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Abstract

The unifying theme of the thesis is the arithmetic of elliptic curves, more specifically the con-
jecture of Birch and Swinnerton-Dyer and its generalizations. This subject leverages different
aspects of number theory, arithmetic geometry and representation theory, including auto-
morphic representations, Shimura varieties, p-adic modular forms and p-adic L-functions.
Simply put, the BSD-conjecture claims the equality of the analytic and the algebraic rank of
an elliptic curve. A tantalizing aspect of the conjecture is its offering very subtle information
– that goes beyond the Sato-Tate conjecture – on how the size of rational points influences,
and is influenced by, the distribution of the number of mod ` points, for all rational primes
`. In the past 50 years gifted mathematicians have done gorgeous work establishing the first
cases of the BSD-conjecture ([CW77], [GZ86], [Kol88]), and the intertwining of p-adic meth-
ods with Euler systems has become more and more widespread ([Kat04], [LLZ14], [DR17a]),
providing a deeper understanding of the objects involved. The work in this thesis is part of
this growing thread of investigation.

The idea of this project rests on the exploration of a twisted variant of the setting studied
in [DR14],[DR17a] and [DR17b], with an emphasis on understanding the relation between
twisted triple product L-functions and Hirzebruch-Zagier cycles. After a brief introduction,
Chapter 1 [For19] investigates twisted triple product L-functions with applications to arith-
metic statistics. By solving a class of Galois embedding problems over totally real fields, it
demonstrates that the analytic rank of a modular elliptic curve of odd non-square conductor
grows over a positive proportion of quintic extensions.

Chapter 2 [For17] comprises the construction of twisted triple product p-adic L-functions
over totally real fields for nearly ordinary Hida families. When L/Q is a real quadratic field
and p splits in L, a p-adic Gross-Zagier formula expresses values of the p-adic L-functions
that are outside the range of interpolation, in terms of the syntomic Abel-Jacobi map of gen-
eralized Hirzebruch-Zagier cycles. Novel ideas appear in the treatment of compactifications
of Kuga-Sato varieties using Wildeshaus’ work on the interior motive [Wil12], and in the
choice of the Coleman primitive for the evaluation of the syntomic regulator.

The final chapter of the dissertation features a preview of a work in progress joint with
Zhaorong Jin (Princeton) bringing to fruition the preceding pieces. When p splits in the real
quadratic field L, we expect to provide a geometric construction of twisted triple product p-
adic L-functions using big Hirzebruch-Zagier classes. This geometric construction, together
with [For19], should lead to new instances of the BSD-conjecture in rank 0 for rational elliptic
curves over certain quintic number fields whose normal closure has Galois group S5.
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Abrégé

Le thème unificateur de la présente thèse est l’arithmétique des courbes elliptiques, et de
manière plus précise la conjecture de Birch et Swinnerton-Dyer ainsi que ses généralisations.
Ce sujet fait interagir plusieurs aspects de la théorie des nombres, la géometrie arithmétique
et la théorie de la représentation, y compris les représentations automorphes, les variétés
de Shimura, les formes modulaires p-adiques et les fonctions L p-adiques. Dit de manière
simple, la conjecture BSD prédit l’égalité des rangs analytiques et algébriques d’une courbe
elliptique. Un aspect captivant de la conjecture est le fait qu’elle offre de l’information subtile
– allant plus loin que celle offerte par la conjecture de Sato-Tate – permettant d’expliquer
comment le nombre de points rationnels influence, et est influencé par, la distribution du
nombre de points modulo `, pour tout nombre premier `. Durant les dernières 50 années, de
talentueux mathématiciens ont établis les premiers cas connus de la conjecture BSD ([CW77],
[GZ86], [Kol88]), et la combinaison de méthodes p-adiques avec la théorie des systèmes
d’Euler est devenue de plus en plus répandue ([Kat04], [LLZ14], [DR17a]), ouvrant les portes
à une compréhension plus profonde des objets en question. Le travail de la présente thèse
s’insère dans le courant de ces idées.

