First, we can show that f 7→ τf is a injection. Since f(X, 1) is a minimal polynomial

for τ over Z, if g is also mapped to τf then g(X, Y ) = kf(X, Y ) as g(X, 1) has τ as a

solution and is of degree 2. If |k| > 1, then g is not primitive, and if k = −1 then g

is not positive definite. Therefore g = f , and we have a bijection between quadratic

points in H and forms. One can check that for M ∈ SL2(Z),

τM ·f =
aτ + b

cτ + d
=: M · τ (A.4)

and that =(M · τ) > 0. We will show that under this action any point τ in the

complex upper half-plane H, there is a unique point in

F = {τ ∈ H | −1

2
≤ <(τ) <

1

2
, |τ | ≥ 1 and if |τ | = 1 then <(τ) ≤ 0} (A.5)
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that is the image of N · τ , for some N ∈ SL2(Z). Once this is established, it is easy

to see that the form associated of such points will give reduced forms.

Existence. To show this first note that for A ∈M2(Z) then

=
(
aτ + b

cτ + d

)
= Det(A)|cτ + d|−2=(τ) (A.6)

Since the function F (c, d) = |cτ + d|2 = Cc2/A−Bcd/A+ d2 admits a minimum for

c, d ∈ Z with gcd(c, d) = 1 (else divide c and d by their gcd), we can find some a, b ∈ Z

such that ad − bc = 1, so M = ( a bc d ) ∈ SL2(Z). Let τ ′ = M1 · τ , and Tn = ( 1 n
0 1 ) ∈

SL2(Z), then Tn ·τ ′ = τ ′+n and in particular <(Tn ·τ ′) = Re(τ ′)+n. Take n such that

−1
2
≤ <(τ ′) + n < 1

2
, and write τ ′′ = Tn · τ ′ = TnM · τ . Note that Mn = TnM has the

same lower row than M , thus =(τ ′′) is maximal amongst equivalent representatives

of τ . Consequently |τ ′′| ≥ 1 else ( 0 1
−1 0 ) · τ ′′ = |τ ′′|−1(−<(τ ′′) + ı=(τ ′′)) would have

greater imaginary part. If |τ ′′| = 1 and 1
2
> <(τ ′′) ≥ 0 then ( 0 1

−1 0 ) · τ ′′ will have the

same real part time −1 and thus will be in F . Otherwise τ ′′ ∈ F .

Unicity. Suppose that there is τ ∈ F such that ∃z = x + ıy ∈ H and M = ( a bc d ) ∈
SL2(Z) such that M · z = τ . First if c = 0 then a = d = 1 so τ = z + b. Since both

have a real part smaller than 1/2 in absolute value, b = 0 and τ = z. If c 6= 0 then

we note that for any ν ∈ F , =(ν) ≥
√

3/2, and also that |cz + d| ≥ cy, so
√

3

2
≤ =(ν) =

y

|cz + d|2 ≤ 1

c2y
≤ 2

c2
√

3
(A.7)

Consequently c2 ≤ 4/3 ⇒ c = ±1. Since −M and M have the same action, we can

suppose c = 1. Then M = ( 1 a
0 1 ) ( 0 1

−1 0 ) ( 1 d
0 1 ). So if we let z′ = z + d and ν ′ = ν − a

then |z′| ≥ |z| ≥ 1 and |ν ′| ≥ |ν| ≥ 1. However if |z′| = 1 (resp. |ν ′| = 1) then d = 0

(resp. a = 0). Furthermore, −1
z′

= ( 0 1
−1 0 ) z′ = ν ′ implies that |ν ′| = |z′| = 1 and

so a = d = 0. Thus M = ( 0 1
−1 0 ), and |ν| = |z| = 1. But −1

z
= ν also implies that

0 ≥ x = −<(ν) so ν ∈ F , |ν| = 1 and <(ν) ≥ 0 a contradiction.

An interesting thing about the set of reduced forms is that it is finite for a fixed

D. Indeed for reduced forms, D = B2 − 4AC ≤ −3A2, so A ≤
√
−D/3. Thus there
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at most −2D/3 possible choices of A and B (C being determined by (B2 −D)/4A).

