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Abstract

In this thesis, we formulate and partially prove conjectures à la Mazur-
Tate for two cases of L-functions. Suppose given a L-function L(M,K, s)
attached to an arithmetic object M over a number field K (a “motive”) so
that L can be twisted by characters of the Galois group G of an extension of
K. To this pair (L,G), one may hope to associate a theta element Θ(L,G) ∈
A[G], where A is a well defined ring, that interpolates the special values
L(M,K,χ, 1) of L twisted by characters χ of G. The notion of interpolation
means that the evaluation of Θ(L,G) at χ gives the value L(M,K,χ, 1)
or at least a simple and explicit transformation of the value L(M,K,χ, 1).
Following the ideas of Mazur and Tate, the theta element should capture
the arithmetic properties of L or more precisely the arithmetic properties of
the geometric objects M and K from which L is constructed.

The first chapter is devoted to the case of Artin L-functions associated
to a quadratic imaginary field K and twisted by characters of the Galois
groups of ray class field extensions K(m) of K. The theta element captures
information about the class number formulas of the fields K(m). For the sec-
ond chapter, the underlying geometric object is a pair (K,E) of a quadratic
imaginary field K and an elliptic curve E defined over Q. The theta element
should capture there information about the rank of the Mordell-Weil groups
E(K).

The key ingredient in the study of the theta elements in both cases
is the existence of a set of cohomology classes in appropriate cohomology
groups that satisfy local and global compatibilities. These systems, some-
times called Euler system or Kolyvagin system even if the literature is not
unified on this appellation, arise from purely geometric considerations. In
chapter 1, these classes, called in that case elliptic units are constructed by
considering units in the ray class fields of K, whereas in chapter 2, they arise
by considering the Heegner points over K in a Shimura curves associated to
E and K.

Each chapter has the form of an article and can be read independently
from the other one.
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Abrégé

Dans cette thèse, nous formulons et prouvons partiellement des con-
jectures à la Mazur-Tate pour deux cas précis de fonctions L. Supposons
donnée une fonction L(M,K, s) attachée à un object arithmétique M défini
sur un corps de nombre K et supposons que cette fonction L puisse être
tordue par les caractères associés au groupe de Galois G d’une extension de
K. Dans une telle situation, il est naturel d’espérer associer à cette paire
(L,G) un élément theta Θ(L,G) dans un anneau de groupe A[G] qui inter-
poles les valeurs spéciales L(M,K,χ, 1) de L tordue par les caractr̀es χ de
G. Par interpolation, nous entendons ici que l’évaluation de Θ(L,G) en χ
donne la valeur L(M,K,χ, 1) ou au moins une transformation explicite de
cette valeur. Selon les idées de Mazur et Tate, l’élément Θ(L,G) est alors
censé capturé les propriétés arithmétiques et géometriques des objets M et
K associés à L.

Le premier chapitre est consacré au cas des fonctions L d’Artin associées
à un corps quadratique imaginaire K et tordues par les caractr̀es des groupes
de Galois des extensions des corps de classe de rayon K(m). Dans ce cas,
l’élement theta capture des informations sur les formules du nombre de classe
des corps K(m). Dans le second chapitre, l’object géometrique sous-jacent
est une paire (E,K) constituée d’une courbe elliptique E définie sur Q
et d’un corps quadratique imaginaire K. L’élément theta capture ici des
informations sur le rang du groupes de Mordell-Weil E(K).

L’ingrédient principal dans l’étude des élément theta dans les deux cas
est l’existence d’un ensemble de classes cohomologiques dans des groupes
de cohomologie galoisienne précis satisfaisant des compatibilités locales et
globales. Ces ensembles parfois dénommés systèmes d’Euler ou systèmes de
Kolyvagin (même si la littérature n’est pas encore unifiée sur le sujet) provi-
ennent de considérations purement géometriques. Dans le premier chapitre,
ces classes dénommées unités elliptiques sont construites à partir d’unités
globales dans les extensions de corps de classe de rayon de K alors que dans
le second chapitre, ces classes proviennent des points de Heegner sur des
courbes de Shimura associées à E et K.

Chaque chapitre a la forme d’un article indépendant.
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Chapter 1

Refined class number formulas for elliptic units

Summary

We generalize the notion of Kolyvagin and pre-Kolyvagin systems to
prove “refined class number formulas” for quadratic extensions of a quadratic
imaginary K fields of class number one. Our main result generalises the
results and conjectures of [5], by replacing circular units in abelian extensions
of Q by elliptic units in abelian extensions of K.
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1.1 Introduction

1.1 Introduction

Thanks to the work of Mazur and Tate [15], we can attach to any extension
K/k of global fields a Stickelberger-type element θG ∈ Z[G] where G :=
Gal(K/k). This element interpolates special values of L-functions over K
twisted by complex characters of G: For any complex character χ of G,
χ(θG) is essentially the special value L(K,χ, 0). In settings where these
values vanish identically, it is natural to consider their derivatives. For
the case where F is a real quadratic field, writing Gn := Gal(F (µn)/F ),
Darmon defined a Stickelberger-type element θ′Gn ∈ O

∗
F (µn) ⊗ Z[Gn]. In a

similar sense as θG, the element θ′Gn interpolates special values of L′(wFχ, 0)
where wF is the quadratic character associated to F/Q and χ is a character
of Gn. The construction of θ′Gn relies essentially on the properties of the
cyclotomic units over Q. In [5], Darmon studies the algebraic properties of
θGn and conjectures “refined class number formulas” for its leading term.
Theses formulas were then proved (up to a power of 2) by Mazur and Rubin
in [13] using their notion of pre-Kolyvagin system.

To construct a similar Stickelberger-type element for field other than Q,
we need something to replace the cyclotomic units. In the case where K
is a quadratic imaginary field, we have the notion of elliptic units. Elliptic
units and cyclotomic seem to mirror perfectly: Cyclotomic units are global
units associated to ray class fields of Q whereas elliptic units are global units
associated to ray class fields ofK. Furthermore, both objects are constructed
using torsion points of algebraic groups (roots of unity for cyclotomic units
versus torsion points over a well-chosen elliptic curve for elliptic units) and
both objects satisfy norm compatibilities. It is a common belief that all
theorems based on cyclotomic units and the base field Q can be translated
in terms of elliptic units and the base field K.

In the spirit of the correspondence between cyclotomic units and elliptic
units, we formulate “refined class number formulas” over the base field K
involving the same kind of Stickelberger-type element but made this time
from elliptic units. This element has the same properties as θ′Gn : It inter-
polates special values of L′(wHχ, 0), where wH is the quadratic character
associated to a quadratic extension H/K (See [7]). We follow closely [13] in
our proof of the resulting conjecture.

The formulas that we prove are indexed by ideals in K. When the ideal is
trivial, the associated formula follows from Dirichlet’s class number formula
and Kronecker’s second limit formula.

For any ideal, we use some kind of “induction”. More precisely, both
sides of the formulas indexed by the ideals form systems that satisfy some
local and global compatibilities. Such systems are called pre-Kolyvagin sys-
tems. In good cases like ours, the values of a pre-Kolyvagin system only
depend on its value for the trivial ideal. All the formulas follow then from
the formula at the trivial ideal.
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1.1 Introduction

The compatibilities satisfied by pre-Kolyvagin systems are quite involved.
Historically, Mazur and Rubin first developed the notion of Kolyvagin sys-
tem, whose set of axioms is cleaner and whose properties have been well
studied in [12]. However, the difference of both notions is only formal since
they are isomorphic (see Proposition 1.6.3).

Finally, we also deal with the notion of Euler systems (and especially
the Euler system of elliptic units). Their well-known properties allow us to
construct Kolyvagin systems. This paper is hopefully a good introduction
to these three notions and their relations to each other.

The paper is organized as follows. In the first three sections, we define
the elements involved in our “refined class number formula” and we state
our main result. In Sections 5 and 6, we describe the notions of Kolyvagin
systems and pre-Kolyvagin systems in a very general setting. In Section 7,
we apply these concepts to the Galois representation Zp(1) ⊗ ψ that we’ll
define. In Sections 8 and 9, we study in details the elements defined in
the first sections to understand how they match with the definition of pre-
Kolyvagin systems associated to Zp(1) ⊗ ψ. Finally, Section 10 is devoted
to the proof of the formulas by using all the tools previously described.

We now briefly summarize our key results. Let K be a quadratic imag-
inary field of class number one and let H be a quadratic extension of K. De-
note by σ the non trivial element in Gal(H/K). IfM is a Gal(H/K)−module,
we let M− be the subgroup of elements of M on which σ acts as −1.

Denote by ψ the quadratic Hecke character associated to H/K and let f
be its conductor, which we assume non trivial and prime to 6.

For all ideals m in K, let K(m) be the ray class field of K with respect to
m, let Nm be the set of squarefree ideals prime to m, let r(m) be the number
of primes ideals dividing m and let m+ be the product of primes dividing m
that split in H (i.e. m+ =

∏
l|m,ψ(l)=1 l) and m− = m/m+. Note that the

letter l always denotes a prime ideal.
Denote by H(m) the compositum of H and K(m). When m ∈ Nf, then

class field theory says that

Gal(H(m)/H) ' Gal(K(m)/K) ' (OK/m)∗.

Denote Γm :=Gal(K(m)/K). By the previous remark, Γm can be viewed
as a subgroup or as a quotient Γmn, for m and n coprime.Let Im denote the
augmentation ideal of Z[Γm], which is generated over Z by {γ − 1, γ ∈ Γm}.
There is a natural homomorphism

Im/I
2
m ' Γm

defined by sending γ − 1 ∈ Im/I2
m to γ ∈ Γm.

Fix an embedding Q ⊂ C. For each prime p, fix πp a generator of p and
for any ideal m =

∏
i pi, consider the generator πm :=

∏
i πpi .

3



1.2 The m-regulator of H

Consider also an elliptic curve E defined over Q with complex multipli-
cation by K and consider the Weierstrass model given by E ' C/f.

The elliptic units that we construct using an auxiliary ideal a in section
1.3 are global units α(m) in H(m). We define the Stickelberger-type elements

θ′(ψ,m, a) :=
∑

γ∈Gal(H(m)/H)

γ(α(m))⊗ γ ∈ H(m)∗ ⊗ Z[Γm].

On the other hand in section 1.2, we construct m-regulators Rm in H∗ ⊗
I
r(m+)
m /I

r(m+)+1
m using a base of a certain subgroup of m units in H and

Artin symbols. If we denote hm the m class number of H, i.e., the order of
the ideal class group Pic(OH [1/πm]), the main results of this article are:

Theorem 1.1.1. For every m ∈ Naf:

θ′(ψ,m, a) ∈ H∗(m)⊗ Ir(m
+)

m .

The image of θ′(ψ,m, a) in H(m)∗ ⊗ Ir(m
+)

m /I
r(m+)+1
m denoted θ̃′(ψ,m, a)

is called the leading term of θ′(ψ,m, a) and satisfies the following properties:

Theorem 1.1.2. For every m ∈ Naf:

θ̃′(ψ,m, a) ∈ H∗ ⊗ Ir(m
+)

m /I
r(m+)+1
m ⊗ Z[1/6].

Furthermore, we have:

2−r(m
−)θ′(ψ,m, a) = −

wfwK
wH

(NK/Qa− ψ(a))hmRm

in H ⊗ Ir(m
+)

m /I
r(m+)+1
m ⊗ Z[1/6],

where wH(respectively wK) is the number of roots of unity in H(respectively
in K) and wf is the number of roots of unity in H which are congruent to 1
mod f.

1.2 The m-regulator of H

Suppose m ∈ Nf. Let Xm be the group of divisors of H supported above
m∞, let Em := O∗H,m the group of m units of H and

(1− σ)Em := {ε/εσ : ε ∈ Em}.

Let λ0 ∈ Xm be the archimedean place of H corresponding to our chosen
embedding Q ⊂ C.

4



1.2 The m-regulator of H

Proposition 1.2.1. Let m ∈ Nf and r = r(m+):
(i)The group X−m is a free abelian group of rank r+1. If m+ =

∏r
i=1 λiλ

σ
i ,

a basis of X−m is given by {λ0 − λσ0 , ..., λr − λσr }.
(ii) (1− σ)Em is a free abelian group of rank r+ 1, and is a subgroup of

finite index in E−m .

Proof. (i) is clear.
(ii)We show first that (1− σ)Em is free.Suppose that

ε/εσ = −1

for some ε ∈ Em. Write H = K(
√
t) for some t squarefree in K. We have

ε/
√
t ∈ K. Choose a prime l|f such that the valuation of t at l is odd. (Such

a prime exists by our hypothesis on f). Then, the valuation of ε at l is non
zero, which is a contradiction.

The part about the rank follows from Dirichlet S-unit theorem.

Definition 1.2.2. A standard basis for X−m is a basis of the form described
in the previous proposition.

Given a standard basis for X−m , a basis of (1− σ)Em is called oriented if
the determinant of the logarithm embedding:

(1− σ)Em → X−m ⊗ R, ε 7→
r∑
0

log|ε|λi .λi

with respect to the two basis is positive.

Definition 1.2.3. Let m ∈ Nf and λ is a prime of H dividing m+. Define
a homomorphism:

[.]mλ : H∗ → Γm ' Im/I2
m,

where [x]mλ := [x,Hλ(m)/Hλ]−1 is the inverse1 of the local Artin symbol.

Definition 1.2.4. Let m ∈ Nf and r = r(m). Choose a standard basis
{λ0 − λσ0 , ..., λr − λσr } of X−m and an oriented basis {ε0, ..., εr} of (1− σ)Em.

The m-regulator Rm ∈ E−m ⊗ Irm/Ir+1
m is:

Rm :=

∣∣∣∣∣∣∣∣∣
ε0 ε1 ... εr

[ε0]mλ1
[ε1]mλ1

... [εr]
m
λ1

...
...

...
[ε0]mλr [ε1]mλr ... [εr]

m
λr

∣∣∣∣∣∣∣∣∣ ∈ (1− σ)Em ⊗ Irm/Ir+1
m .

1We use the inverse of the local Artin symbol and not the Artin symbol as in [13]
Definition 3.5. The reason follows from the explicit computation of the finite singular
morphism in Proposition 1.7.1. For the same reason, it should be the inverse of the local
Artin symbol in Definition 3.5 of [13].
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1.3 The Euler system of elliptic units

1.3 The Euler system of elliptic units

We follow [17] to construct the Euler system of elliptic units as in [5].
Take an auxiliary ideal a of K, prime to 6f, that we fix once for all.

Definition 1.3.1. Define a rational function on E

ΘE,a(P ) := α−12∆(E)Na−1
∏

Q∈E[a]−0

(x(P )− x(Q))−6,

where α is a generator of a and ∆(E) is the discriminant of the chosen
model of E. (A study of this function shows that it is actually independent
of the choice of α and of our chosen Weierstrass model, this study is made
in [17] Lemma 7.2.)

Proposition 1.3.2. (i) ΘE,a is a rational function on E with divisor

12NK/Qa[0]− 12
∑

Q∈E[a]

[Q].

(ii) Suppose b is an ideal of OK prime to a, and β is a generator of b.
Then for all P ∈ E(K)∏

R∈E[b]

ΘE,a(P +R) = ΘE,a(βP ).

Proof. This is [17] Lemma 7.5 and Theorem 7.6.

Remark: the construction of ΘE,a may be done using this proposition.
It is the only function on E satisfying (i) and (ii) (see the construction of
these units by Kato in [Ka] 15.4 p.188).

Definition 1.3.3. Consider the points Pfm := 1
πm
∈ E[fm] given by our

chosen isomorphism E ' C/f.
Define the elliptic units

α(m) :=
∏
σ∈Γf

ΘE,a(σ(Pfm))ψ(σ) ∈ H(m)∗.

Proposition 1.3.4. α(m) is a global unit in H∗(m).

Proof. For any σ ∈ Γf, and for any prime l we know that ΘE,a(σ(Pfm)) has
l−valuation independent of σ ([17] Theorem 7.4). The result follows from
the definition of α and from the fact that f is prime to 2. (For m 6= 1, all the
ΘE,a(σ(Pfm)) are global units and the result follow, but it is not true that
ΘE,a(Pf)) is a global unit for f a power of a prime.)

6



1.4 Statement of the formulas

Proposition 1.3.5. If mp ∈ Naf, then

NH(mp)/H(m)α(mp) = (1− Frob−1
p )α(m),

NH(mp2)/H(mp)α(mp2) = α(mp).

Proof. It follows from [17] Corollary 7.7. The assumption f is prime to 6 is
used in order to have an injective map O∗K → (OK/f)∗.

These “norm compatibilities” are exactly the properties that we need to
have an Euler system in the sense of [16]. More precisely:

Proposition 1.3.6. For all prime p above p, the collection

{α(mpn) ∈ H1(K(mpn),Zp(1)⊗ ψ)),m ∈ Npaf}

is an Euler system in the sense of [16] Definition 1.1 p.21.

Definition 1.3.7. The Theta element attached to (ψ,m, a) is defined to be

θ′(ψ,m, a) =
∑

γ∈Gal(H(m)/H)

γ(α(m))⊗ γ ∈ H(m)∗ ⊗ Z[Γm].

Remark: as mentioned in the introduction, the element θ′(ψ,m, a) inter-
polates L′m(0, ψ) twisted by characters χ : Γm → C∗ in the sense that we
have the equality:∑

γ∈Γm

χ(γ)log|γ(α(m)|2 = −wm(NK/Q(a)− χ(a))L′m(0, ψχ),

where wm denotes the number of roots of unity in K congruent to 1 modulo
m ([7], Lemma 2.2).

1.4 Statement of the formulas

We can now state the main result of this article:

Theorem 1.4.1. For every m ∈ Naf,

2−r(m
−)θ′(ψ,m, a) = −

wfwK
wH

(NK/Qa− ψ(a))hmRm

in H∗ ⊗ Ir(m
+)

m /I
r(m+)+1
m ⊗ Z[1/6],

where wf is the number of roots of unity in H which are congruent to 1 mod
f, wH is the number of roots of unity in H , wK is the number of roots
of unity in K, θ′(ψ,m, a) is defined in definition 1.3.7, hm is the m class
number of H and Rm is defined in definition 1.2.4.