L’idée derrière le projet repose sur l’étude d’une variante tordue de la situation étudiée
dans [DR14],[DR17a] and [DR17b], en mettant l’accent sur le rapport entre les fonctions L
associées au triple produit tordu et les cycles de Hirzebruch-Zagier.

Après une brève introduction, le chapitre 1 [For19] étudie les fonctions L associées au
triple produit tordu et leurs applications en statistique arithmétique. En résolvant une suite
de problèmes de plongement sur des corps totalement réels, il est démontré que le rang
analytique d’une courbe elliptique modulaire de conducteur impair et non égal à un carré
parfait croît sur une proportion positive d’extensions quintiques.

Le chapitre 2 [For17] comprend la construction de fonctions L p-adiques associées au
triple produit tordu sur des corps totalement réels pour des familles de Hida presque ordi-
naires. Lorsque L/Q est un corps quadratique réel et p est un nombre premier déployé dans
L, une formule de Gross-Zagier p-adique exprime les valeurs des fonctions L p-adiques en
dehors de la région d’interpolation classique en termes des images par l’application d’Abel-
Jacobi syntomique de cycles de Hirzebruch-Zagier généralisés. Des idées nouvelles intervi-
ennent lors du traitement de la compactification de variétés de Kuga-Sato faisant recourt au
travail de Wildeshaus sur le motif intérieur [Wil12], ainsi que lors du choix de la primitive
de Coleman pour l’évaluation du régulateur syntomique.

Le chapitre final de la thèse donne un aperçu sur un travail en cours en collaboration avec
Zhaorong Jin (Princeton), qui représente l’aboutissement des travaux des deux chapitres
précédents. Lorsque p est déployé dans le corps quadratique réel L, nous prévoyons donner
une construction géometrique des fonctions L p-adiques associées au triple produit tordu
faisant usage de grandes classes de Hirzebruch-Zagier. Cette construction géometrique,
combinée avec [For19], donnera lieu à de nouveaux cas de la conjecture BSD en rang 0 pour
des courbes elliptiques rationelles pour certains corps de nombres S5-quintiques.
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Preface

Why algebraic number theory? I like to think about myself as a number theorist of the
algebraic clan. I have not always thought about myself this way. At the end of my under-
graduate studies I was attracted to abstract and geometric-flavored mathematics, and thus I
had decided I wanted to do derived algebraic geometry1. Afterwards, the opportunity to earn
Masters degrees in Montréal and Paris made enroll in the ALGANT2 program. What I did
not know at the time was that ALGANT in Montréal meant NT and that Number Theory
is actually a subject one can do research on! The first semester in Montréal was a cultural
shock: I thought I knew what mathematics was all about, but people there were always
talking about elliptic curves3, modular forms and L-functions, all words I had never heard
of. Luckily, after a while I decided to give it a chance and I became fascinated: I discovered
that Number Theory is a field of research that satisfies my attraction to abstraction, general-
ity and all-encompassing powerful results as well as the desire for concrete statements and
examples that are easy to share with friends. Number Theory welcomes and needs tools
and insights from all fields of mathematics, and it is incredibly satisfying to find connections
between seemingly unrelated concepts.

Why elliptic curves? The quest for understanding the arithmetic of elliptic curves has
been guided my efforts since the beginning of my doctorate. I chose this topic for simple rea-
sons: the open problems are easy to appreciate, and I love the tools and the techniques that
have been most successful in understanding them so far. Furthermore, classical elementary
problems in Number Theory, like Fermat’s Last Theorem and the Congruent Number Prob-
lem, can be better understood using elliptic curves. Indeed, a non-trivial rational solution
of the Fermat equation xn + yn = zn for n ≥ 3 produces an elliptic curve that cannot exist,
while an integer m is congruent, i.e. it is the area of a right triangle with rational sides, if and
only if the elliptic curve y2 = x3 −m2x has algebraic rank greater than or equal to one.