Remark A.1. Also for any integer n we can find a form f in any equivalence set

such that gcd(A, n) = 1. Indeed, let A′ bet the X2 coefficient in ( a bc d ) · f(X, Y ), then

A′ = a2A + acB + c2C. So we take a, c such that for every prime p | n,

if p - A then p - a and p | c
if p | A and p - C then p | a and p - c

if p | A and p | C then p - ac

(A.8)

so that p - A′ and gcd(a, c) = 1. b and d are the chosen so that ad− bc = 1.

There is another operation that one can do on forms, namely composition.

Though Gauss defined it in a very general way, it is also very clumsy to work with.

Later, Dirichlet gave an equivalent description of it which is more simple but does

not apply for arbitrary forms.

Definition A.2. Let f(X, Y ) = AX2 +BXY +CY 2 and g(X, Y ) = A′X2 +B′XY +

C ′Y 2 be two forms of discriminant D, and such that gcd(A,A′, B+B′

2
) = 1. The

Dirichlet composition of f and g is defined as the form h(X, Y ) = AA′X2 +B′′XY +

B′′2−D
4AA′ Y

2, with B′′ such that

B′′ ≡ B (mod 2A)

B′′ ≡ B′ (mod 2A′)

B′′2 ≡ D (mod 4AA′)

(A.9)

Though this definition is not general enough to encompass all the pairs of forms

of a given discriminant, we can use it to define the composition of reduced forms.

First, given two reduced forms, it is possible to make their X2 coefficients coprime by

changing one of them to another equivalent form. Then the composition is possible

using the above definition. Finally, it suffice to find the reduced form equivalent to

this composition.
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Theorem A.2. Let the form class group be

Cl(D) = {equivalence classes of forms of discriminant D} (A.10)

Then Dirichlet composition makes Cl(D) into an abelian group.

Though we will not show the proof of this theorem ([4] p.51), one can easily see

that the identity is X2 + αXY + α−D
4
Y 2 (where D ≡ α (mod 4)). Furthermore, the

inverse of AX2 +BXY +CY 2 is AX2 −BXY +CY 2, as can be seen by acting with

( 0 −1
1 0 ) on the latter.

The association f 7→ τf almost bridges forms of discriminant D and O ideals

for Disc(O) = D. Indeed, one can define a map I from forms to lattices as follows

I(f) = A〈1, τf〉, where A is the X2 coefficient in f . In fact we already saw in lemma

1.2 that O = 〈1, Aτf〉, thus I(f) is actually an integral O ideal and its norm is easily

seen to be A. Again in lemma 1.2, we saw that this ideal has an inverse, the fractional

O ideal 〈1, τf〉 where τf is the complex conjugate of τf .

Lemma A.1. The map I : Cl(D) → Cl(O) is a bijection. In particular Cl(O) is

finite.

Proof. Injectivity. Let K = Quot(O), we will show that

τ ′ = aτ+b
cτ+d

for ( a bc d ) ∈ SL2(Z)

⇔ 〈1, τ〉 = λ〈1, τ ′〉 for λ ∈ K×
(A.11)

If τ ′ = ( a bc d ) · τ then

〈1, τ ′〉 = (cτ + d)〈cτ + d, aτ + b〉 = cτ + d〈1, τ〉 (A.12)

since ( a bc d ) defines an invertible change of variable. If 〈1, τ〉 = λ〈1, τ ′〉, then

λτ ′ = aτ + b

λ = cτ + d
where ( a bc d ) ∈ GL2(Z) (A.13)
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However by equation A.2, if Det ( a bc d ) < 0 then τ ′ /∈ H a contradiction so ( a bc d ) ∈
SL2(Z).

Since f and g are equivalent if and only if τf is equivalent to τg, it follows that I(f)

is homothetic to I(g) if and only if f and g are equivalent, proving injectivity.

Surjectivity. Write the fractional ideal a as 〈α, β〉, then (up to switching α and β) one

has that a ' 〈1, τ〉 for τ = α/β ∈ H. τ admits a minimal polynomial of degree 2 over

Z, say AX2 +BX + C with gcd(A,B,C) = 1. Let f(X, Y ) = AX2 + BXY + CY 2,

then τ = τf and 〈1, τ〉 = A−1τf

This bijection is extremely useful, as it enables us to extend results we have on

forms to ideal, for example:

Corollary A.1. Let O be an order in a quadratic number field. Then Cl(O) is finite.