7



1.4 Statement of the formulas

The rest of this section is devoted to the proof of the formula when
m = 1.

We’ll use two different evaluations of the derivative at s = 0 of

LK(ψ, s) :=
∑
f-m

ψ(m)

NK/Qms
.

Lemma 1.4.2. L′K(ψ, 0) satisfies the equalities

(i)L′K(ψ, 0) =
−1

NK/Qa− ψ(a)

1

wf
log|α(1)|2,

(ii)L′K(ψ, 0) =
hHwKRH

wH
,

where RH is the regulator of the field H.

Proof. (i) is a well-known property of elliptic units which follows from the
Kronecker second limit formula. It is for instance proven in [7] Lemma 2.2,
where our element ΘE,a(Pf) is denoted azf.

(ii) From class field theory (the general case is made in [21] chap.2,
section 4 p.101), we know that

ζH(s)

ζK(s)
= LK(ψ, s).

Hence using Dirichlet’s class number formula at s = 0:

lim
s→0

s−1ζH(s)′ =
hHRH
wH

and lim
s→0

ζK(s) =
hKRK
wK

since the rank of the unit group of OH is 1 and the rank of the unit group
of OK is 0.

Finally, since hK = 1 and RK = 1, we obtain the desired formula:

L′K(ψ, 0) =
hHwKRH

wH
.

Proof of Theorem 1.4.1 when m = 1.

Take ε a generator of O∗H modulo its roots of unity whose existence is
assured by Dirichlet’s unit theorem and choose ε such that |ε| > 1, then by
definition of the regulator of H

RH := 2log|ε|.

But then since NH/K(ε) = εεσ is a unit in K, we have |εεσ| = 1 and

RH := 2log|ε| = log|ε|2 = log| ε
εσ
|.

8



1.5 Kolyvagin system over number fields

On the other hand, by definition:

R1 =
ε

εσ
.

(thanks to our choice of the unit ε, the basis is oriented with respect to
the standard basis λ0 − λσ0 ).

So finally, we have

L′K(ψ, 0) =
RHhHwK

wH
= 2

log|R1|hHwK
wH

=
−1

Na− ψ(a)

1

wf
log|α(1)|2

and

−
wKwf

wH
(Na− ψ(a))hH .R1 = ωα(1) ∈ H∗ ⊗ Z,

where ω is a root of unity in H.
Since ω has order dividing 6, it disappears when we tensor by Z[1/6].

�

Remark: if we want to avoid tensoring by Z[1/3], we have to assume
that H doesn’t contain the third roots of unity.

1.5 Kolyvagin system over number fields

As we’ve seen, Theorem 1.4.1 holds when m = 1. For the general cases, we
introduce now the notions of Kolyvagin system and pre-Kolyvagin system
to prove Theorem 1.4.1 by “induction”.

In [12] and [13], Kolyvagin systems and pre-Kolyvagin systems are de-
fined over Q. We generalize now these notions in a natural way, to allow
us to consider Kolyvagin system over any number field. This section is de-
voted to the definition of Kolyvagin systems and their first properties. The
next section is devoted to the definition of pre-Kolyvagin systems and the
isomorphism between them.

We work in a very general setting for the two next sections before coming
back to the ones in the introduction.

Let R denote a valuation ring with maximal ideal β generated by πβ an
uniformizer and with finite residue field k := R/βR of characteristic p.

Let K be a number field.
Let T be a free R-module of finite rank equipped with a continuous

action of GK unrammified for almost all primes in K, let F be a Selmer
structure on T , and let P be a sets of primes in K disjoint from Σ(F).
Denote also N (P) to be the set of squarefree products of primes in P.

9



1.5 Kolyvagin system over number fields

For all prime ideal l where T is unramified, denote Jl ⊆ R to be the ideal
generated by NK/Q(l)− 1 and det(1− Frobl|T ).

For any ideal m, denote Jm :=
∑

l|m Jl.

For any ideal m, denote m+ :=
∏

l|m,l∈P l, m− := m/m+ and r(m) the
number of primes l dividing m. (For our choice of P in section 1.7, the
notation m+ will be consistent with the one that we’ve made in the setting.)

For any l denote Gl the residue field of K2 at l and let

Gm :=
⊗
l|m

Gl.

Finally, when T is unramified at l denote φfsl the finite singular morphism
H1
f (Kl, T/IlT )→ H1

s (Kl, T/IlT )⊗Gl.
(The reader is refered to [12] Definitions 1.2.2 and 2.1.1 for the definitions

of finite singular morphism and Selmer structure.)
Following [12], we generalize the definition of Kolyvagin systems:

Definition 1.5.1. A Kolyvagin system for (K,T,F ,P) is a collection of
cohomology classes:

{κm ∈ H1
F(m+)(K,T/Im+T )⊗Gm+ ,m ⊆ OK}3

such that:
(i)κm = κ+

m ,

(ii)if l|m+ then (κ(m)l = (φfsl ⊗ 1)(κ(m/l)).

Let KS(K,T,F ,P) denote the R-module of Kolyvagin system for the
quadruple (K,T,F ,P)4.

Following [12], we write now hypotheses that play an important role in
order to work with Kolyvagin system.

Let fix a quadruple (T,F ,P,K).

Definition 1.5.2. If k ∈ Z+, let Pk be the set of prime ideals l /∈ Σ(F)
satisfying:
•T/(βkT + (Frobl − 1)T ) is a free of rank one over R/βk, and
•Jl ⊆ βk.
Let P0 := P1 ∪ {l /∈ Σ(F) such that Jl = R}.

2This notation may seem unusual but in our spirit we consider elements of the residue
fields as elements of the Galois group of ray class field extensions.

3The module H1
F(m+)(K,T/Im+T ) is a submodule of H1(K,T/Im+T ) defined by local

conditions. See [12] Definition 2.1.1.
4In [12], a Kolyvagin system takes values at ideals in N (P). Here, we extend it “triv-

ially” to all ideals of K by property (ii).
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1.6 Pre-Kolyvagin system over number fields

Consider the following properties:
(H.0) T is a free R− module of finite rank.
(H.1) T ⊗R k is an absolutely irreducible k[GK ] representation.
(H.2)There is a ρ ∈ GK such that ρ = 1 on µp∞ and T/(ρ− 1)T is free

of rank one over R.
(H.3) H1(K(T, µp∞ , T/βT ) = H1(K(T ∗, µp∞ , T

∗[β]) = 0.5

(H.4)Either,
(H.4.a) Homk[[GK ]](T/βT, T

∗[β]) = 0, or
(H.4.b) p > 4.
(H.5) Pt ⊂ P ⊂ P0 for some t ∈ Z+, Pk is given by Definition 1.5.2.6

(H.6) For every l ∈ Σ(F), the local condition F at l is cartesian ([12],
Definition 1.1.4) on the category QuotR(T ) of quotients of T .

Proposition 1.5.3. Suppose that (K,T,F ,P) satisfies (H.0) to (H.6), then:
(i) There exist integers χ(T ) and χ(T ∗) depending on the choice of the

Selmer structure such that χ(T )χ(T ∗) = 0 and such that for all ideals m ∈
N (P) and all k ∈ Z+:

H1
F(m)(K,T/β

kT )⊕ (R/βk)χ(T ∗) ' H1
F(m)∗(K,T

∗[βk])⊕ (R/βk)χ(T ).

The integer χ(T ) is called the core ranks of KS(K,T,F ,P).

(ii) If χ(T ) < 2 then KS(K,T,F ,P) is a free R−module of rank χ(T ).

(iii) Suppose χ(T ) = 1 and κ ∈KS(K,T,F ,P), κ 6= 0 then:
corankR(H1

F∗(K,T
∗) = min(r(m)|km 6= 0).

Proof. Everything follows from [12] adapted to base field K: (i) is Theorem
5.2.5,(ii) is Theorem 5.2.10,(iii) is Theorem 5.2.12.(v).

1.6 Pre-Kolyvagin system over number fields

Following [13], we generalize the definition of pre-Kolyvagin systems:

Consider Γl := Gl and
Γm :=

∏
l|m

Γl.

Γm can be viewed either as the direct product of the residue fields or as the
Galois group of the ray class field extension of conductor m over K. Denote
Pn, the composition

Z[Γm]→ Z[Γn]→ Z[Γm].

5There is a small erratum concerning the use of theses hypotheses in [12] which is
corrected in appendix B.

6The change (H.5) comparing to [12] 3.5 p.27 is armless, since for m divided by elements
in {l|Jl = R}, T/Im+T = 0 and all the additional modules that we consider are trivial.

11



1.6 Pre-Kolyvagin system over number fields

As in [13], let Inewm ⊆ I
r(m)+

m /I
r(m+)+1
m be the (cyclic) subgroup generated

by monomials
∏

l|m+(γl − 1) where each γl ∈ Γl. We have an isomorphism
Inewm ' Γm+ ([13], Proposition 4.2.(iv)), so we’ll consider the classes for a
Kolyvagin system to lie in H1

F(m+)(K,T/Im+T )⊗ Inewm .

Let Ioldm ⊆ I
r(m)+

m /I
r(m+)+1
m be the subgroup generated by monomials∏r(m)+

i=1 (γli − 1) where each γli ∈ Γli for some li dividing m and

{l1, ..., lr(m)+} 6= {l : l|m+}.

We also have the decomposition I
r(m)+

m /I
r(m+)+1
m = Inewm ⊕ Ioldm ([13]

Proposition 4.2 (i)) and we denote 〈x〉new the projection of I
r(m)+

m /I
r(m+)+1
m

onto Inewm .

Definition 1.6.1. If m ∈ N and d =
∏t
i=1 li divides m+, let Mm,d = (mi,j)

be the t× t matrix with entries in Jm/J
2
m given by

mi,j =

{
Pm/d(Frobli − 1) if i = j

Plj (Frobli − 1) if i 6= j.

Definition 1.6.2. Keep the setting of previous section.
A pre-Kolyvagin system for (K,T,F ,P) is a collection of cohomology

classes:

{κm ∈ H1(K,T/Jm+T )⊗ Ir(m
+)

m /I
r(m+)+1
m ,m ⊆ OK}

such that:

(i) If l - m, then κ(m)l ∈ H1
F (Kl, T/Jm+T )⊗ Ir(m

+)
m /I

r(m+)+1
m .

(ii) If l | m+, then (1⊗ Pm/l)κ(m) = κ(m/l)Pm/l(1− Frobl).

(iii) If l | m+, then 〈κ(m)l,tr〉newm = (φfsl ⊗ 1)(〈κ(m/l)l〉newm/l ).

(iv) If l | m+, then
∑
n|m+

〈κ(m/n)l,f 〉newm/n )Dn = 0.

(v) If l | m/m+, then 〈κ(m〉newm = 〈κ(m/l〉newm/l .

The equalities in (ii) and (iv) lie in H1(K,T/Jm+T ) ⊗ Ir(m
+)

m /I
r(m+)+1
m

since we have a natural map H1(K,T/Jm+T ) → H1(K,T/Jmn+T ) for any

12



1.6 Pre-Kolyvagin system over number fields

ideal n prime to m.

We denote by PKS(K,T,F ,P), the module of pre-Kolyvagin system for
(K,T,F ,P).

Proposition 1.6.3. We have an isomorphism of R-module:

PKS(K,T,F ,P) ' KS(K,T,F ,P)

κn → κ̃n :=
∑
d|n+

κn/dDn,d

with κ1 = κ̃1.

Proof. The proof is of injectivity is the same as in [13] Proposition 6.5 with
the following remarks:

• IfA is aR-module, and x ∈ A⊗Ir(m
+)

m /I
r(m+)+1
m is such that Pm/l(x) = 0

for all l|m+ then x ∈ A ⊗ Inewm . (We don’t need any more hypothesis on
H1(K,T ) unlike in [13], where they use that H1(Q, T ) is a free Zp-module).
The proof of this fact is made in the appendix.
• The map H1(K,T/Jm+T )→ H1(K,T/Jmn+T ) sends H1

F (K,T/Jm+T )
to H1

F (K,T/Jmn+T ) by definition of a propagated local condition ([12] ex-
ample 1.1.2).
• The following diagram, with l|m+ and m prime to p is commutative

(it’s easily seen by coming back to the definition of φfsl ):

H1
f (Kl, T/Jm+T )

φfsl //

��

H1
tr(Kl, T/Jm+T )⊗ Γl

��
H1
f (Kl, T/Jmn+T )

φfsl // H1
tr(Kl, T/Jmn+T )⊗ Γl.

The proof of surjectivity is done by induction:
Let κ̃n ∈ KS(K,T,F ,P) since Dn,1 = 1, we define by induction an

element κn such that:

κ1 = κ̃1,

κn = κ̃n −
∑

d|n+,d6=1

κn/dDn,d,

and we want to prove that κn ∈ PKS(K,T,F ,P).
We check by induction on r(n) the five properties of a pre-Kolyvagin

system:

13



1.6 Pre-Kolyvagin system over number fields

Property (i) is immediate.

Property (ii): if l|n+:

(1⊗ Pn/l)κn = (1⊗ Pn/l)(κ̃n)− (1⊗ Pn/l)(
∑

d|n+,d6=1

κn/dDn,d)

= −(1⊗ Pn/l)(
∑

d|n+,d 6=1

κn/dDn,d)

= −
∑

d|n+,l|d

κn/dPn/l(Dn,d)

−
∑

d|n+,l-d,d 6=1

(1⊗ Pn/l)(κn/d)Pn/l(Dn,d)

(a) = −
∑

d|n+,l|d

κn/dPn/d(Frl − 1)(Dn/l,d/l)

−
∑

d|n+,l-d,d 6=1

(1⊗ Pn/l)(κn/d)(Dn/l,d)

(b) = −
∑

d|n+,l|d

κn/dPn/d(Frl − 1)(Dn/l,d/l)

−
∑

d|n+,l-d,d 6=1

κn/dlPn/d(1− Frl)(Dn/l,d)

= κn/lPn/l(Frl − 1),

where (a) holds since:

Pn/l(Dn,d) =

{
Pn/d(Frl − 1)Dn/l,d/l if l|d
Dn/l,d if l - d,

and (b) holds by induction.

Property (iii) is induction using property (i) of a pre-Kolyvagin system
and property (ii) of a Kolyvagin system.

Property (iv) follows by projecting the equality κ̃n :=
∑

d|n+ κn/dDn,d on

H1
f (Kl, T/ImT )⊗ Inewm since 〈κn/dDn,d〉newn = 〈κn/d〉newn/d Dd and since

(κ̃n)l,f = 0.

Property (v) is immediate by induction and using property (i) of a Koly-
vagin system.

Remark: it’s easy to see that a Kolyvagin system only depends on its
values on ideals in N (P). By the previous isomorphism, it is also true for a

14



1.7 The Kolyvagin system KS(K,Zp(1)⊗ ψ,Ff ,P)

pre-Kolyvagin system even if it isn’t clear at first sight since we haven’t the
equality κm = κ+

m .

Finally, we end this section with a proposition that will be useful later
for our application of this machinery.

Definition 1.6.4. If m ∈ N , let S(m) denote the set of permutations of the
primes dividing m+, and let S1(m) ⊂ S(m) be the subset:

S1(m) := {σ ∈ S(m) : the primes not fixed by σ form a single σ-orbit }.

If σ ∈ S(m), let dσ :=
∏
l|m+

σ(l)6=l

l the product of all the primes not fixed by σ,

and define:

Π(σ) :=
∏
q|dσ

Pq(Frobσ(q) − 1).

Proposition 1.6.5. Property (iv) of a pre-Kolyvagin system can be replaced
by

(iv)’ If l | m+, then 〈κ(m)l,f 〉newm =
∑

σ∈S1(m)
σ(l)6=l

〈κ(m/dσ)l,f 〉newm/dσ
)Π(σ).

Proof. This is the same proof as Lemma 6.8 in [13], replacing the primes
(n, l, d) in Q by primes (m, l, d) in K.

1.7 The Kolyvagin system KS(K,Zp(1)⊗ ψ,Ff ,P)

We come back to our main settings where K is defined in the beginning and
we work with the Zp[GK ]-module Zp(1) ⊗ ψ. The module Zp(1) ⊗ ψ is a
one dimensional representation over Zp with GK acting via the product of ψ
and the cyclotomic character. The aim of this section is to study in details
KS(K,Zp(1) ⊗ ψ,Ff ,P) for a well chosen Selmer structure Ff defined in
1.7.2. We explicit first the different modules and morphisms (Proposition
1.7.1) and we show then that the core rank of KS(K,Zp(1) ⊗ ψ,Ff ,P)
is one (Proposition 1.7.5). The choice of the particular Selmer structure
Ff will be clear in section 1.10 when we show that both hand sides of the
formulas of Theorem 1.4.1 form a pre-Kolyvagin system with respect to Ff
(Propositions 1.10.1 and 1.10.2 ).

We suppose p 6= 2 and for the notations, if M is a module, denote M̂ its
completion by power of p (ie. M̂ := lim←−nM/pnM).

Proposition 1.7.1. Suppose l - p, we have the following isomorphisms:
(i) H1(K,Zp(1)⊗ ψ) ' Ĥ×−.
(ii) H1(Kl,Zp(1)⊗ ψ) ' Ĥ×−l , where Hl := H ⊗K Kl '

⊕
λ|lHλ.

(iii) H1
f (Kl,Zp(1)⊗ψ) ' Ô×Hl

−
, where OHl

:= OH⊗OKOKl
'
⊕

λ|lOHλ.
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1.7 The Kolyvagin system KS(K,Zp(1)⊗ ψ,Ff ,P)

(iv) If l is split in H, l = λλσ, choose πl a generator of l, then

H1
tr(Kl,Zp(1)⊗ ψ) is the subgroup generated by (πl, π

−1
l ).