I recently learned how powerful elliptic curve cryptography (ECC) is, and I will defintely
use this application to explain what I work on to people. Cryptographic protocols are used to
secure our transactions and the protocol’s key length is a crucial parameter that determines
processing performance and security level. In general, long keys provide high security, but
slow down encryption and decryption of data. Hence, for commercial purposes one looks
for the best trade-off: protocols that offer high security with short keys. To have a feeling
of how good elliptic curve cryptography is, let us compare the famous RSA protocol, based
on the factorization of large integers, and an encryption based on elliptic curves using a 228-
bits key. It turns out that the energy required to break a 228-RSA code wouldn’t even boil
a teaspoon of water; however, to break a 228-ECC code with the current approaches one
would need the energy to boil all the water on the planet!

1Even though I still do not know what it is.
2ALgebra, Geometry And Number Theory.
3I still remember thinking how lame it was to be studying "just" curves!
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Introduction

Let K be a number field. A K-rational elliptic curve E/K is a genus one, smooth and projective
curve over K with a choice of K-rational point P0 ∈ E(K). Every elliptic curve over K can be
described by a Weierstrass equation

E/K : y2 = x3 + Ax + B A, B ∈ OK (1)

where ∆E/K = −16(4A3 + 27B2) 6= 0 and P0 is taken to be the point at infinity in the projec-
tivization. One unique feature of elliptic curves is their being endowed with a commutative
group structure which can be geometrically defined by stating that three points on the curve
sum to zero if and only if they belong to the same line.

Rational points on curves

The understanding that a curve’s topology strongly influences its arithmetic dates back at
least to 1922 when Mordell formulated his renowned conjecture. The C-points of a smooth
and projective curve defined over a number field K constitute a Riemann surface. Its genus,
i.e. the number of doughnut holes, determines a trichotomy in the structure of K-rational
points. Firstly, Hilbert and Hurwitz [HH90] proved that the K-rational points of a genus
zero curve can be explicitly parametrized so there are either no such points or infinitely
many. Secondly, for curves of genus greater than or equal to two, Faltings proved Mordell’s
intuition right [Fal83], that is to say that those curves can only have finitely many K-rational
points. It is still an open and actively researched problem to make Faltings’ theorem effec-
tive. Thirdly, genus one curves can exhibit both finitely many or infinitely many K-rational
points. In this case, the effective enumeration of such points relies on the BSD-conjecture.

Even though the set of K-rational points E(K) of an elliptic curve can be infinite, it is
always a finitely generated abelian group. Simply put, finitely many solutions of equation
(1) suffice to compute all the other ones by means of the geometric summation law described
above. Therefore, there is an isomorphism of abstract groups

E(K) ∼= Zr ⊕ E(K)tor for some r ∈N,

allowing the definition of the algebraic rank of E/K as ralg(E/K) := r, the maximal number
of linearly independent K-rational points on E/K. The torsion subgroup E(K)tor is relatively
well-understood. Mazur [Maz77] and Merel [Mer96] showed that there are only finitely
many possibilities for the torsion subgroup of a K-rational elliptic curve given K. Moreover,
there has been recent interest in providing complete lists of the possible torsion subgroups
in a number of cases ([Dan+18], [Cho+18]), both for the natural appeal of the question and
for applications to modularity of elliptic curves over general number fields [Tho19].
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One big remaining mystery of the arithmetic of elliptic curves is the algebraic rank, which
can divide opinions even when K = Q. For instance, how large can the rank of a rational
elliptic curve be? Both options, boundedness or unboundedness of ranks, have good argu-
ments in their favor. On the one hand, there has been a recent revival of the boundedness
hypothesis in [Par+18], where a reasonable model predicts that all but finitely many rational
elliptic curves have rank ≤ 21. On the other hand, unboundedness of ranks has been shown
for elliptic curves over function fields ([TS67], [Ulm02]) providing a good reason to remain
undecided.