Corollary A.2. Let a be an integral O ideal, and k ∈ Z then there is a equivalent

integral ideal b such that no prime dividing k divides b (b is coprime to k).

The map I : Cl(D) → Cl(O) actually gives an isomorphism of group, but is rather

long to prove (see [4] §.7).

Remark A.2. One can very efficiently obtain the form class group simply by enumer-

ating all the possible values of A (recall 0 < A ≤
√

−D/3) and B (−A < B ≤ A) for

which (B2 −D)/4A is an integer. For example, take D = −31 (
√

−D/3 = 3.21 . . .).

One easily find that the pairs (A,B) satisfying these conditions are (1, 1), (2,−1) and

(2, 1).

For completeness, one can check that an inverse map I−1 can be defined as

follows: given a = 〈α, β〉 then

I−1(a) =
NK/Q(αX + βY )

NK/Q(a)
(A.14)
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But note that I ◦ I−1 is not the identity map on ideals, but on equivalence class of

ideals, I−1 being defined up to a change of basis for a.

As a conclusion to this appendix, we will show two lemmas that will be useful to

determine conditions for the existence of Heegner points.

Lemma A.2. Let f(X, Y ) = AX2 + BXY + CY 2 be a quadratic form, then f

represents N ∈ Z properly if and only if f is equivalent to NX 2 +B′XY + C ′Y 2.

Proof. If f is equivalent to NX2 + B′XY + C ′Y 2, then for some ( a bc d ) ∈ SL2(Z),

( a bc d ) · f(1, 0) = f(a, c) = N and gcd(a, c) = 1. So N is properly represented.

If N is properly represented then there exists a, c ∈ Z such that f(a, c) = N

and gcd(a, c) = 1. Take b, d ∈ Z such that ad − bc = 1, then ( a bc d ) · f(X, Y ) =

NX2 +B′XY + C ′Y 2 by equation A.2.

Lemma A.3. The following are equivalent:

1− There is n C O such that O/n = Z/N .

2− There is a primitive binary quadratic form with discriminant equal to D =

Disc(O) which properly represents N.

3− The equation D = B2 − 4NC has a solution with gcd(N,B,C) = 1

Proof. (3 ⇒ 2) If the solution to the equation exist the f(X, Y ) = NX2+BXY +CY 2

is a form of discriminant D properly representing N .

(2 ⇒ 3) If such a form exists find its equivalent form whose X2 coefficient is N . Its

discriminant is of the form B2 − 4NC with gcd(N,B,C) = 1.

(2 ⇒ 1) We saw that O/I(f) is Z/f(1, 0), so it is sufficient to take the ideal associated

to the form NX2 +BXY + CY 2 ∈ [f ].

(1 ⇒ 2) Let n be such that O/n = Z/N , and let A2 + BXY + CY 2 = f(X, Y ) =

I−1(n). Then for some α ∈ K×, n = α〈1, τf〉. Now

An = αA〈1, τf〉 ⇒ A2NK/Q(n) = NK/Q(α)A

⇒ NK/Q(n) = NK/Q(α)/A
(A.15)
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However, α〈1, τf〉 = n ⊆ O = 〈1, Aτf〉, consequently,

ατf = a+ bAτf

α = c+ dAτf
⇒ (c+ dAτf )τf = a+ bAτf (A.16)

Using Aτ 2
f = −Bτf −C, we get that c = Ab+Bd and Cd+a = 0. On the other hand

A−1NK/Q(α) = A−1(c2 −Bcd+ ACd2) = · · · = Ab2 +Bab + Ca2 = f(b, a) (A.17)

If f(b, a) = k > 1, then k | c and k | d so

n = α〈1, τ〉 = 〈c+ dAτf , a+ bAτf 〉 = ka (A.18)

and O/n = O/ka contains a subgroup of the form (Z/kZ)2, a contradiction. So

gcd(a, b) = 1 and f properly represents N .
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Appendix B

List of integral curves

Here are the names, referring to Cremona’s table (see [5] or his website), of the elliptic

curves that appear to have the integrality property. As mentioned before (see 2.5.2)

the integrality of the Heegner points has been verified for the first 18 discriminants

satisfying SHH and the first 12 discriminants satisfying HH but not SHH.