The finite singular morphism is defined by:

H1
f (Kl,Zp(1)⊗ ψ)

∼−→ H1
tr(Kl,Zp(1)⊗ ψ)⊗ Γl

φfsl : (xλ, xλσ)→ (πl, π
−1
l )⊗ [x−1

λ ,Kl(l)].
7

Proof. Proof of (i): We use the inflation-restriction map:

H1(H/K, (µkp ⊗ ψ)GH ) ↪→ H1(K,µkp ⊗ ψ) → H1(H,µkp ⊗ ψ)Gal(H/K) →
H2(H/K, (µkp ⊗ ψ)GH ).

Since Gal(H/K) has order 2 and p 6= 2, we have H i(H/K,µkp ⊗ ψ) = 0

and H1(K,µkp ⊗ ψ) ' H1(H,µkp ⊗ ψ)Gal(H/K) ' (H1(H,µkp)⊗ ψ)Gal(H/K)

Now, if L is a field with algebraic closure L. We have the following short
exact sequence:

1→ µpk → L
∗ → L

∗ → 1.

By Hilbert 90, taking the long exact sequence in group cohomology, we
have H1(L, µkp) ' (L∗/(L∗)p

k
.

As a remark, the map L∗/(L∗)p
k → H1(L, µkp) is given by:

x −→ (g → g(βx)/βx),

where βx is any pk-root of x in L.
(ii) is similar.
(iii) is similar, using the following property:
If L is a local field with residue field of characteristic prime to p, then

H1
f (L, µkp) ' (O∗L/(O∗L)p

k
).

It is a well-known result proven by using the short exact sequence:

1→ µpk → O∗L,unr → O∗L,unr → 1.

(iv) The map (xλ, xλσ) → (πl, π
−1
l ) ⊗ [xλ,Kl(l)] ϕ

fs
l doesn’t depend on

the choice of λ versus λσ and is an isomorphisms of free rank one module
over Zp/(NK/Q(l) − 1)Zp. (by Lemma 1.2.3 of [12] for φfsl and by Hensel

Lemma for ϕfsl .)

We recall now the definition of φfsl in [12] section 1.2:

φfsl is the composition:

7As mentioned in Section 2, this formula isn’t the same as in [13]. The Definition 5.1
in [13] should be corrected to agree with Definition 1.2.2 in [12].
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1.7 The Kolyvagin system KS(K,Zp(1)⊗ ψ,Ff ,P)

H1
f (Kl, µ

k
p ⊗ ψ)

∼→ µp
Id−→ µp

∼← H1
s (Kl, µ

k
p ⊗ ψ)⊗ Γl,

where the first isomorphism is done by evaluating the cocycle class at Frobl

and the later by sending the class f ⊗ γ to f(γ). Choose λ a prime in H
above l and write gx := [xλ,Kl(l)]

−1. Write NK/Q(l) − 1 = pk.v where v is
prime with p, by (iii) we have to prove:

Frobl(βx)/βx = gx(βπ)/βπ,

where βx (resp. βπ) is a pk-roots of xλ (resp.πl).
Choose αx a pkv-roots of xλ and απ a pkv- roots of πl. As a remark, απ

is an uniformizer in Kl(l), and NKl(l)unr/K
unr
l

(αx) = xλ since the pkv-roots
of unity belong to Kl by Hensel lemma.

We are in the settings of the corollary of Theorem 2 of [18] p.208 that
shows:

Frobl(αx)/αx = gx(απ)/απ

.
The result follows by taking the v-power on both sides.

Definition 1.7.2. For any prime p 6= 2 consider the Selmer structure Ff
for the GK−module T := Zp(1)⊗ ψ to be:
•Σ(Ff ) = {∞, p|p},
•H1
Ff (Kp, T ) = (

⊕
λ|pOHλ)ψ

•H1
Ff (C, T ) = H1(C, T ) = 0.

Let P := { primes in K coprime with afp that split in H}.

As promised, the notations are coherent between the settings and nota-
tions in section 1.5.

Proposition 1.7.3. KS(K,Zp(1)⊗ ψ,Ff ,P) satisfies (H.0) to (H.6).

Proof. With the notations of section 1.5, we have:

T/βT ' µp ⊗ ψ and T ∗[β] ' Z/pZ⊗ ψ.

(H.0),(H.1),(H.5) and (H.6) are immediate. For (H.2), we take ρ = id.
(H.3) follows from the fact that p 6= 2 so µp ⊗ ψ and Z/pZ⊗ ψ have a non
trivial Galois action. (H.4) follows by the incompatibility of the action of
GK on µp and Z/pZ.

Proposition 1.7.4. The core rank χ(T ) of KS(K,Zp(1)⊗ψ,Ff ,P) is one.
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1.7 The Kolyvagin system KS(K,Zp(1)⊗ ψ,Ff ,P)

Proof. By [12] Proposition 2.3.5, applied to T ∗[p] ' Z/pZ⊗ ψ, we have:

length(H1
Ff (K,T/pT ))− length(H1

F∗f
(K,T ∗[p]))

= length(H0(K,T/pT )− length(H0(K,T ∗[p])

+
∑

m∈Σ(Ff )

length(H0(Km, T
∗[p]))− length(H1

F∗f
(Km, T

∗[p])).

We compute now the two parts of the inequality. In our case, Σ(Ff ) is
the place at infinity and all places over p.

By the properties of the core rank in Proposition 1.5.3:
length(H1

Ff (K,T/pT ))− length(H1
F∗f

(K,T ∗[p])) = χ(T )− χ(T ∗).

On the other hand:
•H0(K,T/pT ) = H0(K,T ∗[p]) = 0.
•H0(C, T ∗[p]) ' Z/pZ and H1

F∗f
(C, T ∗[p]) = 0.

• For the primes p above p, denote Gp := Gal(Kp/Kp).
By definition of the dual Selmer structure:
H1
F∗f

(Kp, T
∗[p]) = (

⊕
λ|pHom(Gλ/Iλ,Z/pZ))ψ.

H0(Kp, T
∗[p]) = (T ∗[p])Gp .

In order to understand the action of Gp on T ∗ and T ∗[p], we have to
consider the different cases where p is inert, splits or ramifies in H:

1/ p is inert or ramifies in H. Then the action of Gp is non trivial on T ∗

and:

(T ∗)Gp = (T ∗[p])Gp = 0,

In this case, there is only one prime λ over p in H and

H1
F∗f

(Kp, T
∗[p]) = (Hom(Gλ/Iλ,Z/pZ)ψ,

where the action of σ is given by conjugation.
Since σ−1gσ = g for any g ∈ Gλ/Iλ,(recall that the action of g is given

on roots of unity) it follows that for f ∈ Hom(Gλ/Iλ,Z/pZ)ψ we have

σ.f(g) = −f(g) = f(σ−1gσ) = f(g).

It follows that f = 0 by assumption p 6= 2 and we have finally

Hom(Gλ/Iλ,Z/pZ)ψ = 0.

2/ p splits in H, write p = λ1λ2. In this case Gp acts trivially on T ∗ and
T ∗[p] and:
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1.7 The Kolyvagin system KS(K,Zp(1)⊗ ψ,Ff ,P)

H0(Kp, T
∗[p]) ' Z/pZ,

H1
F∗f

(Kp, T
∗[p]) ' (

⊕
λi|p

Hom(Gλi/Iλi ,Z/pZ))ψ ' Hom(Gλ1/Iλ1 ,Z/pZ),

where the last isomorphism holds since the action of σ is just sending
elements in Gλ1/Iλ1 to Gλ2/Iλ2 and reciprocally.

It follows that H1
F∗f

(Kp, T
∗[p]) has length one since Gλ1/Iλ1 ' Ẑ.

Finally, in both cases:

length(H0(Kp, T
∗[p]))− length(H1

F∗(Kp, T
∗[p])) = 0,

and

χ(T )− χ(T ∗) = 1.

Since either χ(T ) or χ(T ∗) is equal is 0 by Proposition 1.5.3, we have
χ(T ) = 1.

Proposition 1.7.5. corank(H1
F∗(K,T

∗)) = 0.

Proof. Using the same arguments as in the proof of 1.7.1, we have the fol-
lowing isomorphisms:

H1(K,T ∗) ' Hom(GH ,Qp/Zp)ψ,
H1(Kl, T

∗) '
⊕

λ|lHom(GHλ ,Qp/Zp)ψ,
H1
s (K,T ∗) '

⊕
λ|lHom(Iλ,Qp/Zp)ψ, where Iλ is the inertial subgroup

at λ.
Since the condition at p|p for F is the relaxed condition, we have:

H1
F∗(K,T

∗) ⊆ Hom(Gal(L/H),Qp/Zp)ψ,

where L is the Hilbert class field of H.
By global class field theory, Gal(L/H) ' Cl(H) and

H1
F∗(K,T

∗) ⊆ Hom(Cl(H)ψ,Qp/Zp).

Since Cl(H) is finite:

corank(H1
F∗(K,T

∗)) := dimQp(Hom(H1
F∗(K,T

∗)),Qp/Zp)⊗Qp = 0.
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1.8 Formal properties of θ′(ψ,m, a)

1.8 Formal properties of θ′(ψ,m, a)

We have now the formal tools to complete the proof of Theorem 1.4.1. Using
the explicit formula of the finite singular morphism in Proposition 1.7.1, it
is straightforward (even though quite laborious) to show that the right-hand
side of Theorem 1.4.1 is a pre-Kolyvagin system for Ff . Nevertheless, the
left-hand side asks for some more work. It’s not even obvious that it belongs
to the right module for a pre-Kolyvagin system. This sections is devoted to

prove that the element θ′(ψ,m, a) belongs to H(m)∗ ⊗ Ir(m
+)

m .

Recall the definition:

θ′(ψ,m, a) =
∑

σ∈Gal(H(m)/H)

σ(α(m))⊗ σ ∈ H(m)∗ ⊗ Z[Γm].

Any element γ ∈ Gal(H(m)/K) acts on left of H(m)∗ ⊗ Z[Γm].

Lemma 1.8.1.

γ.θ′(ψ,m, a) = ψ(γ).θ′(ψ,m, a).γ(m)−1.

Proof. Change of variable.

Lemma 1.8.2. If n|m then:

(1⊗ Pn)θ
′(ψ,m, a) = θ′(ψ, n, a).

∏
p|m/n

(1− ψ(p)Frobp).

Proof. Writte m = ln,

(1⊗ Pn)θ
′(ψ,m, a) =

∑
σ∈Γn

(Nm,nσ(α(m))⊗ σ)

=
∑
σ∈Γn

(
∏
p|l

(1− Frob−1
p )σ(α(n))⊗ σ)

=
∏
p|l

(1− Frob−1
p ).θ′(ψ, n, a)

= θ′(ψ, n, a).
∏
p|l

(1− ψ(p)Frobp) (Lemma 1.8.1).
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1.9 The leading term of θ′(ψ,m, a)

Lemma 1.8.3. The following equality holds:

θ′(ψ,m, a) =
∑
σ∈Γm

σ(α(m))⊗
∏
l|m+

(Pl(σ)− 1).Pm−(σ)

−
∑

n|m+,n6=m+

θ′(ψ, nm−, a).
∏

l|m+/n

Pm/n(Frobl − 1)

 .

Proof. It follows directly by developing∑
σ∈Γm

σ(α(m))⊗
∏
p|m+

(Pp(σ)− 1).Pm−(σ)

and using Lemma 1.8.2.

Proposition 1.8.4. The element θ′(ψ,m, a) belongs to H(m)∗ ⊗ Ir(m
+)

m .

Proof. Its is clear by induction using the previous lemma.

1.9 The leading term of θ′(ψ,m, a)

We study now the image of θ′(ψ,m, a) in H(m)∗ ⊗ Ir(m
+)

m /I
r(m+)+1
m denoted

θ̃′(ψ,m, a). The key is to understand their local behaviors, to see that the
collection {2r(m− θ̃′(ψ,m, a)} forms a pre-Kolyvagin system. To do so, we
use the norm map compatibilities between the α(m) as an Euler system.
Using these compatibilities and a method due to Kolyvagin, we construct a
collection of derivative classes in H1(K,Zp(1) ⊗ ψ) for which all the local
behaviors are known. Finally, we show the relation between these classes
and θ′(ψ,m, a) (Proposition 1.9.7).

Let start with the method of Kolyvagin to construct derivative classes in
H1(K,Zp(1) ⊗ ψ) from the Euler system described in section 3. We follow
the usual construction as made in details in [16] chap IV.

For any prime l ∈ Nf, choose a generator γl of Γl and define:

Dl :=

NK/Ql−2∑
i=1

iγil ∈ Z[Γl], Dm =
∏
l|m

Dl ∈ Z[Γm],

Nl :=

Nl−1∑
i=1

γil ∈ Z[Γl].
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1.9 The leading term of θ′(ψ,m, a)

Lemma 1.9.1.
(γl − 1)Dl = NK/Ql− 1−Nl.

Proof. This is a simple computation.

Remark: the previous property is the only property that we use in the
construction of the derivative classes. Any other element in the group ring
with this property leads to the same construction.

Consider the element:

β(m) := Dmα(m).

Let n(m) be the maximal divisor of gcdl|m(NK/Ql− 1) prime to 6.

Lemma 1.9.2. β(m) ∈ (H(m)∗/(H(m)∗n(m))Γm .

Proof. By induction, since it is clear for β(1):
For all l, consider γl as an element of Γm, and write m = ln we have:

(γl − 1)Dmα(m) = (γl − 1)DlDnα(m)

= Dn(NK/Ql− 1−Nl)α(m) (Lemma 1.9.1)

= Dn(−Nl)α(m) (by definition of n(m))

= (Frob−1
l − 1)Dnα(n) (by prop. 1.3.5)

= 0 (by the induction hypothesis).

Proposition 1.9.3. The element β(m) has a canonical inverse image under
the map H∗/(H)∗n(m) → (H(m)∗/(H(m)∗n(m))Γm.

Proof. Since H(m) doesn’t contain n(m) roots of unity, the inflation restric-
tion exact sequence shows that the natural map

H∗/(H)∗n(m) → (H(m)∗/(H(m)∗n(m))Γm

is an isomorphism.

Remark: the same property stays true if we define

n(m) := gcdl|m(NK/Ql− 1).

In this case, the map H∗/(H)∗n(m) → (H(m)∗/(H(m)∗n(m))Γm is NOT an
isomorphism but Lemma V.4.13 of [16] shows, using the norm compatibilities
of α as an Euler system, that such a canonical inverse exits. Nevertheless,
since we inverse 6 in our formula, the weaker property is sufficient for our
purpose.
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1.9 The leading term of θ′(ψ,m, a)

Definition 1.9.4. We define κ(m) to be the canonical inverse image of
β(m).

The elements κ(m) are the derivative classes associated to the Euler
system α(m). They depend on the choice of the generators γl that we chose.
Nevertheless, in what follow, we consider the elements κ(m)⊗

∏
l|m(γl−1) in

H∗/(H)∗n(m) ⊗ Ir(m)
m /I

r(m)+1
m . These elements don’t depend on any choice.

As a remark we haven’t made any choice of prime p to consider our
derivative classes. To be more precise, the derivative classes associated to
the module Zp ⊗ ψ are the classes κ(m) considered as elements in

H∗ ⊗ Ir(m)
m /I

r(m)+1
m ⊗ Zp.

Proposition 1.9.5. If λ is a prime in Hnot dividing m, then

vλ(κ(m)) = 0 (mod n(m)).

Proof. If λ - m then λ is unramified in H(m) and the valuation extends from
H∗/(H)∗n(m) to H(m)∗/(H(m))∗n(m). But vλ(α(m)) = 0, since α(m) is an
unit in H(m) by Proposition 1.3.4.

The rest of the section is devoted to the relation between θ̃′(ψ,m, a) and
κ(m).

Lemma 1.9.6. Consider the prime decomposition of m =
∏
i li, then

n(m)(γl1 − 1)...(γlr(m+)
− 1) = 0 ∈ Ir(m

+)
m /I

r(m+)+1
m ⊗ Z[1/6].

Proof. The elements γl have orders exactly NK/Ql− 1.

Write γli − 1 =
∑

l(γ
(l)
li
− 1) ∈ Im/I2

m where the γ
(l)
li

have order a power
of l.

We can write, (γl1 −1)...(γlr(m+)
−1) has a sum of the following elements

(γ
(l)
l1
− 1)...(γ

(l)
lr(m+)

− 1).

If l is prime to 6, by definition of n(m), one of the γ
(l)
li

has order exactly
vl(n(m)).

Hence, it suffices to prove the lemma when n(m) is a power of a prime
q = lr.

But then, choosing γ
(l)
li

with order exactly q, we have

1 = (γ
(l)
li
− 1 + 1)q =

q∑
i=0

(
q

i

)
(γ

(l)
li
− 1)i

and

q(γ
(l)
li
− 1) =

q∑
i=2

(
q

i

)
(γ

(l)
li
− 1)i ∈ I2

m.
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1.9 The leading term of θ′(ψ,m, a)

Proposition 1.9.7. Write m+ =
∏s
i=1 li.

We have the equality in H(m)∗ ⊗ Ir(m
+)

m /I
r(m+)+1
m ⊗ Z[1/6] :

∑
n|m+

θ̃′(ψ,m/n, a)
∏
l|n

Pm/n(Frobl − 1) = 2r(m
−)κ(m+)⊗ (γl1 − 1)...(γls − 1).