BSD-conjecture

The question of effectively determining the set of K-rational points of an elliptic curve has a
widely accepted conjectural answer: the BSD-conjecture [Ste]. The formulation of the con-
jecture dates back to the 1960s, when Birch and Swinnerton-Dyer experimentally noticed
a remarkable relation between the algebraic rank of an elliptic curve and a multiplicative
average of its number of points over different finite fields.

More precisely, given a K-rational elliptic curve E/K, for every primeOK-ideal q such that
q - ∆E/K, one can reduce the Weierstrass equation of E modulo q to obtain an elliptic curve
Ē/Fq

over the residue field Fq = OK/q. Every such curve is much simpler than the original
one: for instance, there is a polynomial time4 algorithm5 [Sch85] that computes the number
Nq(E) := |Ē(Fq)| of points modulo q. Heuristically, one could expect that a large algebraic
rank would force the sets Ē(Fq) to be larger on average because there are natural reduction
maps E(K)→ Ē(Fq) for all q - ∆E/K. Birch and Swinnerton-Dyer turned this heuristic into a
quantitative mathematical statement and tested it successfully on a computer. They noticed
that an appropriately normalized product of Nq(E)’s grows as the ralg(E/K)-th power of
log,

∏
NK/Q(q)≤T

Nq(E)
NK/Q(q)

?∼+∞
(

log T
)ralg(E/K). (2)

Actually, (2) implies what is usually called the BSD-conjecture these days [Gol82], but it has
the advantage of being more immediate and easier to appreciate. The modern point of view
on the BSD-conjecture relies on the analytic properties of an L-function that can be associated
to an elliptic curve as follows. The quantities aq(E) := NK/Q(q)+ 1− |Ē(Fq)| for all q - ∆E/K

can be packaged into a generating series

LS(E/K, s) = ∏
q-∆E/K

(
1− aq(E) ·NK/Q(q)

−s + NK/Q(q)
1−2s

)−1

which converges for Re(s) � 0 and defines a holomorphic function on a half-plane. Af-
ter an appropriate "completion", the function LS(E/K, s) is expected to admit holomorphic
continuation to the whole complex plane and a functional equation s 7→ 2 − s. There-
fore, assuming holomorphic continuation, it is possible to define the analytic rank of E/K

as ran(E/K) := ords=1LS(E/K, s) and phrase the BSD-conjecture as predicting the equality
of the two ranks:

4In the variable log NK/Q(q).
5Schoof discovered his algorithm after the formulation of the BSD-conjecture. Birch and Swinnerton-Dyer per-

formed their computations on rational CM elliptic curves whose number of points mod q can be quickly computed
using Hecke characters.
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ran(E/K) ?
= ralg(E/K). (3)

State of the art

The most general result towards the BSD-conjecture follows from the methods of Gross-
Zagier [GZ86] and Kolyvagin [Kol88], as extended to totally real fields by Shouwu Zhang
and his school [Zha01]. The theorem states that if E/F is a modular elliptic curve over a
totally real field F such that either E/F has at least one prime of multiplicative reduction or
[F : Q] is odd, then

ran(E/F) ∈ {0, 1} =⇒ ran(E/F) = ralg(E/F). (4)

It is important not to forget that the modularity of E/F is the only known way to access the
analytic properties of the L-function L(E/F, s). This way, it becomes natural to expect that
cycles on Shimura varieties will play a role in any strategy to establish the BSD-conjecture.