11A1, 14A1, 14A2, 15A1, 15A4, 17A1, 19A1, 20A1, 20A3, 21A1, 21A3, 24A1,

24A2, 24A3, 24A5, 24A6, 26A1, 26B1, 27A1, 30A1, 30A2, 32A1, 34A1, 35A1, 36A1,

36A2, 36A3, 36A4, 37A1, 38B1, 39A1, 39A2, 40A1, 40A2, 40A4, 42A1, 43A1, 44A1,

44A2, 45A1, 45A2, 48A1, 48A2, 48A3, 48A5, 48A6, 49A1, 49A2, 50A1, 50B1, 50B2,

51A1, 52A1, 53A1, 54A1, 54B1, 54B3, 55A1, 55A2, 56A1, 56A2, 56A3, 56B1, 56B2,

57A1, 58A1, 61A1, 62A1, 64A1, 64A2, 64A3, 65A1, 65A2, 66A1, 66B1, 66B2, 69A1,

69A2, 70A1, 70A2, 72A1, 72A2, 75C1, 76A1, 77A1, 79A1, 80A1, 80A3, 80A4, 80B1,

82A1, 83A1, 84A1, 84A2, 84B1, 84B2, 88A1, 89A1, 90A1, 90B1, 91A1, 92A1, 92A2,

92B1, 94A1, 94A2, 96A1, 96A2, 96A3, 96A4, 96B1, 96B2, 96B3, 96B4, 99A1, 99A2,

101A1, 102A1, 104A1, 105A1, 105A2, 108A1, 108A2, 110B1, 112A1, 112A2, 112B1,

112B2, 112B4, 112C1, 118A1, 120A1, 120A2, 120B1, 120B2, 123B1, 124A1, 124B1,

126A1, 128A1, 128A2, 128B1, 128C1, 128C2, 128D1, 130B1, 131A1, 132A1, 132A2,
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135A1, 136A1, 136B1, 138A1, 140A1, 141D1, 142B1, 143A1, 144A1, 144A2, 144A3,