Proof.∑
n|m+

θ̃′(ψ,m/n, a)
∏
l|n

Pm/n(Frobl − 1)

=
∑
σ∈Γm

σ(α(m))⊗
∏
l|m+

(Pl(σ)− 1).Pm−(σ) (Lemma 1.8.3)

=
∑

σ∈Γm+

∑
σ′∈Γm−

σ′σ(α(m))⊗
∏
l|m+

(Pl(σ)− 1).σ′

=
∑

σ∈Γm+

∑
σ′∈Γm−

σ′σ(α(m))⊗
∏
l|m+

(Pl(σ)− 1)

=
∑

σ∈Γm+

σNm−(α(m))⊗
∏
l|m+

(Pl(σ)− 1)

=
∑

σ∈Γm+

σ
∏
q|m−

(1− Frob−1
q )(α(m+))⊗

∏
l|m+

(Pl(σ)− 1) (Proposition 1.3.5)

=
∑

σ∈Γm+

σ(α(m+))⊗
∏
l|m+

(Pl(σ)− 1)
∏
q|m−

(1 + ψ(q)Frobq) (Lemma 1.8.1)

= 2r(m
−)

∑
σ∈Γm+

σ(α(m+))⊗
∏
l|m+

(Pl(σ)− 1)

= 2r(m
−)

∑
ii∈{1...Nli−1}

γi1l1 ...γ
is
ls (α(m+))⊗ (γi1l1 − 1)...(γisls − 1)

= 2r(m
−)D(m+)(α(m+))⊗ (γl1 − 1)...(γls − 1)

= 2r(m
−)(β(m+))⊗ (γl1 − 1)...(γls − 1)

= 2r(m
−)(κ(m+))⊗ (γl1 − 1)...(γls − 1) (Lemma 1.9.6) .

The previous proposition allows us to see θ̃′(ψ,m, a) as an element in

H∗ ⊗ I
r(m+)
m /I

r(m+)+1
m . It is a key fact in our purpose since a Kolyvagin

system for Zp ⊗ ψ is a collection of elements in H∗ ⊗ Ir(m
+)

m /I
r(m+)+1
m ⊗ Zp.

As in Proposition 1.9.3, the map

H∗ ⊗ Ir(m
+)

m /I
r(m+)+1
m → (H(m)∗ ⊗ Ir(m

+)
m /I

r(m+)+1
m ⊗ Z[1/6])Γm
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1.10 Proof of the Theorem 1.4.1 for m ∈ Naf

doesn’t need to be an isomorphism. Nevertheless, θ̃′(ψ,m, a) has a canonical
inverse through this map which will be enough for our purpose. (Here,
canonical means compatible for all the cohomology maps that we consider.)

1.10 Proof of the Theorem 1.4.1 for m ∈ Naf

We have now all the tools needed to conclude the proof of Theorem 1.4.1.

Proposition 1.10.1. For any prime p 6= 2, the collection

{2−r(m−)θ̃′(ψ,m, a)}

is a pre-Kolyvagin system for (K,Zp(1)⊗ ψ,Fcan,P).

Proof. We need to check the five properties of Proposition 1.6.2.
Proposition 1.9.7 is a key fact for the proof. The formula relates θ̃′(ψ,m, a)

to κ(m+) for which we know all the useful properties.
• Property (i):
By induction on r(m), using Propositions 1.9.7, 1.9.5 and [16] Theorem

IV.5.1.
• Property (ii) is Lemma 1.8.2.
Projecting the formula in Proposition 1.9.7 into H1(K,T/ImT ) ⊗ Inewm

gives

〈2−r(m−)θ̃′(ψ,m, a)〉newm = 〈κ(m+)⊗ (γl1 − 1)...(γls − 1)〉newm .

Properties (ii),(iv)’ and (v) follow from the corresponding properties of
κ(m+)⊗(γl1−1)...(γls−1). More precisely, (iii) is [16] Theorem IV.5.4, (iv)’
is Theorem A.4 in [12] adapted to the case of quadratic imaginary fields,
and (v) is immediate.

Proposition 1.10.2. For any prime p 6= 2, the collection {hmRm} is a
pre-Kolyvagin system for (K,Zp(1)⊗ ψ,Fcan,P).

Proof. This is the same as [13] section 8, adapted to ideals in K (the finite
singular morphism has been explicited in 1.7.1).

For simplicity, let’s denote PKS(p) :=PKS(K,Zp(1)⊗ ψ,Ff ,P).
By Propositions 1.7.4,1.6.3 and the remark at the end of section 1.6, for

all p 6= 2, PKS(p) has rank one.

Lemma 1.10.3. For all p 6= 2, suppose that κm and κ′m ∈PKS(p) that agree
at first step (ie. κ1 = κ′1) then κm = κ′m.
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1.10 Proof of the Theorem 1.4.1 for m ∈ Naf

Proof. If both are zero, then there is nothing to prove.
Suppose κ′m 6= 0, then since PKS(p) has rank one, we may suppose (by

switching κm and κ′m if necessary) κm = aκ′m for some a ∈ Zp. By Theorem
1.5.3, Proposition 1.7.5 and 1.6.3, κ′1 6= 0 and a = 1.

Proof of the theorem 1.4.1 when m ∈ Naf:
By Propositions 1.10.1 and 1.10.2, the two sides of Theorem 1.4.1 are

elements in PKS(p) for p 6= 2 and by section 1.3, they agree at the first step
for p 6= 2, 3. Using Lemma 1.10.3, we have the equality in

H(m)∗ ⊗ Ir(m
+)

m /I
r(m+)+1
m ⊗ Zp

for all p 6= 2, 3, which finishes the proof.
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Appendix

1.A About the augmentation quotient

Let Inewm be the subgroup generated by the elements of the form
∏

l|m+(gl−1)
where gl ∈ Γl.

Denote also Pn, the composition Z[Γm]→ Z[Γn]→ Z[Γm].
To simplify the notation denote r := r(m+).
We have the following statement:

Proposition 1.A.1. For any abelian group A, if x ∈ A ⊗ Ir/Ir+1 is such
that Pm/l(x) = 0 for all l|m+ then x ∈ A⊗ Inewm .

Proof. • As a first remark, since Pm/l1 ◦ Pm/l2 = Pm/(l1l2), we have:

Pm−d(x) = 0 ∀d|m+.

• For any l|m choose a generator γl of Γl.
Then the elements of the form

∏
(γl − 1) generate Ir/Ir+1.

Indeed for any
∏
j(gj − 1) ∈ Ir/Ir+1 we have:∏

j

(gj − 1) =
∏
j

(
∏
l

γ
nl,j

l − 1)

=
∏
j

(
∑
l

nl,j(γl − 1) since g1g2 − 1 = g1 − 1 + g2 − 1 ∈ Im/I2
m

=
∑
I

nI
∏
l∈I

(γl − 1).

• Using the previous fact and using the notations m+ =
∏r
i=1 li and

J −r := {{l1, .., lr} such that ∀i, li|m−}, any element x ∈ A⊗ Ir/Ir+1 can be
written :
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1.B On a technical hypothesis in [12]

x = xnew ⊗
r∏
i=1

(γli − 1)

+
∑
J∈J−r

xJ ⊗
∏
l∈J

(γl − 1)

+
r∑

a1=1

(
∑

J∈Jr−a1

xJ,1 ⊗ (γl1 − 1)a1
∏
l∈J

(γl − 1)) + ...

...+
r∑

ar=1

(
∑

J∈Jr−ar

xJ,r ⊗ (γlr − 1)ar
∏
l∈J

(γl − 1))

+

r∑
a1+a2=2,a1,a2 6=0

(
∑

J∈Jr−a1−a2

xJ,1,2 ⊗ (γl1 − 1)a1(γl2 − 1)a2
∏
l∈J

(γl − 1))) + ...

...

+
∑
l|m−

xl,lr ⊗ (γl1 − 1)...(γlr−1 − 1)(γl − 1) + ...

...+
∑
l|m−

xl,l1 ⊗ (γl2 − 1)...(γlr − 1)(γl − 1).

To finish the proof, we have to show that x = xnew ⊗
∏

l|m+(γl − 1) and
we prove it by induction:

By applying Pm− , we see that:∑
J∈J−r

xJ ⊗
∏
l∈J

(γl − 1) = 0

and the second row is zero.
Then applying Pm−li , we have:

r∑
ai=1

(
∑

J∈Jr−ai

xJ,i ⊗ (γli − 1)ai
∏
l∈J

(γl − 1)) = 0.

Applying it for all i we see that the third row is zero.
Then, by induction on the row, we apply Pm−li1 ...lin

for all n−uple
(i1, ...in), we see that the n+ 2th row is zero.

1.B On a technical hypothesis in [12]

We end this paper with a small erratum in [12]. Stated as they are, Lemma
2.1.4 and Lemma 3.5.2 are wrong and we sate here a “good version” of
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1.B On a technical hypothesis in [12]

Lemma 3.5.2. It doesn’t change anything in [12], since Lemma 3.5.2 is only
used in a special case where it is actually true. We suggest here a new
formulation of this lemma with its proof. We follow the notation of [12].

Lemma 1.B.1. Suppose that (H.0),(H.1) and (H.3) hold, then for any ideal
J of R, and any submodule S of T and S′ of T ∗ we have:

(S/JT )GQ = (S′/JT ∗)GQ = 0.

Proof. By (H.1), if (T/mT )GQ 6= 0 then GQ acts trivially on T . In this case
we can find a non zero element in H1(Q(T, µp∞)/Q, T/mT ) since
Gal(Q(T, µp∞)/Q) has a quotient isomorphic to Z/pZ and T/mT ' Z/pZ.

By (H.3), this shows (T/mT )GQ = 0.
For any submodule S of T , and any ideal J ⊆ R, (S/JT )GQ injects in

(T/JT )GQ , so we have to show that (T/JT )GQ = 0.
Suppose mi+1 ( J ⊆ mi and let x ∈ (T/JT )GQ with antecedent x in T .
By definition, x ∈ (T/mT )GQ = 0 and x ∈ mT . Write x = a1x1.
We have a1x1 ∈∈ (T/JT )GQ . If a1 ∈ J , x = 0 and we’re done. If not,

by (H.0), x1 ∈ mT and we can write x1 = a2x2 with a2 ∈ m.
By induction, x = a1.....ai+1xi+1 with ak ∈ m and x = 0.
The proof for T ∗ is similar.
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Further directions

The “refined class number formulas” that we prove beg for
generalization. There are here two natural generalizations, either
by taking H to be any finite abelian extension of K or by taking
K to be any any number field.

Changing H shouldn’t be a major difficulty, since we could
define the elliptic units and the regulators in a similar way by
considering the characters corresponding to H/K.

If we consider K to be any quadratic imaginary field of arbi-
trary class number, the construction of elliptic units is the same
but gives units defined over extensions of the Hilbert class field
of K (instead of extensions of K). We then face the difficulty of
defining the regulators in this case but this seems more technical
than conceptual.

In the other hand, considering K to be any number field is
a much deeper question since we don’t know how to construct
special units for arbitrary number fields. In a forthcoming paper,
Mazur and Rubin explain how to generalize Darmon’s formula
as well as ours by considering the conjectured Stark units ([14]).
The present work fits in the general picture since this case of
quadratic imaginary field is the second case after the rational
numbers where the Stark conjectures are well known.
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Chapter 2

Mazur-Tate type conjectures for elliptic curve over
finite anticyclotomic extensions

Summary

Let E/Q be an elliptic curve of conductor N , let K be a quadratic
imaginary field and let O be an order in K. To this triple is attached a theta
element Θ(E,K,O) that is conjectured to interpolate the special values
of the Hasse Weil L-function L(E/K, s) twisted by characters of Pic(O).
Following the ideas in [1], we give conjectures of the order of vanishing of
Θ(E,K,O) that we prove in some special cases.
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2.1 Introduction

2.1 Introduction

Let E be an elliptic curve over Q of conductor N and K = Q(
√
−D) be

an imaginary quadratic field of discriminant −D with associated Dirichlet
character ε. For simplicity, we assume that D 6= 2, 3 so that the ring of
integers OK has unit group O∗K =< ±1 >. Throughout the paper, we make
the following assumption on the pair (N,K):

Assumption 2.1.1. 1. N and D are coprime.
2. The field K induces a decomposition of N = N+N−, where N+ (resp.

N−) is the product of the primes dividing N that are split (resp. inert) in K.
We suppose that N− is the squarefree product of an odd number of primes.

For any order O in K, we construct in section 2.2.4 a theta element

Θ(E,K,O) in the group ring Z[
1

d
][Pic(O)], where d is an integer that

depends only on K and E but not on O. The element Θ(E,K,O) is
conjectured to interpolate the special values of the Hasse Weil L-function
L(E/K, s) twisted by characters of Pic(O).

The existence of such interpolation properties yields to conjectures à la
Mazur-Tate, conjectures that relate the order of vanishing of Θ(E,K,O) and
the rank rE of E over K. For any group ring A[G], recall that an element f
in A[G] has order of vanishing greater than r if it belongs to the r-th power
of the augmentation ideal:

Definition 2.1.2. For any group ring A[G], the augmentation ideal IG ⊂
A[G] is defined as the kernel of the augmentation map:

ψ :
A[G] → A,
g 7→ 1.

The order of vanishing rf ∈ N ∪ {∞} of f ∈ A[G] is defined to be:

ordIG(f) := supi∈N{i|f ∈ IiG ⊂ A[G]}.

Here is a short motivation to understand why the order of vanishing cor-
responds to powers of the augmentation ideal. When L is a complex analytic
function with analytic expansion around 0 given by L(s) =

∑
i>0 ais

i, the
order of vanishing of L is the integer r such that ai = 0 for i < r and ar 6= 0.
For the p-adic counterpart, when L is an element of the Iwasawa algebra Λp,
the order of vanishing of L is the T -valuation when we consider the isomor-
phism Λp ' Zp[[T ]]. Now, the Iwasawa algebra is the completion of a group
ring and the isomorphism Λp ' Zp[[T ]] is made by sending T to g−1, where
g is a topological generator of Zp. The group ring counterpart of the order
of vanishing is then to understand the divisibility of f ∈ A[G] by elements
of the form g− 1 or in other word in which power of the augmentation ideal
f belongs.

Following theses ideas, we make the following conjecture:
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2.1 Introduction

Conjecture 2.1.1. For any order O, we have:

ordZ[ 1
d

][Pic(O)](Θ(E,K,O)) > rE .

For technical reasons arising from the geometry of the elliptic curve and
from the structure of the group ring Z[1

d ][Pic(O)], we prove the weaker
theorem:

Theorem 2.1.3. For any order O, there exists an integer M that depends
on O such that:

1. If Pic(O)(p) ' (Z/pZ)np (Pic(O)(p) is the p-part of Pic(O)) whenever
p -M , then:

ordZ[ 1
M

][Pic(O)](Θ(E,K,O)) > rE .

2. If r 6 2 then:

ordZ[ 1
M

][Pic(O)](Θ(E,K,O)) > rE .

3. If p doesn’t divide M then:

ordFp[Pic(O)](Θ(E,K,O)) > rE .

For this article, the author is inspired by the work of Bertolini and
Darmon. In [1], they present a similar construction in a purely p-adic set-
ting: They choose from the beginning an ordinary prine p relative to E
and construct theta elements LE,n ∈ Zp[Pic(Opn)]1. The elements Lf,n are
compatible with the natural surjection map

Zp[Pic(Opn)]→ Zp[Pic(Opn−1)],

which allows to consider an element Lp(E,K) in the Iwasawa algebra Λp. If
we deonte Ip ⊂ Λp the augmentation ideal in Λp, they prove the following
theorem under certain technical assumption on p:

Theorem 2.1.4. ordIpLp(E,K) > rE .

The differences between the present article and the work of Bertolini and
Darmon are of two natures. First, the construction of the theta elements
is purely integral and all the primes are treated indifferently. Secondly,
the structures of the group rings Z[Pic(O)] are more complicated than the
Iwasawa algebra Λp and the difficulty is to understand the conditions that
an element in Z[Pic(O)] should satisfy in order to ensure that it belongs to
the rth-power of the augmentation ideal.

1To be precise with the notation, they denote their element Lf,n where f is an eigenform
with the same eigenvalues at ` 6= p as the eigenform attached to E by Eichler-Shimura
correspondence and such that f is an eigenvector for the Up operator.
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2.2 The theta elements

2.2 The theta elements

For this section let f be a newform on X0(N) and let O = Z + cOK be an
order in K of conductor c. To the pair (f,O), we associate a theta element
Θ(f,O) in an appropriate Group ring (section 2.2.4) and L−functions that
vary with characters of Pic(O) (section 2.2.6). The two constructions are
closely related since the theta element should interpolate the special values
of the L−functions (see Conjectures and Theorems 2.2.16). The newform
f is later specialized to be the newform associated to an elliptic curve E
defined over Q so that we can give a precise conjectures of the order of
vanishing of the theta element that involves the rank of the Mordell-Weil
group E(K).

2.2.1 Definite Shimura curves

We start by describing quickly the geometry of “definite Shimura curves”
which is the main tool in the construction of the theta element. The material
described here is studied in more detail in [2] and [9].

Let B be the definite quaternion algebra ramified at all primes dividing
N− and let RN+,N− be an Eichler order of level N+. Such a quaternion
algebra is defined up to isomorphisms whereas the Eichler order is defined
up to conjugation by an element of B∗ (see [23] for more details about
quaternion algebras). Let Ẑ be the profinite completion of Z. For any Z-
module M , we denote M̂ := M ⊗ Ẑ.

Let P denote the conic (curve of genus 0) defined over Q by:

P(K) = {x ∈ B ⊗K|Norm(x) = trace(x) = 0},

for all Q-algebras K. The group B∗ acts naturally on P by conjugation.
When K = C (resp. K is a quadratic field), P (C) (resp. P (K)) is identified
with Hom(C, B ⊗ R) (resp. Hom(K,B)).

Consider the definite Shimura curve

XN+,N− := R̂∗N+,N− \ (B̂∗ × P)/B∗.

It is the disjoint union of n := h(RN+,N−) (the class number of RN+,N−)
curves of genus 0 that we denote Xi and that correspond to the n different
elements Ii of the ideal class group of RN+,N− . To each element Ii corre-

spond an element gi of ˆR∗
N+,N− \ B̂∗/B

∗ and an Eichler order of level N+

that we denote Ri. Denote wi := |R∗i /{±1}|.
Denote JN+,N− its Jacobian. It is a free Z-module of rank n and let

(ei)1≤i≤n be a base of JN+,N− where ei corresponds to the component Xi.

Definition 2.2.1. Following [9], we define a height pairing on JN+,N− with
basis given by (ei)1≤i≤n, by:

< ei, ej >:= wiδi,j .
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Since Q has class number one, we have Q̂∗ = Q∗Ẑ∗ and

XN+,N− = (R̂∗N+,N− \ B̂
∗/Q̂∗)× P/(B∗/Q∗).