The three pillars of this approach are: (i) the existence of a non-constant map X/F → E/F

from a Shimura curve to the elliptic curve, (ii) the existence of CM points on X/F with their
significance for Selmer groups, and (iii) formulas for the derivative of certain base-change
L-functions of E/F in terms of the height of images of CM points, called Heegner points.
These three items are at the same time the strengths and the limitations of the most effective
strategy developed so far to prove BSD. Firstly, the strong form of geometric modularity in
(i) can only be realized for certain elliptic curves over totally real fields, hence the first pillar
topples down right away when considering elliptic curves defined over general number
fields6. Secondly, suppose we fixed an elliptic curve over a totally real field F and we took
a finite extension K/F; what could then one say about the BSD-conjecture for E/K? In this
case, even though there could still be a modular parametrization, one would lack a way to
produce points over extensions of a general K. Indeed, Heegner points are defined over
dihedral extensions of F, and therefore miss all non-solvable extensions. Finally, what if we
contented ourselves with tackling the BSD-conjecture over totally real fields? In this case all
the pillars could still be standing, but the last two would have nothing to say about higher
rank situations. The striking feature of CM points is their explicit relation to first derivative
of L-functions; thus, as soon as the rank is greater than or equal to two, they become torsion.

The equivariant BSD-conjecture

The line of inquiry followed in this thesis is motivated by the equivariant refinement of the
BSD-conjecture. Let F be a totally real field and K/F a finite Galois extension. For any
elliptic curve E/F, the Galois group G(K/F) naturally acts on the C-vector space E(K)⊗ C

generated by the group of K-rational points. Since complex representations of finite groups
are semisimple, the representation E(K) ⊗ C decomposes into a direct sum of $-isotypic
components E(K)$ = HomG(K/F)($, E(K)⊗C), indexed by irreducible representations $ ∈
Irr
(
G(K/F)

)
, each with its appropriate multiplicity. It then becomes natural to define the

algebraic rank of E with respect to some $ as

ralg(E, $) := dimC E(K)$.

6However, as Longo showed [Lon06], a lot can be proved using congruences for general rank zero elliptic curves
over totally real fields.
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On the analytic side, for any $ ∈ Irr
(
G(K/F)

)
one can define a twisted L-function L(E, $, s)

as the L-function associated to the Galois representation Vp(E)(1)⊗ $ of the absolute Galois
group of F. The analytic rank of E with respect to some $ is then defined as

ran(E, $) := ords=1L(E, $, s).

The Artin formalism of L-functions can be used to show that the BSD-conjecture for an el-
liptic curve E/F base-changed to K should be equivalent to the equality of ranks

ralg(E, $)
?
= ran(E, $) for all $ ∈ Irr

(
G(K/F)

)
.

The advantage of this point of view resides in the fact that it splits the BSD-conjecture into
more manageable pieces. Furthermore, when the considered representation $ arises from au-
tomorphic forms, it becomes easier to identify the right framework that should be explored
in order to prove the equality of the ranks.

Indeed, Bertolini, Darmon and Rotger [BDR15] proved new instances of the equivari-
ant BSD-conjecture in rank zero for rational elliptic curves in the case of $ an Artin repre-
sentations corresponding to a weight one elliptic cuspform. When $ is the tensor product
of two Artin representations attached to weight one elliptic cuspforms, Darmon and Rot-
ger [DR17a] established the first cases of the BSD-conjecture in rank zero for rational el-
liptic curves over non-solvable extensions of Q. In the same paper, Darmon and Rotger
pushed their ideas further to provide compelling evidence that generalized Kato classes –
constructed from diagonal cycles on triple products of modular curves – can be used to ac-
cess scenarios in which the involved elliptic curves have rank two. It is very exciting to read
the recent preprint [CH18], where Castella and Hsieh gather even more evidence in sup-
port of the relation between generalized Kato classes and elliptic curves of rank two over
quadratic imaginary fields.