144A4, 144B1, 144B2, 145A1, 150A1, 152A1, 152B1, 153A1, 155C1, 156A1, 156B1,

160A1, 160A2, 160B1, 160B2, 162A1, 162B1, 162C1, 162D1, 168A1, 168A2, 176A1,

176B1, 176C1, 180A1, 180A2, 184A1, 184B1, 189A1, 190B1, 192A1, 192A2, 192A4,

192B1, 192B2, 192B4, 192C1, 192C2, 192D1, 192D2, 196A1, 200B1, 200E1, 204B1,

208B1, 208C1, 210D1, 216A1, 216B1, 220B1, 224A1, 224A2, 224B1, 224B2, 225A1,

225A2, 234C1, 236A1, 238B1, 240A1, 240A2, 240C1, 240C2, 240D1, 243A1, 243A2,

243B1, 248A1, 248C1, 256A1, 256A2, 256B1, 256B2, 256C1, 256C2, 256D1, 256D2,

264A1, 264B1, 272A1, 272C1, 280A1, 288A1, 288A2, 288D1, 288D4, 297B1, 300A1,

304C1, 304D1, 304F1, 312A1, 312B1, 312C1, 320A1, 320B1, 320C1, 320D1, 320D2,

320E1, 320E2, 320F1, 324B1, 324C1, 325B1, 336A1, 336A2, 336B1, 336B2, 336F1,

336F2, 342E1, 348A1, 348B1, 350C1, 360B1, 368C1, 368D1, 368E1, 368E2, 368F1,

378D1, 384A1, 384A2, 384B1, 384B2, 384C1, 384C2, 384D1, 384D2, 400D1, 400H1,

405C1, 405F1, 416A1, 416B1, 420D1, 425C1, 432A1, 432A3, 432B1, 432B2, 432D1,

432H1, 440B1, 459A1, 480A1, 480B1, 480C1, 480G1, 486A1, 486B1, 496A1, 496B1,

496D1, 496E1, 504A1, 504E1, 528A1, 528D1, 528E1, 528E2, 540B1, 540F1, 544A1,

544D1, 558A1, 560A1, 560F1, 567A1, 575A1, 576A1, 576A3, 576D1, 576E1, 576E3,

576F1, 576F2, 576H1, 576H2, 576I1, 600B1, 624A1, 624C1, 624D1, 624G1, 624J1,

640C1, 640G1, 648A1, 648B1, 672A1, 672G1, 675B1, 700B1, 700C1, 702B1, 704A1,

704B1, 704C1, 704G1, 704J1, 704K1, 720A1, 720I1, 768B1, 768D1, 768E1, 768F1,

768G1, 768H1, 784I1, 800B1, 800F1, 816G1, 864A1, 864D1, 880A1, 880H1, 896B1,

896C1, 944F1, 960A1, 960F1, 972A1, 972B1, 972C1, 1008B1, 1008D1, 1080A1, 1080K1,

1152B1, 1152D1, 1200F1, 1200O1, 1216A1, 1216E1, 1296B1, 1296C1, 1296G1, 1296K1,

1296L1, 1344C1, 1344F1, 1350A1, 1392L1, 1392O1, 1440B1, 1440I1, 1680O1, 1728A1,

1728A2, 1728C1, 1728H1, 1728R1, 1728V1, 1728V3, 1728AA1, 2160C1, 2160G1,

2160Q1, 2160X1, 2304B1, 2304I1, 2700L1, 2800P1, 2800W1
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Université d’Utrecht, 1989.



58 BIBLIOGRAPHY

[9] B. Edixhoven. On the Manin constant of modular elliptic curves. Arithmetic

algebraic geometry (Texel, 1989), Birkhauser Boston, Boston, MA, pages 25–39,

1991.

[10] B. H. Gross. Heegner Points on X0(N), Modular forms (Durham, 1983). Ellis

Horwood Ser. Math. Appl.: Statist. Oper. Res. Horwood, Chichester, 1984.

[11] B. H. Gross and D. B. Zagier. Heegner points and derivatives of L-series, invent.

math. , 84(2):407–447, 1986.

[12] R. Hartshorne. Algebraic Geometry. Graduate Text in Mathematics. Springer-

Verlag, 1977.

[13] T. W. Hungerford. Algebra. Graduate Text in Mathematics 73. Springer-Verlag,

1974.

[14] G. J. Janusz. Algebraic Number Fields. Graduate Studies in Mathematics. Amer-

ican Mathematical Society, 1996.

[15] A. W. Knapp. Elliptic Curves. Mathematical Notes, 40. Princeton University

Press, 1992.

[16] V. Kolyvagin. Finiteness of E(Q) and LLI(E,Q) for a subclass of Weil curves.

Ivz. Akad. Nauk SSSR Ser. Math., 52(3):522-540 . 1988.

[17] V. Kolyvagin. The Mordell-Weil and Shafarevich-Tate groups for Weil elliptic

curves. Ivz. Akad. Nauk SSSR Ser. Math., 52(6):1154–1180, 1988.

[18] B. Mazur. Rational isogenies of prime degree. Invent. Math., 44(2):129–162,

1978.

[19] T. Miyake. Modular forms. Springer-Verlag, 1989.



BIBLIOGRAPHY 59

[20] P. Sarnak. Some Applications of Modular Forms. Cambridge Tracts in Mathe-

matics 99. Cambridge University Press, 1990.

[21] G. Shimura. Introduction to the arithmetic theory of automorphic functions.

Kano Memorial Lectures, No.1. Mathematical Society of Japan, No.11. Iwanami

Shoten, Publishers, Tokyo; Princeton University Press, 1971.

[22] J. H. Silverman. The Arithmetic of Elliptic Curves. Graduate Text in Mathe-

matics 106. Springer-Verlag, 1986.

[23] J. H. Silverman. Advances Topics in the Arithmetic of Elliptic Curves. Graduate

Text in Mathematics 151. Springer-Verlag, 1994.

[24] R. Taylor and A. Wiles. Ring-theoretic properties of certain Hecke algebras.

Ann. of Math. (2), 141(3):553–572, 1995.

[25] A. Wiles. Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2),

141(3):443–551, 1995.