The Hecke algebra TN acting on JN+,N−:
When p - N , the space R∗p \ B∗p/Q∗p ' PGL2(Zp)/PGL2(Qp) has the

structure of the set of vertices in a homogeneous tree of degree p + 1 ([19]
p.70). Let δp denote the distance function on the trees at the place p. For m
and N coprime, we define a correspondence Tm on the product of the trees
given on an element g in (R̂∗N+,N− \ B̂

∗/Q̂∗) by:

Tm(g) =
∑

δp(gp,hp)≤vp(m)
δp(gp,hp)≡vp(m) mod 2

(h).

Since right multiplication by B acts by isometries on the tree, Tm natu-
rally gives rise to a well-defined correspondence on the curve XN+,N− and an
endomorphism on its Jacobian JN+,N− . The ring of endomorphism gener-
ated by the Tm for m and N coprime acting on JN+,N− is the Hecke algebra
TN .

The Atkin-Lehner involutions WN .
When p|N−, the space R∗p \ B∗p/Q∗p has two elements. We denote Wp

the non trivial involution on this set and also denote Wp the corresponding
involution on XN+,N− and JN+,N− .

When p||N+, the space R∗p\B∗p/Q∗p ' Γ0(p)/PGL2(Qp) is equipped with
a non trivial involution given by the action of(

0 1
p 0

)
.

We denote Wp the corresponding involution on XN+,N− and JN+,N− .

Proposition 2.2.2. The operatosr Tm ∈ TN are autoadjoint with respect to
the height pairing defined in 2.2.1.

Proof. The proof follows from a deep study of the so-called Brand matrices.
The reader is referred to [9] for a nice exposition in the case where N is
prime.

Remark : For N− squarefree product of an even number of primes, the
indefinite Shimura curve XN+,N− has a totally different shape (its genus is
greater than 0 to begin with) and doesn’t allow us to construct our theta
element. Actually, the case where N− is the squarefree product of an even
number of primes will be used later in Theorem 2.3.26 to build classes in
Galois cohomology.
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2.2.2 The projection map associated to a newform f

To a newform f of conductor N is associated a ring homomorphism of the
Hecke algebra :

φf : TN → Of ,

where Of is the ring of integer of Kf where Kf is the field generated by
the Fourier coefficients of f . When f is associated to an elliptic curve by
Eichler-Shimura theory over Q, the ring Of is simply Z.

Consider a prime λ of Of and the discrete valuation ring Of,λ. It is a
theorem that the component of JN+,N− ⊗Of,λ on which the Hecke algebra
acts by φf is a free Of,λ-module of rank 1. Denote Df a generator of this
module. (Df is only defined up to O∗f,λ.)

Definition 2.2.3. We define a projection map on JN+,N−, by

x 7→ vf (x) :=
< x,Df >

< Df , Df >
∈ Of,λ[

1

< Df , Df >
].

(The projection map is defined up to O∗f,λ.)

There is another interpretation of the projection map in terms of double
cosets.

Definition 2.2.4. Suppose given a function f : R̂∗
N+,N− \ B̂∗/B

∗ → Of,λ,
then we may associate to it a projection map on the JN+,N− as follow. Take
a element gi × ϕ in the component Xi. We define

ei 7→ vf (ei) := f(gi),

and extend it by linearity to JN+,N−.

Both constructions are closely related. By the Jacquet-Langlands corre-
spondence, to a newform f corresponds a unique (up to a non zero scalar)

function gf : R̂∗
N+,N− \B̂∗/B

∗ → Of,λ such that Tlgf = algf . The projection
maps vf and vgf are then equal up to a multiplication by a non zero scalar.

Behaviour of vf under the Atkin-Lehner involutions:
By Proposition 2.2.2, the projection maps vf satisfy

vf (Tm.x) = φf (Tm)vf (x)

for any Tm ∈ TN . A similar result is true for the Atkin-Lehner involutions.
By definition, the involutions WN commute with the Hecke operators . Let
`|N . If f is a newform of R̂∗

N+,N− \ B̂∗/B
∗ then W`.f is also a newform

of R̂∗
N+,N− \ B̂∗/B

∗ with the same eigenvalues since the actions of WN

commutes with the ones of TN . By multiplicity one, W`.f is a multiple
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of f and since W 2
` = 1, we must have W`.f = ε`,f , where ε`,f = ±1. In

particular, it means that the projection maps satisfy vf (W`.x) = ε`,fvf (x).
Case when Of is a principal ring:
For Of a principal ring, we can define the projection map associated

to the newform f but this time with values in Of : Indeed, the component
of JN+,N− ⊗ Of on which the Hecke algebra acts by φf is also a free Of -
module of rank 1 and we can consider Df a generator of this module. By
abuse of notation, we still denote vf for the projection map with values in

Of [
1

< Df , Df >
].

The obstruction when Of is not principal comes from the fact that the
component of JN+,N− ⊗ Of on which the Hecke algebra acts by φf is not
necessarily a free Of -module of rank 1 but only a projective module of rank
1 and we can’t guarantee to find any global generator Df .

2.2.3 Heegner points on XN+,N−

We return to the notations and settings made in the introduction where K is
a quadratic field. We say that x ∈ XN+,N− is a Heegner point relative to K
if it belongs to XN+,N−(K). We write x = g×f for g×f representative of x

in B̂∗ ×Hom(K,B). To be more precise, x is a Heegner point of conductor
O for O an order of K when

f(K)
⋂
g−1RN+,N−g = f(O).

Since all orders of K can be written as O = Z+ cOK , a Heegner points x of
conductor O = Z + cOK is sometimes called a Heegner point of conductor
c, the context making clear that x is a Heegner point relative to K. All the
following results follow from [2] section 1 and 2.

Theorem 2.2.5. Fix a quadratic field K, an integer N and a decomposition
N := N+N− such that N− is squarefree product of an odd number of primes.
Suppose that disc(K) and N are coprime. For any integer c prime to N , the
set HN+,N−(K, c) of Heegner points of conductor c relative to K in XN+,N−

is non empty if the decomposition N+N− satisfies:

For all ` dividing N+, ` is split in K.
For all ` dividing N−, ` is inert in K.

Proof. This is Lemma 2.1 in [2].

The assumption 2.1.1 assures us that we can find Heegner points relative
to a Shimura curve hence the quadratic field K and the level N are fixed.

Action of Pic(O) on the Heegner points of conductor O:
Pic(O) has an adelic description Pic(O) = Ô+ \ K̂∗/K∗. If f belongs to

Hom(K,B), let denote f̂ in Hom(K̂, B̂) to be the homomorphism deduced
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by extension of scalars. Define an action of σ in Pic(O) on x = g × f by
the formula

σ(g × f) = (gf̂(σ)× f).

One can check that the action is well-defined and free ([9] section 3). By
considering the action of the Atkin-Lehner involutions, the product Pic(O)×
WN acts simply transitively on the Heegner points of a given conductor ([2]
proof of Lemma 2.5,[9] and [23]).

Theorem 2.2.6. The action ofWN on XN+,N− preserves the set of Heegner
points HN+,N−(K, c) for any conductor c. Furthermore, if N is a squarefree
integer, the group WN × Pic(O) acts simply transitively on HN+,N−(K, c).

This action could also allow us to compute exactly the (finite) number
of Heegner points of a given conductor ([2] lemma 2.5).

Heegner points and homogeneous trees:
Suppose that the assumption of Theorem 2.2.5 are satisfied. We want

now to understand the value c of the conductor of an Heegner point x with
representatives g× f ∈ (R̂∗N+,N− \ B̂

∗/Q̂∗)×Hom(K,B) when c and N are
coprime. By the Skolen-Noether theorem, up to conjugation there is only
one embedding K ↪→ B and the Heegner points xi of conductor 1 can be
written xi = g(i) × f with g(i) × f representatives of x in

(R̂∗N+,N− \ B̂
∗/Q̂∗)×Hom(K,B).

For p and N coprime, the p−valuation of c can be seen locally by looking at

the distance of gp and the g
(i)
p in the treeR∗p\B∗p/Q∗p ' PGL2(Zp)/PGL2(Qp).

Suppose that p is inert in K:

Proposition 2.2.7. All the g
(i)
p have the same values g

(0)
p and we have the

equality:
vp(c) = δp(gp, g

(0)
p ),

where δp is the natural distance of the homogeneous tree

PGL2(Zp)/PGL2(Qp)

of degree p+ 1.

The reader could have the following local picture in mind, where the

prime 3 is inert in K: The point at the center represents the element g
(0)
3

hence f is chosen and the circles represent Heegner point whose conductors
have same 3 valuation. The 4 neighboors of any point are the points given
by the Hecke operator T3:
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Fig.1 Diagramm of the tree PGL2(Z3)/PGL2(Q3) considered with the
conductor’s valuation of the corresponding Heegner point when 3 is inert in

K.

Suppose that p is split in K:
In this case, the local picture is slightly more complicated and the ele-

ments g
(i)
p can take an infinite number of values.

Proposition 2.2.8. The p-valuation of the conductor satisfies the formula:

vp(c) = minh|(h×f has conductor 1)(δp(gp, hp)),

where δp is the natural distance of the homogeneous tree

PGL2(Zp)/PGL2(Qp)

of degree p+ 1.

The reader could have the following local picture in mind, where the
prime 3 is split in K: The horizontal lines correspond to Heegner points
whose conductors have same 3-adic valuation. The bottom line correspond
to Hegnneer points with trivial 3-adic valuation. The 4 neighboors of any
point are the points given by the Hecke operator T3:

Fig.2 Diagramm of the tree PGL2(Z3)/PGL2(Q3) considered with the
conductor’s valuation of the corresponding Heegner point when 3 is split in

K.

39



2.2 The theta elements

2.2.4 Construction of the theta element Θ(O, f)

Fix a newform f of levelN with values in a principal ring A. For our purpose,
A is either a ring of integers of class number one Of or a localization of a ring
of integersOf,λ. Fix also an orderO ofK of conductor c prime toDisc(K).N
(Recall that K and N satisfy the decomposition relation in 2.1.1). Let x be
an Heegner point on XN+,N− and for any element of g ∈ Pic(O), denote
xg the element g(x) where the action is given as in subsection 2.2.3. As an
abuse of notation, we’ll also denote x the image of XN+,N− in JN+,N− . The
context is generally clear whereas we consider x as in XN+,N− or in JN+,N−

Definition 2.2.9. The square root theta element attached to (x,O, Df ) is

Lf (x,O, Df ) :=
∑

g∈Pic(O)

vf (xg)g
−1 ∈ A[

1

< Df , Df >
][Pic(O)].

The group ring is equipped with an involution L → L∗ sending g ∈
Pic(O) to g−1.

Definition 2.2.10. The theta element is defined to be:

Θ(O, f, x,Df ) := LfL∗f .

Proposition 2.2.11. If A = Z and N is squarefree, then the theta element
Θ(O, f, x,Df ) doesn’t depend on any choice of generator Df nor on any
choice of Heegner point x and we denote it Θ(O, f).

Proof. We may write Θ(O, f) as following:

Θ(O, f, x,Df ) =
∑

g∈Pic(O)

(
∑

g1∈Pic(O)

vf (xg1)vf (xgg1))g.

Taking another generator Df is the same as replacing vf by −vf , and the
formula shows that Θ(O, f) doesn’t depend on the sign of vf .

If x′ = xg is another Heegner point, then the formula also shows that
Θ(O, f, x,Df ) = Θ(O, f, xg, Df ).

If x′ = w(x) is another Heegner point where w ∈ W the Atkin-Lehner
group then as since vf (w(x)) = εvf where ε = ±1 only depends on w and
not on x one has

Θ(O, f, w(x), Df ) = Θ(O, f, x, εDf )

and
Θ(O, f, w(x), Df ) = Θ(O, f, x,Df )

by the first result.
Finally, since Pic(O)×W acts (simply) transitively on the set Heegner

points (Proposition 2.2.6), the proposition follows.
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2.2.5 On the relations between the theta elements

Let On denote the order of conductor n for any n prime to N.disc(K). We
always have a map, Pic(On`) → Pic(On) and we can ask for the relations
that it induces for the elements Θ(Onl, f) and Θ(On, f). When we consider
the tower of group Pic(Opn) for a fix prime p, one can hope to get compati-
bilities that would allow to consider a theta element in the Iwasawa algebra
Λp := lim←−i Zp[Z/p

iZ]. This point of view is deeply treated in [1].
The relations property are not only at the level of the theta elements

Θ(f,On) but directly at the level of the elements Lf (x,O, Df ). Neverthe-
less, unlike the theta elements which don’t depend on any choice when f is
rational (propsoition 2.2.11), the elements Lf (x,O, Df ) always depend (up
to a unit) on the choices (x,Df ). To understand the relation properties, we
fix for this subsection a generator Df and a compatible family of Heegner
points xn of conductor On for n and N.disc(K) coprime.

By compatible, we mean that the Heegner points xn = gn × f and
xn` = gnl × f are such that δ`((gn)`, (gn`)`) = 1.

Let denote Lf (xn) := Lf (xn,On, Df ).

Theorem 2.2.12. The following relations hold in A[
1

< Df , Df >
][Pic(On)].

1.For ` is inert in K, and ` - n, then

Lf (xn`) = a`Lf (xn).

2.For ` = λ1λ2 is split in K, and ` - n, then

Lf (xn`) = a`Lf (xn)− Lf (Frobλ1(xn))− Lf (Frobλ2(xn)),

where Frobλi is the Frobenius element in Pic(On) corresponding to λi.
3. Suppose that `|n then

Lf (xn`) = a`Lf (xn)− L̂f (xn/`)
∑

g∈ker:Pic(On)→Pic(On/`)

g,

where L̂f (xn/`) :=
∑

g∈Pic(On/`) vf (g(xn/`))g
−1.

Proof. Everything follows from the choice of a compatible system of Heegner
point, from the equality

vf (T`(x)) = a`vf (x)

and from the fact that, when p is split in K, the 2 p-neighbors of a Heegner
point x of conductor prime to p that have also conductor prime to p are
given by Frobλi(x). Fig. 1 and Fig.2 are here quite useful to visualize the
proof.
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This theorem shows us that the square root theta elements and the theta
elements are not directly compatible under the natural group maps and we
can’t define directly any element in lim←−nA[On] or even in Λp for a well chosen
p. The way to work in the Iwasawa algebra Λp is to ask the eigenform f to
be an eigenvector for the operator Up instead of the Hecke operator Tp. As
mentioned in the beginning of the subsection, it is the point of view adopted
in [1]. Here, we want to consider all the primes indifferently and we have
to “loosen” the strict compatibility between the theta elements. This loss
isn’t problematic but we mention it to compare our elements with the ones
in [1].

2.2.6 Interpolation properties and conjectures

This section is devoted to the relations between the theta elements and the
special values of a L-functions that we exhibit. In particular, we explicit
here the meaning of the sentence made in the introduction: “The element
Θ(E,K,O) is conjectured to interpolate the special values of the Hasse Weil
L-function L(E/K, s) twisted by characters of Pic(O).” We start by defining
L(K, f, χ, s).2

For the rest of the section, the order O is fixed.

Definition 2.2.13. For any element A of Pic(O) with representative a ⊂ O,
let EA be the theta series of weight 1 for Γ0(D) with character ε which is
determined by the ideal class of A:

EA(z) :=
1

2u

∑
λ∈a

qNλ/Na

:=
1

2u
+
∑
m≥1

rA(m)qm,

where a is any ideal in the class A.

Definition 2.2.14. We define the L-function L(K, f,A, s) as the product
of the two Dirichlet series:

L(K, f,A, s) :=

∞∑
m=1,(m,N)=1

ε(m)

m2s−1

∞∑
m=1

amrA(m)

ms
,

where the coefficients am are the Fourrier coefficients of f .

Definition 2.2.15. For any character χ in Hom(Pic(O),C), denote:

L(K, f, χ, s) =
∑
A

χ(A)L(K, f,A, s).

2When f is a newform attached to an elliptic curve E, we could also write L(K,E, χ, s)
instead of L(K, f, χ, s). Both notation refer to the same object.
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Relation between Θ(O, f) and the L(f, χ, 1):

Theorem 2.2.16. For all characters χ of Pic(O), we have:

χ(Θ(O, f))
.
= L(f, χ, 1)

√
D/(f, f),

where (f, g) is the Peterson product of f with g (the element (f, f) is
sometimes called the complex period of f and is denoted Ωf ). The symbol

.
=

indicates an equality up to a simple algebraic fudge factor expressed as the
product of terms comparatively less important than the quantities explicitely
described in the formulas. In particular, dividing L(f, χ, 1) by the complex
period Ωf yields an algebraic number.

The conjecture has been first proven for the case N = N− is a prime
number and O = OK in [9] and was then generalized in [24] and in [25].

By the previous statement, the formulas relating the theta elements and
the L−function yield to conjectures a la Mazur-Tate. The spirit of Mazur-
Tate types of conjectures is to relate the order of vanishing of Θ(O, f) and
the rank of E(K).

Conjecture 2.2.1. Suppose that the Fourrier coefficients of f are rational
(ie. Of = Z). Let E be the elliptic curve defined over Q attached to f by
Eichler-Shimura theory. Denote r the rank of E(K), then:

Θ(O, f) ∈ IrP ic(O) ⊂ Z[
1

< Df , Df >
][Pic(O)].

2.2.7 Remarks on the augmentation ideal

For all this section, let G be a finite abelian group of order nG. The aug-
mentation ideal and especially its powers are quite subtle ideals and it’s a
tough question to understand if an element in the group ring belongs to a
given power of the augmentation ideal. Here, we start by decomposing the
study of f ∈ Z[G] into the studies of all its images in Zpi [Gi], where Gi is
the pi part of G. Finally, at the end of the section, we state theorems which
relate the properties of the image ϕ(f) of f under surjective morphisms ϕ
from Z[G] into principal local rings R and the properties of f itself.

Lemma 2.2.17. Suppose that G ' Z/pnZ then for all g ∈ G,

pn.(g − 1) ∈ IpG
.
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Furthermore, if n = 1,

p.(g − 1) = (g − 1)p.h ∈ Zp[G],

where h is an element of Zp[G]∗.

Proof. Denote q = pn. We have:

gq − 1 = 0 =

q∑
i=1

(
q

i

)
(g − 1)i,

which leads to

q(g − 1) = −
q∑
i=2

(
q

i

)
(g − 1)i.

Since q|
(
q
i

)
for i < p, we may repeat the argument and write:

q(g − 1) = −(g − 1)p
[(
q

p

)
+ (g − 1)f(g)

]
,

where f(g) is an element of Z[G].
To prove the statement for n = 1, we notice that since Zp[G] is a local

ring with maximal ideal generated by p and IG, an element is invertible iff
its valuation is prime to p.

The next example is an example of “funny” behavior and illustrates the
difficulties one may have to deal with augmentation ideals.

Example 2.2.18. Consider the group ring Z[Z/2Z×Z/3Z] and the element

h := (1− α)(1− β) ∈ Z[Z/2Z× Z/3Z],

where α = (1, 0) and β = (0, 1) as elements of Z/2Z×Z/3Z. Then, writing
h = (u.2n + v.3m)h and using Lemma 2.2.17 shows that

∀r, h ∈ IrZ/2Z×Z/3Z ⊆ Z[Z/2Z× Z/3Z].

Decomposition of the structure of the group rings into “elementary”
pieces:

Proposition 2.2.19. Let A be a ring and G a commutative group, f an
element of A[G] and r an integer. Suppose that G ' G1×G2 with #Gi = ni
and suppose that (n1, n2) = 1, then the following propositions are equivalent:

(i) f ∈ IrG ⊂ A[G].
(ii) f ∈ IrG1

⊂ A[G1] and f ∈ IrG2
⊂ A[G2], where by abuse of notation,

we still denote f the image of f by the surjection maps A[G]→ A[Gi].
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Proof. The case r 6 1 is immediate, so we may suppose r > 1.
(i) implies (ii) is clear.
(ii) implies (i):
Suppose that f satisfies condition (ii). It is straightforward that f can

be written:

f = f1 + f2 +
∑

g1∈G1,g2∈G2

(g1 − 1)(g2 − 1)fg1,g2 ,

where fi ∈ IrG1
⊂ A[Gi] ⊂ A[G] and fg1,g2 ∈ A[G].

We need to show that for any g1 ∈ G1 and g2 ∈ G2, we have

(g1 − 1)(g2 − 1) ∈ IrG.

By using the computation

(g − 1)(h− 1) + (g − 1) + (h− 1) = (gh− 1),

we may suppose that the order of g1 (resp. g2) is a power of a prime q1

(resp. q2). By hypothesis on #Gi, we know that q1 and q2 are coprime.
Writing

uqm1 + vqm2 = 1,

for any choice of m and using Lemma 2.2.17 finishes the proof.

Lemma 2.2.20. Let A be a ring and G be an abelian finite group of order
a power of p. Write G = ⊕ki=1Gi with Gi cyclic of order ni generated by gi
and suppose that:

f = (gk − 1)F ∈ IrG ⊂ A[G],

then we may write

f = (gk − 1)F̃ with F̃ ∈ Ir−1
G ⊂ A[G].

Proof. By hypothesis, we have:

(gk − 1)F =
∑

i1+...+ik=r,ik 6=0

(gi − 1)iiFi1,..,ik +
∑

i1+...+ik−1=r

(gi − 1)iifi1,..,ik−1
,

(2.1)
where the fi1,..,ik−1

, Fi1,..,ik belong to A[G].
By the Taylor expansion, we may write

fi1,..,ik−1
= (gk − 1)F ′i1,..,ik−1

+Ri1,..,ik−1
,

where Ri1,..,ik−1
belongs to A[

⊕k−1
i=1 Gi]. Without a loss of generalities, we

may assume that:
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fi1,..,ik−1
belong to A[

⊕k−1
i=1 Gi].

Evaluating equation 2.1 at gk = 1 shows that in this case fi1,..,ik−1
= 0

for all (k − 1)-uples and show that we may write:

f = (gk − 1)F̃ with F̃ ∈ Ir−1
G ⊂ A[G].

Proposition 2.2.21. Let f ∈ Z[
1

D
][G] and suppose that G has order q = pn.

The following propositions are equivalent:

(i) f belongs to IrG ⊂ Z[
1

D
][G].

(ii)f belongs to IrGi ⊂ Zp[
1

D
][G].

Proof. (i) implies (ii) is immediate.
(ii) implies (i): The case r 6 1 is clear. When p divides D, Lemma

2.2.17 shows that IrG = IG ⊂ Z[
1

D
][G] and IrG = IG ⊂ Zp[

1

D
][G] and we may

assume that D and p are coprime and Zp[
1

D
] = Zp.

• Suppose first that G is cyclic of order pn with generator g, we prove
the proposition by induction on r:

Consider f ∈ Z[
1

D
][G] such that f ∈ IrG ⊂ Zp[G], and we want to prove

that f ∈ IrG ⊂ Z[
1

D
][G].

By the Taylor expansion, we may write

f =
r∑
i=0

(g − 1)iai ∈ Z[
1

D
][G],

with ai ∈ Z[
1

D
] for i < r and ar ∈ Z[

1

D
][G]. By replacing if necessary f by

f − (g − 1)rar we may assume that f can be written

f =

r−1∑
i=0

(g − 1)iai ∈ Z[
1

D
][G],

with ai ∈ Z[
1

D
].

By Lemma 2.2.17, we may also assume that either vp(ai) < n or ai = 0.
By evaluating f at g = 1, we see that a0 = 0. By recurrence, suppose

that ai = 0 for i < t, then:

f = (g − 1)t
r−t∑
i=0

(g − 1)iai+t.
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Over Zp[G], we have f = (g − 1)rh for some h ∈ Zp[G].
Comparing the formulas, we have:

(g − 1)
[∑r−t

i=0(g − 1)iai+t − (g − 1)r−th
]

= 0,

which shows that

r−t∑
i=0

(g − 1)iai+t = (g − 1)r−th+ (

pn−1∑
j=0

gj)h2, (2.2)

for some h2 ∈ Zp[G].
Evaluating 2.2 at g = 1 shows that vp(ai) > n and hence that ai = 0.

• Suppose now that G '
⊕k

i=1Gi, where the Gk are cyclic of order pnk

with generator gk, we prove the proposition by induction on r and k:
By the Taylor expansion, we have:

f = (gk − 1)f1 + f2,

where f2 belongs to Z[
1

D
][
⊕k−1

i=1 ].

f2 belongs to IrG ⊂ Z[
1

D
][G] by induction on k and we may suppose that

f = (gk − 1)f1.
Now, f = (gk − 1)f1 and by Lemma 2.2.20, we may assume that f1

satisfies the hypothesis for r − 1 which concludes the proof by induction
on r. (Notice here, that the transformation from F to F̃ leaves stable the

subspace Z[
1

D
][G] of Zp[G] so we can really use induction.)

If we combine Propositions 2.2.21 and 2.2.19, we get the following theo-
rem:

Theorem 2.2.22. Let G be an abelian group and f be an element of Z[
1

D
][G].

Decompose G '
⊕
Gi where #Gi = pnii and pi 6= pj for i 6= j. Then the

following propositions are equivalent:

(i) f belongs to IrG ⊂ Z[
1

D
][G].

(ii) For all i, f belongs to IrGi ⊂ Zpi [
1

D
][Gi].

This theorem shows us that it is enough to understand what happens
at each prime p separately in order to understand the properties in the
global group ring. The first advantage of this point of view is the fact that
the group rings Zpi [Gi] are local rings with maximal ideal generated by the
elements 〈(g − 1)g∈G, p〉.
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The ring that we consider are then easier but are still not principal. To
avoid this difficulty, one may work on the images of elements f in Zp[G] in
principal rings R.

Study of morphisms ϕ : Zp[G]→ R:

For the rest of the section, p is a fixed prime. We mention here the
three kind of surjective morphisms ϕ : Zp[G] → R that appear later. For
this purpose, denote εn a choice of a pn-roots of unity in an extension of Qp

for any n. Denote also Rn the discrete valuation ring Zp[εn]. As a remark,
πn := (εn − 1) is an uniformizer of Rn with p-valuation equal to 1

(p−1)pn−1 .

The reader may keep in mind the following surjective morphisms when G is
cyclic of order pn with generator g.

ϕ1 :

{
Zp[G]→ Zp
g 7→ 1

, ϕ2 :

{
Zp[G]→ Z/p2n+1

g 7→ 1 + pn
and ϕ3 :

{
Zp[G]→ Rn
g 7→ εn.

Result when all elements of G have order p:

Theorem 2.2.23. Suppose G =
⊕t

i=1Gi, where Gi ' Z/pZ with generators
gi. Let f be an element in Zp[G]:

1. If f can be written F (g1, ..., gn)(g1 − 1) with ϕ(f) ∈ ϕ(IG)r for any
morphism ϕ : Zp[

⊕t
i=1Gi] → R1 such that ϕ(g1) 6= 1 then f can also be

written

f = f1 +
∑
i<j

[
(gi − 1)(gj − 1)

p−1∏
k=1

(gi − gkj )fi,j

]
,

where f1 ∈ IrG and fi,j ∈ Zp[G].
2. If for any morphism ϕ : Zp[G] → R1 (including the trivial one) we

have ϕ(f) ∈ ϕ(IG)r then, we can write:

f = f1 +
∑
i<j

[
(gi − 1)(gj − 1)

p−1∏
k=1

(gi − gkj )fi,j

]
,

where f1 ∈ IrG and fi,j ∈ Zp[G].

Proof. We prove the proposition by induction on t:
Case t = 1 for 1.
By the Taylor expansion, F may be written

F = (g1 − 1)(a0 + a1(g1 − 1) + ...+ an(g1 − 1)n),

for some n with ai ∈ Zp. By Lemma 2.2.17, we can even suppose that
ai ∈ Z∗p. Applying now ϕ defined by ϕ(g) = ε1 shows that ai = 0 for i < r.
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General case for 1. by induction on t:
By the Taylor expansion, f may be written:

f = (g1 − 1)f0(g1, g3, ..., gn) + (g2 − 1)(g1 − 1)f1(g1, g3, ..., gn)

+ (g1 − 1)(g2 − 1)(g1 − g2)f1(g2, g3, ..., gn) + ...

+ (g1 − 1)(g2 − 1)(g1 − g2)...(g1 − gp−2
2 )fp−2(g2, g3, ..., gn)

+ (g1 − 1)(g2 − 1)(g1 − g2)...(g1 − gp−1
2 )fp−1(g1, g2, g3, ..., gn).

The last component has the desired form so we may assume fp−1 = 0.
Applying the natural map Zp[G] → Zp[G/G2] shows that the component
(g1 − 1)f0(g1, g3, ..., gn) satisfies the hypothesis for t′ = t− 1. By induction,
we may suppose that f0 = 0.

Applying the maps ϕ : Zp[G]→ R1, with ϕ(g1) = ϕ(g2) 6= 1 shows that
ϕ((g1 − 1)f1(g1, g3, ..., gn)) ∈ ϕ(IG)r−1 for all morphsims with ϕ(g1) 6= 1.
By induction on t, (g1− 1)f1(g1, g3, ..., gn) has the desired form and we may
assume that f1 = 0.

Repeating the argument for i < p, by using the maps ϕ : Zp[G] → R1,
with ϕ(g1) = ϕ(g2)i 6= 1 proves that the component

(g1 − 1)(g2 − 1)(g1 − g2)...(g1 − gi−1
2 )fp−1(g1, g2, g3, ..., gn)

has the desired form, which finishes the proof of 1/.

Case t = 1 for 2.
Let f ∈ Zp[G] with G ' Z/pZ. Consider g a generator of G. By the

Taylor expansion, we have

f = a0 + a1(g − 1) + ...+ an(g − 1)n,

for some n with ai ∈ Zp. By applying, the trivial morphism, we have a0 = 0.
f satisfies then the hypothesis of 1. and the result follows.

General case for 2. by induction on t:
By the Taylor expansion we may write:

f = F (g1, ..., gn)(g1 − 1) + f0(g2, g3..., gn).

By taking the natural map Zp[G] → Zp[G/G1], we see that the compo-
nent f0(g2, ..., gn) satisfy the hypothesis of 2/ for t′ = t − 1. By induction,
f0 has the desired form and we may assume f0 = 0.

Now, the component F (g1, ..., gn)(g1 − 1), satisfies the hypothesis of 1/.
which proves that it has the desired form.

Results without assumption on the order:
When G is any finite ring with order a power of p, the result of Theorem

2.2.23 doesn’t stand anymore. The obstruction already appears when we
consider cyclic group of order pn for n > 1:
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Example 2.2.24. Let G ' Z/p2Z with generator g, and consider the ele-
ment

f := p(g − 1)2.

Then for the surjective morphism ϕi considered earlier, we have

ϕi(p(g − 1)2) ⊂ ϕi(I3
G).

On the other hand p(g − 1)2 doesn’t seem to belong to I3
G. Unlike the case

of n = 1, it is not clear if the element p(g − 1) belongs to I2
G or not.

As a remark, this obstruction disappears in the case of the Iwasawa al-
gebra Λp by using the morphism

ψ :

{
Λp → Zp
g 7→ 1 + p2 ,

which has not counterpart when G is finite.

To avoid dealing with elements of the form p(g − 1)2, one may assume
that r is smaller than 3 or one may work over Fp.

Theorem 2.2.25. Consider G ' ⊕ti=1Gi with Gi cyclic of order pni. Let
f ∈ Zp[G] be such that for all surjective morphisms

ϕ : Zp[G]→ R,

where R is a principal local ring, we have

ϕ(f) ∈ (ϕ(g − 1)r)

with r < 3 then:
f ∈ IrG.

Proof. The theorem is proven by induction on t.
Case t = 1:
By the Taylor expansion, we can write:

f = A0 +
t∑
i=1

ai(g − 1)i

with vp(ai) < n by Lemma 2.2.17. By subtracting
∑t

i=r ai(g − 1)i, we may
assume that ai = 0 for i > r.

By taking ϕ(g) = 1, we see directly that A0 = 0.
Now consider the morphism:

ϕ :Zp[G]→ Z/p2n+1Z
g 7→ 1 + pn.
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Then,
r−1∑
i=1

aip
in ∈ (prn)

which shows that ai = 0 since n− 1 + (r − 1)n < 2n+ 1.
Case t > 1:
By the Taylor expansion, f can be written

f(g1, ..., gt) = (g1 − 1)(g2 − 1)f1 + (g1 − 1)f2(g1, g3, ..., gt) + f3(g2, ..., gt).

Using the natural projection maps Zp[G] → Zp[G/Gi] for i = 1 and
2 shows that (g1 − 1)f2(g1, g3, ..., gt) and f3(g2, ..., gt) satisfy the induction
hypothesis.

Theorem 2.2.26. Let r ∈ N such that r 6 p + 1. Suppose that p 6= 2 and
that G ' ⊕ti=1Gi with Gi cyclic of order pni.. Let f ∈ Zp[G] be such that
for all surjective morphisms

ϕ : Zp[G]→ R,

where R is a principal local ring, we have

ϕ(f) ∈ (ϕ(g − 1)r)

then:
f ∈ IrG ⊂ Fp[G].

Proof. The theorem is (once again) proven by induction on t:
Case t = 1:
The case n1 = 1 has been treated in Theorem 2.2.23. Suppose that

n > 1. By the same argument as before, we may assume that:

f =

r−1∑
i=1

ai(g − 1)i.

Now consider the morphism:

ϕ :Zp[G]→ Oεpn/p
g 7→ 1 + εpn .

Then,
r−1∑
i=1

ai(εpn − 1)i ∈ ((εpn − 1)r) ⊂ Oεpn/p,

which shows that ai = 0 since by hypothesis r 6 (p− 1)pn.
Case t > 1:
The general case is proven by induction as in the proof of Theorem 2.2.23.
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2.3 The Euler system argument

2.3.1 Settings and structure of the proof

For this section, let fix an eigenform f of weight 2 of level N with values in
Zp where we suppose that p doesn’t divide D.N .

To this eigenform is attached a continuous representation of the Galois
group GQ:

Vf ' Q2
p.

The representation Vf arises in the Jacobian J0(N) using the construc-
tion of Eichler and Shimura (the reader can find all the basis properties of
Vf in [8]).

Since the action of GQ is continuous, it preserves a Zp lattice Tf of
Vf and we denote Tf,n := Tf/p

nTf . In this section, we use deeply the
Group cohomology of Tf,n to understand the vanishing properties of the
theta elements Θ(K, f,O). As a remark and to fix the ideas, when f has
values in Z, then Tf is isomorphic as GQ-module to the Tate module of the
elliptic curve Ef over Q associated to f and in this case Tf,n is Ef [pn] the
group of pn torsion points of Ef .

For any n, let Ln be the ray class field of K associated to On. It is
an abelian extension, ramified only at primes dividing n, and such that
Gal(Ln/K) ' Pic(On). When m and n are coprime, Lnm is the compositum
of Lm and Ln with Lm and Ln linearly disjoint. This is summarized in the
following diagram of Galois extensions:

Q

K

H

Ln

Pic(On)

{1, σ}

(OK/nOK)∗/(Z/nZ)∗

Pic(OK)

Here, σ denotes the complex conjugation. It acts on g ∈ Gal(Ln/K) as
an involution by the formula σgσ = g−1. (That’s where the term anticyclo-
tomic or dihedral comes from.)

For all n coprime with N.D, let xn a Heegner point of conductor On in
the Shimura curve XN+,N− . By section 2.2.4, we associate to the quadruple
(K,On, f, xn) an element

Lf,n ∈ Zp[
1

< Df , Df >
][Pic(On)].
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We fix now the settings to simplify the notations:
Fix a conductor n prime to N.D. Let M := Ln and denote L to be the

subfield of M such that GL := Gal(L/K) ' Pic(On)(p) where Pic(On)(p) is
the p-part of Pic(On). By definition the order of Gal(M/L) is prime with
p. Denote also GM := Gal(M/K):

Q

K

L

M

GM

{1, σ}

GL ' Pic(On)(p) '
⊕

i Z/pniZ

Gal(M/L) with order prime with p.

The advantage of using this subextension L follows from the fact that
Zp[GL] is now a local ring with maximal ideal (p, IGL).

Denote L̃f to be the image of Lf in Zp[GL]. The aim is to prove the
following theorem:

Theorem 2.3.1. Under assumption 2.3.2 on p, for any surjective morphism

ϕ : Zp[GL]→ R,

where R is a principal local ring, we have:

ϕ(L̃f )2 ∈ FittR(Sel∨f,n ⊗ϕ R),

where Fitt denotes the Fitting ideal, Self,n the Selmer group of f at n defined
in 2.3.9 and where the noatation A∨ denotes the Pontryagin dual of A.

Using this theorem and standard techniques in the study of modules over
local rings allow us to link the p-valuation of ϕ(L̃f ) and the rank of Ef over
K when f is a eigenform with values in Z. This is done in section 2.4.

The main idea in the proof of Theorem 2.3.1 is to construct global classes
κ(`) in H1(GL, Tf,n) that look locally like L̃f and that are almost orthogonal
with the elements in the usual Selmer group of our elliptic curve with respect
to the Tate global pairing. The “almost” orthogonality is precisely what
allows us to link the order of vanishing of L̃f and the rank of the elliptic
curve Ef .

We make now the following assumptions:

Assumption 2.3.2. 1. The prime p is > 5.
2.For all prime ` such that `2 divide N , and p divides `+ 1, the module

Tf,1 is an irreducible I`-module.
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3.The eigenform f is p-isolated (Definition 1.2 [1]).
4. The Galois representation attached to Tf,1 has image isomorphic to

GL2(Fp).
5.For all ` dividing pN exactly, the Galois representation Tf,n has a

unique one dimensional subspace T
(`)
f,n on which Gal(Q`/Q`) acts via ε or

−ε.

Remarks: 1. Part 3. of the assumptions is a key assumption that will
allows to prove Theorem 2.3.1 by induction.

2. Suppose that f has values in Z and consider E the elliptic curve
attached to f . In this case, the previous assumptions are satisfied for all but
finitely many ordinary prime.

It is clear for parts 1,2.
Part 3 is in this case equivalent to:

The prime p doesn’t divide the minimal degree of a parametrisation
X0(N)→ E.

It is satisfied for all but finitely many primes.
It is also a well known result that part 4 is satisfied for all but finitely

many primes when E doesn’t have complex multiplication. (See theorem 2
in [20]).

When E has multiplicative reduction at ` and ordinary reduction at p,
then assumption 5 is automatically satisfied. (See Propositions 2.11 and
2.12 of [8]).

Finally, part 5 is also satisfied for `|N , such that Tf,n is unramified at
` and p doesn’t divide `2 − 1. Indeed, in this case, the Frobenius element
acts on Tf,n with eigenvalues ` and 1 and assumption 5 follows then from
the congruence p - `2 − 1.

2.3.2 Local/global structures

This subsection is devoted to the study of submodules in the Galos coho-
mology of Tf,n for a number field H such that H = K,L or M .

Let λ be a prime of H. There is always a restriction map

H i(H,Tf,n)→ H i(Hλ, Tf,n)

and by abuse of notation let still denote s ∈ H i(Hλ, Tf,n) the image of an
element s ∈ H i(H,Tf,n).

Definition 2.3.3. Suppose that λ - N . The singular part of H1(Hλ, Tf,n)
is the group

H1
sing(Lλ, Tf,n) := H1(Iλ, Tf,n)GHλ ,

where Iλ is the inertia group associated to an embedding H ⊂ Hλ.
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The natural map arising from restriction is called the residue map and
is denoted

δλ : H1(Hλ, Tf,n)→ H1
sing(Hl, Tf,n).

Definition 2.3.4. Let H1
fin(Hλ, Tf,n) denote the kernel of δλ. The classes

in H1
fin(Hλ, Tf,n) are called the finite or unramified classes.

For each rational prime `, set H` := H ⊗Q` = ⊕λ|`Hλ, where the direct
sum is taken over all the primes λ of H dividing `, and write:

H1(H`, Tf,n) := ⊕λ|`H1(Hλ, Tf,n).

Definition 2.3.5. Let denote

H1
sing(H`, Tf,n) := ⊕λ|`H1

sing(Hλ, Tf,n) ⊂ H1(H`, Tf,n).

The map δ` := ⊕δλ is the residue map at `, and the kernel of δ`, denoted
H1
fin(H`, Tf,n) is the finite part of H1(H`, Tf,n).

Definition 2.3.6. Let ` be a prime dividing N exactly. The ordinary part
of H1(H`, Tf,n) is defined to be the group

H1
ord(H`, Tf,n) := H1(H`, T

(`)
f,n).

Definition 2.3.7. At prime p, the ordinary part of H1(Hp, Tf,n) is defined
to be the group

H1
ord(Lp, Tf,n) := res−1

p (H1
sing(Hp, T

(p)
f,n)).

Tate duality: The Weil pairing gives rise to a canonical GQ-equivariant
pairing:

Tf,n × Tf,n → µpn .

Combining this pairing with the cup product pairing in cohomology gives
rise for all ` to the perfect local Tate pairing :

<,>`: H
1(H`, Tf,n)×H1(H`, Tf,n)→ Qp/Zp.

Proposition 2.3.8. 1. If ` is a prime not dividing pN , then the groups
H1
fin(H`, Tf,n) and H1

sing(H`, Tf,n) are annihilators of each other under the
local Tate pairing <,>`.

2. If ` is a prime dividing pN exactly, the groups H1
ord(H`, Tf,n) and

H1
ord(H`, Tf,n) are annihilators of each other under the local Tate pairing

<,>`.

Proof. This is Proposition 2.3 of [1].
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Definition 2.3.9. The Selmer group Self,n(H) attached to f, n and H is
the group of elements s in H1(H,Tf,n) satisfying:

1. δ`(s) = 0 for all primes ` not dividing Np.
2. The class s is ordinary at primes ` | N−p.
3. The class s is trivial at primes ` | N+.

Definition 2.3.10. Let S be a squarefree integer which is relatively prime
to pN . The Selmer group H1

S(H,Tf,n) attached to f, S, and H is the group
of elements κ in H1(H,Tf,n) satisfying:

1. δ`(κ) = 0 for all primes ` not dividing SNp.
2. The class s is ordinary at primes ` | N−p.
3. The class s is arbitrary at primes ` | N+, and at the primes ` | S.

Proposition 2.3.11. Let s ∈ Self,n(H) and κ ∈ H1
S(H,Tf,n), we have the

equality: ∑
`|S

< s`, κ` >`= 0.

Proof. This follows from global reciprocity laws in class field theory and
Proposition 2.3.8.

2.3.3 Construction of derivative classes

Lemma 2.3.12. We have:

H1
sing(K`, Tf,n) '


0 if pn - `+ 1± a`
Z/pnZ if pn | `+ 1± a` and p - `2 − 1
(Z/pnZ)2 if pn | `+ 1± a` and ` | `2 − 1.

Proof. By definition H1
sing(K`, Tf,n) := H1(I`, Tf,n)GK` . Since Tf,n is un-

ramified at `, the group is identified with the group of homomorphisms

Hom(I`, Tf,n)GK` = Hom(I`/p
nI`, Tf,n)GKl = Hom(I`/p

nI`, T
frob2`=`

2

f,n ).

The characteristic polynomial of Frob` acting on Tf,n is known to be x2 −
a`x+ ` and the result follows from the study of the eigenvalues.

Lemma 2.3.13. The natural maps

H1
sing(K`, Tf,n)→ H1

sing(K`, Tf,n−m)

are given by reduction modulo pn−m.

Proof. This follows from the proof of Lemma 2.3.12.

Lemma 2.3.14. We have:

H1
fin(K`, Tf,n) '


0 if pn - `+ 1± a`
Z/pnZ if pn | `+ 1± a` and p - `2 − 1
(Z/pnZ)2 if pn | `+ 1± a` and p | `2 − 1.
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Proof. It follows from Lemma 2.3.12 and perfect local Tate duality.

Lemma 2.3.15. Suppose ` is inert in K, and ` doesn’t divide the conductor
of O. We have H1(H`, Tf,n) ' H1(K`, Tf,n) ⊗ Z[GH ]. Furthermore, the
action of GH on H1(H,Tf,n) commutes with the reduction

H1(H,Tf,n)→ H1(H`, Tf,n).

Proof. Since ` is inert in K and unramified in H, ` splits completely in H.
The choice of a prime λ above ` determines an isomorphism

H1(H`, Tf,n) ' H1(H`, Tf,n)⊗ Z[GH ].

The part about the action of GH can be seen using the description of the
cohomology groups as cocyles.

Lemma 2.3.16. Suppose that p doesn’t divide `2 − 1, then the local coho-
mology groups H1(K`, Tf,n) decompose as the direct sums:

H1
sing(K`, Tf,n)⊕H1

fin(K`, Tf,n) when ` doesn’t divide N,

H1
ord(K`, Tf,n)⊕H1

fin(K`, Tf,n) when ` divides N.

Proof. When pn - `+1±a`, all the groups are trivial and there is nothing to
prove. When pn divides `+ 1±a`, the module Tf,n is the direct sums of two
eigenspaces for the action of Frob2` with eigenvalues 1 and `2. Since p - `2−1,
the two eigenvalues are different mod pn. Now, the finite part corresponds
to the eigenvalue 1 whereas the singular or ordinary part corresponds to the
eigenvalue `2.

Definition 2.3.17. A rational prime ` is said to be n-admissible relative to
f if it satisfies:

1. ` does not divide N .
2. ` is inert in K/Q.
3. p does not divide `2 − 1.
4. pn divides `+ 1− al or `+ 1 + al.

Proposition 2.3.18. Ler ` be an n-admissible prime and denote by g the
natural projection of g ∈ GM into GH . We have the following commutative
diagram.
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H1(H,Tf,n)

Res
��

Res // H1(M,Tf,n)

Res
��

Cores // H1(H,Tf,n)

Res
��

H1(H`, Tf,n)
Res //

∼
��

H1(M`, Tf,n) //

∼
��

H1(H`, Tf,n)

∼
��

(Z/pnZ[GH ])2 // (Z/pnZ[GM ])2 // (Z/pnZ[GH ])2

h � //
∑

g|g=h g

g � // g

Proof. This follows from Lemma 2.3.16, Lemma 2.3.15 and the definition of
the corestriction map.

Definition 2.3.19. A finite set S of primes is said to be an n-admissible
set relative to f if:

1. All ` ∈ S are n-admissible primes relative to f .
2. The map Seln,f (K)→

⊕
`∈S H

1
f (K`, Tf,n) is injective.

Proposition 2.3.20. Any collection of n-admissible primes can be enlarged
to an n-admissible set. In particular, n-admissible sets exist.

Proof. This is explained in the discussion preceding Proposition 3.3 of [1].

Proposition 2.3.21. If S is an n−admissible set, then the group H1(L, Tf,n)
is free of rank #S over Z/pnZ[GL].

Proof. It is Proposition 3.3 of [1].

Proposition 2.3.22. The natural restriction map

H1(K,Tf,n)→ H1(L, Tf,n)GL

is an isomorphism.

Proof. The inflation-reduction exact sequence is:

H1(L/K, T
GL/L
f,n )→ H1(K,Tf,n)→ H1(L, Tf,n)GL → H2(L/K, T

GL/L
f,n ),

and the result from T
GM/M

f,n = 0.
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Proposition 2.3.23. Suppose that m 6 n, the natural map

H1(H,Tf,m)→ H1(H,Tf,n)[pm]

is an isomorphism.

Proof. The surjectivity follows directly from the short exact sequence:

0→ Tf,m → Tf,n →pm Tf,n → 0.

The injectivity follows from T
GM/M

f,n = 0.

Theorem 2.3.24. Let s be a non-zero element of H1(K,Tf,1). There exists
infinitely many n-admissible primes ` relative to f and p such that δ`(s) = 0
and v`(s) 6= 0.

Proof. It is Theorem 3.2 in [1].

Theorem 2.3.25. Seln,f (L) is trivial iff Seln,f (K) is trivial

Proof. We have a natural injection Seln,f (K) ⊂ Seln,f (L) which proves the
implication.

Now suppose that x 6= 0 ∈ Seln,f (L). The group GL is the direct product
of Gi where Gi ' Z/pkiZ.

Consider g1 a generator of G1. By the same reasoning as in the proof of
Lemma 2.2.17, (g1− 1)p

k1 = p(g1− 1)h where h is an element in Z/pnZ[G1]
(here h is not necessarily invertible). Since pn.x = 0, there exists i1 > 0
such that (g1 − 1)i1 6= 0 and (g1 − 1)i1+1 = 0. By induction, there exists an
element y 6= 0 ∈ Seln,f (L) such that y is invariant by GL. By Proposition
2.3.22, the class y belongs to Seln,f (K).

Theorem 2.3.26. For ` an admissible prime relative to p and f , there exist
classes κ(`) ∈ H1

` (M,Tf,n) such that:

δ`(κ(`)) = Lf (up to an element of (Z/pnZ)∗ and of GM ),

v`(κ(`)) = 0.

Using a Heegner point of conductor O on the indefinite XN+,N−`

This theorem is key in all the proof and allow us to consider the Lf as
localization of well chosen global cohomology classes. The proof is geometric
and is far from being immediate. The way to construct the classes is the
following: Let XN+,N−` be an “indefinite Shimura curve” associated to the
couple (N+, N−`). If we consider a Heegner point P` of conductor O which
is defined over M , its image by the Kummer map is a class in H1

` (M,Tf,n)
that satisfies the desired properties. (See [1] section 5 to 8 for a deeper study
of the construction.)
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Corollary 2.3.27. For ` an admissible prime relative to p and f , there is
a class in H1

` (L, Tf,n) still denoted κ(`) by abuse of notation, satisfying:

δ`(κ(`)) = L̃f (up to an element of (Z/pnZ)∗ and of GL),

v`(κ(`)) = 0.

Proof. This follows for the previous Lemma and Proposition 2.3.18.

Congruences between modular forms: Let `1 and `2 be n-admissible
primes relative to f and such that pn divides both `1 + 1 − ε1a`1(f) and
`2 + 1− ε2a`2(f) where ε1 and ε2 are equal to ±1.

Let B′ be the definite quaternion algebra of discriminant Disc(B)`1`2
and R′N+,N−`1`2

be an Eichler order of level N+ in B′. The theory of con-
gruences between modular form yields to the following statement:

Proposition 2.3.28. There exists a unique (up to an invertible scalar)

eigenform g : ̂R∗
N+,N−`1`2

\ B̂∗/B∗ → Z/pnZ, such that the equalities modulo
pn hold:

Tqg = aq(f)g (q - N`1`2), Wqg = aq(f)g (q|N),

W`1(g) = ε1g, W`2(g) = ε2g.

Proof. It is Theorem 3.10 of [1].

By Definition 2.2.4, for any order O, we may associate to g and element
L̃g. This element L̃g appears as the finite localization of κ(`) at n-admissible
prime:

Theorem 2.3.29. The equality

v`2(κ(`1)) = L̃g

hold in H1
fin(L`2 , Tf,n) up to multiplication by elements of (Z/pnZ)∗ and GL.

Proof. It is Theorem 4.2 of [1].

The key point of the proof of Theorem 2.3.1 is to use the eigenform g
associated to a pair (`1, `2) for an argument by induction. In order to do so,
we need eigenforms with values in Zp and not only in Z/pnZ. The question
is to be able to lift g. It is not possible for all pair (`1, `2) and consider now
the cases for which such a lift exists:

Definition 2.3.30. We say that a pair of n-admissible primes (`1, `2) is
a rigid pair when the eigenform g associated to (`1, `2) can be lifted to an
eigenform g̃ with values in Zp.
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Proposition 2.3.31. Suppose that (`1, `2) is a rigid pair and that f is p-
isolated then g̃ is p-isolated.

Proof. It is Theorem 3.10 of [1].

The definition that we give here of a rigid pair is an ad hoc definition and
a working definition can be found in [1] section 3. In particular, the authors
of [1] prove that we can find sufficiently many rigid pair with properties
analogous to Theorem 2.3.24. (See Theorem 3.10 and Theorem 3.11 in [1].)

2.3.4 A first general result

Theorem 2.3.32. If L̃f is a unit in Z/pnZ[GL] then Self,n(L)∨ is trivial.

Proof. Since L̃f is a unit in Z/pnZ[GL] then for all n-admissible prime ` the
class δ`(κ(`)) generates H1

sing(L`, Tf,n). By proposition 2.3.11 the maps

η` : H1
sing(L`, Tf,n)→ Self,n(L)∨

are trivial for all n-admissible primes.
Suppose that Self,n(L) is not trivial. By Propositions 2.3.23 and 2.3.25,

we may find an element x of

Self,n(L) ∩H1(K,Tf,1).

By Proposition 2.3.24, there exists an n-admissible prime ` such that
v`(x) 6= 0 and δ`(x) = 0. Let x∨ be a generator of H1

sing(K`, Tf,n) that

we see as (x∨, 0..., 0) inside H1
sing(L`, Tf,n). By the choice of `, we have

η`(x∨)(x) =< x∨, x >` 6= 0, a contradiction with η` = 0.

2.3.5 Results in the tensor product with principal local rings

In this subsection we prove the following theorem:

Theorem 2.3.33. For all n and all surjective morphisms ϕ : Zp[G] → R,
where R is a local principal ring, L̃f satisfies:

ϕ(L̃f )2 belongs to FittR(Self,n(L)⊗ϕ R).

For now one, fix such a surjective morphism ϕ : Zp[G] → R, let π be a
uniformizer of R. Let denote e = ordπ(p) and

tf = ordπ(ϕ(L̃f )).

We prove the Theorem 2.3.33 by induction on tf and on the size of

Self,n,ϕ := Self,n(L)⊗ϕ R.
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Proposition 2.3.34. If tf = 0 then Self,n,ϕ is trivial

Proof. Write L̃f = h(g)(g − 1) + val(f). Since ϕ sends IG to (π) ⊂ R, the
nullity of tf implies that val(f) 6= 0 (mod p) and that L̃f is a unit. The
proposition follows then from Proposition 2.3.32.

For the general case, let ` be any n + tf -admissible prime and enlarge
{`} to an n-admissible set. By corollary 2.3.27, we can consider the class

κ(`) ∈ H1
` (L, Tf,n+tf ) ⊂ H1

S(L, Tf,n).

By Proposition 2.3.21, M := H1
S(L, Tf,n+tf )⊗ϕ R is a free module over

R/πm for some m. Consider κϕ(`) the image of κ(`) ∈M. By construction,

ordπ(κϕ(`)) 6 ordπ(δ`(κϕ(`)) = ordπ(L̃f ),

so that t := ordπ(κϕ(`)) 6 tf . Choose an element κ̃ϕ(`) ∈M such that

πtκ̃ϕ(`) = κϕ(`).

The element κ̃ϕ(`) is only defined up to πt torsion. To remove this ambiguity,
we consider κ′ϕ(`) under the natural homomorphism:

H1
S(L, Tf,n+tf )⊗ϕ R → H1

S(L, Tf,n)⊗ϕ R.

Lemma 2.3.35. The class κ′ϕ(`) enjoys the following properties:
1. ordπ(κ′ϕ(`)) = 0.
2. δq(κ

′
ϕ(`)) = 0, for all q - `N .

3. v`(κ
′
ϕ(`)) = 0.

4. ordπ(δ`(κ
′
ϕ(`))) = tf − t.

Let Π be the set of rational primes ` that satisfy:
1. ` is an n+ tf admissible prime.
2. The quantity t = ordπ(κϕ(`)) is minimal among the primes satisfying

condiction 1.

Lemma 2.3.36. If Self,n(L) is not trivial, one has t < tf .

Proof. By Propositions 2.3.23 and 2.3.25, we may find an element x of

Self,n(L) ∩H1(K,Tf,1).

By Proposition 2.3.24, let ` be an n−admissible prime such that v`(x) 6= 0
and δ`(x) = 0. Recall that under theses identifications, for all n-admissible
prime q, xq can be written

pn−1(
∑
g∈G

g)sq
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where sq is an element of H1(Lq, Tf,n) and by the choice of ` then s` can be
taken as a generator of H1

f (Lλ, Tf,n) ⊂ H1
f (L`, Tf,n) when λ|`.

We remark now that for any n-admissible prime q, if

y ∈ ker(H1(Lq, Tf,n)→ H1(Lq, Tf,n)⊗R),

then
< xq, y >q= 0.

Indeed ker(ϕ) is contained in the maximal ideal < IGL , p >. So y is the
sum

∑
g∈GL(g − 1)yg + py0 where yg, y0 are elements of H1(Lq, Tf,n). By

summing all the elements together:

< xq, y >q =< xq,
∑
g∈GL

(g − 1)yg + py0 >q

=
∑
g∈GL

< (g − 1)xq, yg) >q +pn < xq, y0 >q

= 0.

Suppose that t = tf :
Let r ∈ Z[GL] such that

r.δ`(κϕ(`)) = s∨` ⊂ H1
f (L`, Tf,n)⊗R,

where
s∨` satisfies < s∨` , s` >= 1.

Denote y := r.κϕ(`) and let ỹ be a preimage of x in H1
S(L, tf,n). We have

< x, ỹ >= 0 by global Tate duality. On the other hand, by the previous
remark < x, ỹ >=< x`, ỹ` >`= 1 a contradiction.

Lemma 2.3.37. For all `1 ∈ Π, there exists `2 in Π such that:

ordπ(v`2(κϕ(`1))) = ordπ(v`1(κϕ(`2))) = ordπ(ϕ(Lg)) = t,

where g is the eigenform associated to the pair (`1, `2) in Theorem 2.3.28.

Proof. Consider s the image of κ′(`1) in H1
S(K,Tf,1)⊗ϕR/(π). By Lemma

2.3.35, this image is non zero. Let s̃ be a preimage of s in H1
S(K,Tf,1) and

by Theorem 2.3.24, let `2 be a n−admissible prime such that v`2(s̃) 6= 0.
We prove now that `2 satisfies the condictions of Lemma 2.3.38.

The three first equalities follow from the symmetry in Theorem 2.3.29.
We need to prove the last equality relative to t.

Denote F = R/(π) and consider the following diagram:
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H1
S(L, Tf,n+tf )⊗ϕ R //

v`2
��

H1
S(L, Tf,1)⊗ϕ F

Cores // H1
S(K,Tf,1)⊗ϕ F

v`2
��

H1
f (L`2 Tf,n+tf )⊗ϕ R // H1

f (L`2 Tf,n)⊗ϕ R Res // H1
f (K`2 , Tf,1)⊗ϕ F

κ̃ϕ(`1) //

v`2
��

κ′ϕ(`1) (mod π) // s

v`2
��

v`2(κ̃ϕ(`1)) // v`2(κ′ϕ(`1)) // val(κ′ϕ(`1)) 6= 0

The fact that val(κ′ϕ(`1)) 6= 0 follows directly from the choice of `2 and
it shows that ordπ(v`2(κ′ϕ(`1))) = 0 and ordπ(v`2(κϕ(`1))) = t.

As mentioned earlier, in order to use induction, one needs a rigid pair
(`1, `2) satisfying the previous lemma. The existence of such pairs is given
by the following lemma:

Lemma 2.3.38. There exist a rigid pair (`1, `2) satisfying the relations of
Lemma 2.3.37

Proof. This is Lemma 4.9 in [1]. The proof follows from the fact that we
can find sufficiently many rigid pair as mentioned in the discussion after the
Proposition 2.3.31.

Let (`1, `2) be a rigid pair of elements in Π that satisfies

ordπ(v`2(κϕ(`1))) = ordπ(v`1(κϕ(`2))) = ordπ(ϕ(Lg)) = t,

where g is the modular form attached to the pair (`1, `2) in Proposition
2.3.28. By construction, we have tg = t < tf .

Consider the exact sequence:

0→ Self,n,[`1,`2](L)∨ → Self,n(L)∨ → Sf`1,`2 → 0,

where Self,n,[`1,`2](L) is the set of element x in Self,n(L) satisfying:

x`1 = x`2 = 0.

Locale Tate duality gives a surjection:

η`1,`2 : H1
sing(L`1 , Tf,n)⊕H1

sing(L`2 , Tf,n)→ Sf`1,`2 .

By hypothesis, the map

H1
`1(L, Tf,n)→ H1

`1(L, Tf,n)⊗ϕ R

is surjective and let s be a preimage of κ′ϕ(`1) in H1
S(L, Tf,n).

Considering the following diagram
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H1
S(L, Tf,n)

0 //

��

Self,n(L)∨

��
H1
S(L, Tf,n)⊗ϕ R 0 //

��

Self,n(L)∨ ⊗ϕ R

��⊕
q|S(H1

sing(Lq, Tf,n)⊗ϕ R) // Self,n(L)∨ ⊗ϕ R,

shows that the element (δ`1(κ′ϕ(`1)), 0) is in the kernel of η`1,`2 ⊗R.
By symmetry, the same is true for `2 instead of `1. Using

ordπ(δ`i(κ`i)) = tf − t,

leads to:
π2(tf−t)belongs to the Fitting ideal of Sf`1,`2 ⊗R.

To finish the proof, we show that π2t belongs to the Fitting ideal of
Self,n,[`1,`2](L)⊗R.

Let consider the exact sequence:

0→ Selg,n,[`1,`2](L)∨ → Selg,n(L)∨ → Sg`1,`2 → 0,

where f has been replaced by g. The following isomorphism holds naturally:

Selg,n,[`1,`2](L)∨ ' Self,n,[`1,`2](L)∨.

Locale Tate duality gives a surjection:

η′`1,`2 : H1
fin(L`1 , Tf,n)⊕H1

fin(L`2 , Tf,n)→ Sg`1,`2

and by the same reasoning as before, the elements

x1 := (v`1(κ′ϕ(`2)), 0) and x2 := (0, v`2(κ′ϕ(`1)))

belong to the kernel of η′`1,`2 ⊗R. But since x1 and x2 generate

(H1
fin(L`1 , Tf,n)⊕H1

fin(L`2 , Tf,n))⊗ϕ R,

we have
Sg`1,`2 ⊗R is trivial

and
Selg,n,[`1,`2](L)∨ ⊗R = Selg,n(L)∨ ⊗R.

By induction (the justification for using induction is explained at the
end of the proof in Proposition 2.3.39)

π2tg belongs to the Fitting ideal of Selg,n(L)∨ ⊗R.
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Finally,

π2tf = π2(tf−tg)π2tg

∈ FittR(Sf`1`2)FittR(Sel∨g,n ⊗R)

= FittR(Sf`1`2)FittR(Sel∨g,n,[`1`2] ⊗R)

⊆ FittR(Sel∨f,n ⊗R),

where the last equality comes from the well-known properties of the Fit-
ting ideal towards short exact sequence. (The definition and some basic
properties of Fitting ideals can be found in [10] XIX §2.)

�

Proposition 2.3.39. The lift g̃ of g satisfies assumptions 2.3.2.

Proof. Assumption 1. is trivially satisfied. By Theorem 5.17 in [1], the
Galois representations Tf,n and Tg,n are isomorphic. From this, assumption
4. is immediate. Assumptions 2. and 5. also follow from this isomorphism
and the fact that p doesn’t divide `i + 1 (see in addition the discussion after
the assumptions 2.3.2 for 5.) Finally assumption 3. follows from Proposition
2.3.31.

2.4 The case of elliptic curves over Q

For this section, fix E an elliptic curve over Q without complex multipli-
cation and with associated eigenform f . We put all the pieces together of
section 1 and 2 to formulate a theorem that relates the rank rE of E over K
and the order of vanishing of the theta elements. For the notation, denote
d :=< Df , Df >, where < Df , Df > is defined in subsection 2.2.2.

Let fix an order Oc of conductor c prime to N.D and let denote

G = Pic(Oc).

Let Mc be the product of all primes dividing #G that don’t satisfy
assumption 2.3.2. As a remark, if

c =
∏
i

`nii ,

then
#G =

∏
i

(`i − ε(`i))`ni−1
i #Pic(OK).

The fact that almost all ordinary primes satisfy assumption 2.3.2 assure that
we can find c such that M is not too “big”.
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Theorem 2.4.1. For all p -Mcd and all surjective morphisms

ϕ : Zp[G]→ R,

where R is a principal local ring with uniformizer π,

ϕ(Θ(Oc, E)) belongs to (ϕ(IG))rE .

Proof. Fix a prime p that doesn’t divide Mc.d and a surjective morphism

ϕ : Z[
1

Df
][G]→ R,

where R is a principal local ring with uniformizer π.
By Theorem 2.3.33, we have:

ϕ(Θ(Oc, E)) belongs to FittR(Self,n(L)∨ ⊗ϕ R),

and we want to prove that

FittR(Self,n(L)∨ ⊗ϕ R) ⊂ (π)rE .

The Kummer map gives an injection:

E(K)/pnE(K) ↪→ Self,n(L).

Since Z/pnZ is an injective Z/pnZ-module, the injection gives a surjec-
tion for the duals:

Self,n(L)∨ � E(K)/pnE(K),

that we can tensor by R over Z/pnZ[G] to get:

Self,n(L)∨ ⊗ϕ R� E(K)/pnE(K)⊗ϕ R.

By the usual properties of Fitting ideals, we have

FittR(Self,n(L)⊗ϕ R) ⊂ FittR(E(K)/pnE(K)⊗ϕ R).

Finally, we have:

FittR(E(K)/pnE(K)⊗ϕ R) = FittR((Z/pnZ))rE ⊗ϕ R)

= FittR((Z/pnZ))⊗ϕ R)rE

= FittR(R/(ϕ(IG)))rE

= (ϕ(IG))rE .

The equality at all levels n, shows the equality in Zp[G].
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Theorem 2.4.2. 1. If Pic(Oc)(p) ' (Z/pZ)np (recall that Pic(Oc)(p) is the
p-part of Pic(Oc)) whenever p -Mc, then:

ordZ[ 1
Mc(rE−2)!

][Pic(Oc)](Θ(E,K,Oc)) > rE .

2. If rE 6 2 then:

ordZ[ 1
Mc

][Pic(Oc)](Θ(E,K,Oc)) > rE .

3. If p doesn’t divide Mc then:

ordFp[Pic(Oc)](Θ(E,K,Oc)) > rE .

Proof. This follows by combining Theorem 2.4.1, Theorem 2.2.22, Theorem
2.2.23, Theorem 2.2.25 and Theorem 2.2.26.
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Appendix

2.A A special case of Theorem 2.4.2

We keep the notation of section 2.3. In this appendix, we deal with the
special case of rE > 1 and we prove that L̃f belongs to IGL ⊂ Zp[GL]. It
is a special case of Theorem 2.4.2 but the following proof doesn’t use any
induction argument, or any morphism ϕ so that the Euler system argument
appears clearer.

Lemma 2.A.1. Suppose that rk(E(K)) > 1, then for all n, there exists
s ∈ Self,n(K) such that s has order exactly pn.

Proof. We use the short exact sequence

0→ E(K)[pn]→ E(K)→ E(K)→ 0.

Taking the associated exact sequence in cohomology leads to the injec-
tion

E(K)/pnE(K) ↪→ Self,n(K).

If rk(E(K)) > 1, then we have at least one element of order exactly pn in
E(K)/pnE(K) and the result follows.

Theorem 2.A.2. Suppose that the rank of E(K) is greater than one, then
L̃f belongs to IGL ⊂ Zp[GL].

Proof. Fix n > 0. By Lemma 2.A.1, we take x ∈ Self,n(K) with order ex-
actly pn.Choose S an n-admissible set and ` ∈ S such that x` ∈ H1

f (K`, Tf,n)
has order exactly pn. Such an ` exists by part 2. of Definition 2.3.19 and
Proposition 2.3.20. Denote s the image of x in Self,n(L). By Proposition
2.3.22, it has order exactly pn and is invariant by GL. By Lemma 2.3.15
and local Tate duality, we have for all κ ∈ H1

sing(L`, Tf,n):

< κ, s >`≡ val(κ)[pn] up to multiplication by an element of (Z/pnZ)∗,

where κ is seen as an element of Z/pnZ[GL].
Let κ(`) be the class constructed in Theorem 2.3.27, then by global Tate

duality:
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∑
q

< κ(`)q, sq >q= 0.

By construction,∑
q

< κ(`)q, sl >q=< κ(`)l, s` >`= val(L̃f ) ≡ 0[pn].

Finally, val(L̃f ) ≡ 0[pn] for all n ≥ 1, which shows that val(L̃f ) = 0 and
that L̃f belongs to IGL ⊂ Zp[GL].
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Further directions

This work raises as many (and perhaps, more) questions as
it settles, of which we now describe a few.

At first, one could try to develop tools to understand objects
in the group rings Z[G]. In our case, we are able to understand
the properties of the image of the theta elements in principal
local ring but we fail to transpose all these properties for the
initial theta elements in the group ring Z[G]. To overcome this
difficulty, one could maybe work directly with the modules over
the group rings (and not with the tensorisation with the rings
R) and use the induction directly at this level. One could also
try to use a Iwasawa type argument adapted to the case of group
ring. This last idea is still very vague but echoes with the now
famous patching technique of Taylor-Wiles.

A second and natural continuation would be to try to treat
all the primes p indifferently and not only almost all ordinary
primes. The case of ordinary primes that do not satisfy assump-
tion 2.3.2 seems to be purely technical. The same arguments
seem to be doable in this case but at the price of more compli-
cated and tedious proofs. The case of supersingular primes raises
a more conceptual question. The problem here is to define an
appropriate local condition at p for H1(Lp, Tf,n) such that the
resulting subgroup is selfdual with respect to the local Tate pair-
ing and such that it contains the p-localization of the classes κ(`)
defined in Theorem 2.3.26. A definition of such a local condition
using Dieudonné modules and Fontaine’s theory can be found in
[6] for special cases of supersingular prime. To be precise, a key
argument would be to generalize the Theorem 3.10 of [6]. As a
final remark on this specific topic, there is no need to define a
local condition for all the n-admissible primes but for sufficiently
many n-admissible primes where the word “sufficiently” has to
be taken as in Theorem 2.3.24.

Thirdly, one may try to refine the lower bound rΘ of the order



of vanishing of our theta elements. The question is to understand
if our lower bound is sharp. It seems that it isn’t and that we
can refine Conjecture 2.1.1 to incorporate the rank of E twisted
by K. The construction of Θ(E,K,O) (as the construction of
the L-function that it interpolates) really depends on the field
K and it would be surprising indeed that its order of vanishing
only depends on E. The refinement is for instance treated for
ordinary primes in the setting of Iwasawa algebras in section 4
of [2], or also in [3] and [4]. The present author thinks that such
a refinement shouldn’t raise any major issues in the settings of
ordinary primes but it still needs to be done.

The conjectures and theorems given in this paper deal with
lower bound of the order of vanishing rΘ of our theta elements.
Ultimately, one could wish to understand precisely the value of
rΘ. In order to do so, one could try to give the reverse inequal-
ity and study upper bounds of rΘ. The use of Euler system
argument would be useless there since Euler system arguments
can only be used to bound the size of modules from above and
not the opposite. Nevertheless, recent works of W.Zhang and
Skinner-Urban seem to be fruitful for this kind of questions and
give hope to formulate a precise theorem for the values of rΘ

([22],[26]). One may try in particular to adapt the methods of
W.Zhang in [27] where the converse equality seems to be treated
in the case where N− is the squarefree product of an even num-
ber of primes. An even further step would be then interesting to
understand the image of our theta elements in IrΘG /IrΘ+1

G (the
so-called leading terms).
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