The theme of p-adic deformation

Recently Skinner-Urban [SU14], Xin Wan [Wan12] and Skinner [Ski14] were able to establish
the first instances of the opposite implication of the BSD-conjecture

ralg(E/Q) ∈ {0, 1} & #X(E/Q) < +∞ =⇒ ran(E/Q) = ralg(E/Q), (5)

for any rational elliptic curve E/Q in the rank zero case, and for semistable rational elliptic
curves with either at least one odd prime of non-split multiplicative reduction or at least two
odd primes of split multiplicative reduction, in the rank one case. The strength of the three
works resides in the use of Iwasawa theory7: for the rank zero case the non-vanishing of a
p-adic L-function directly implies that the analytic rank is zero. For the rank one case, Iwa-
sawa theory is used more subtly to establish that a Heegner point is non-torsion, so that the
Gross-Zagier formula itself implies that the analytic rank is one. Interestingly, implication
(5) heavily relies on p-adic methods that were not necessary for the method of Gross-Zagier
and Kolyvagin (4), and indeed, in recent years, the theme of p-adic deformation has become
dominant in the field.

7The idea of exploiting p-adic variation of arithmetic objects can be traced back to the seminal work of Coates
and Wiles [CW77] on rank zero CM elliptic curves.
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On p-adic Gross-Zagier formulas

As we have seen, the relation between the analytic and the algebraic rank of elliptic curves
does not seem to be easy to establish in the general case. The insight behind recent successful
ideas is that p-adic methods can serve as the third leg of the stool: special values of auto-
morphic L-functions can be interpolated, determining p-adic meromorphic functions which
sometimes can be shown to arise from algebraic cycles. This double embodiment of p-adic
L-functions, both analytic and geometric, can be used to transform information on special
L-values into information on the arithmetic of algebraic varieties over number fields. One
crucial step in exposing the dual nature of p-adic L-functions resides in the proof of p-adic
Gross-Zagier formulas, i.e. the evaluation of p-adic L-functions outside their range of inter-
polation in terms of global arithmetic invariants. With the benefit of hindsight, we can trace
back the origin of these formulas to Leopoldt’s p-adic class number formula:

Theorem 0.0.1. ([Was97], Theorem 5.18) Let χ be an even non-trivial Dirichlet character of con-
ductor f and ζ a primitive f-th root of unity, then

Lp(1, χ) = −
(

1− χ(p)
p

)
τ(χ)

f

f

∑
a=1

χ(a)−1 logp
(
1− ζa),

where τ(χ) = ∑f
a=1 χ(a)ζa is a Gauss sum.

The range of interpolation of Kubota-Leopoldt’s p-adic L-function Lp(s, χ) is the set of
non-positive integers, and the formula expresses the value at s = 1 in terms of p-adic log-
arithms of cyclotomic units. Since then, several instances of such formulas have had a pro-
found impact in the understanding of the arithmetic of elliptic curves. For example, the
BDP-formula [BDP13] by Bertolini, Darmon and Prasanna, generalizing previous work of
Rubin [Rub92], is a cornerstone of Skinner’s proof of (5) in the rank one case.

The p-adic Gross-Zagier formula proved in this thesis is part of a program initiated by
the work Bertolini, Darmon and Rotger, whose aim is to explore new instances of the equiv-
ariant BSD-conjecture: it uses higher rank groups and the corresponding higher dimensional
Shimura varieties to go beyond the arithmetic of elliptic curves over dihedral extensions of
totally real fields.
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Chapter 1

Growth of analytic rank over
quintic extensions

We have seen how the BSD-conjecture can be thought of as highlighting a statistical property
of a single elliptic curve viewed over an infinite collection of finite finite fields, but what
happens when we consider families? A very natural question in this context is to wonder
about the "probability" that a given rational elliptic curve has rank n ∈ N. The general
belief is that the distribution of ranks should be the minimal one allowed by the distribution
of signs of the functional equations [Bek+07]; for instance, it is conjectured that 50% of all
rational elliptic curves should have rank 0 and 50% should have rank 1. Recently, Bhargava
and Shankar [BS13] established that at least 83.75% of all rational elliptic curves have rank 0
or 1.

In this chapter we consider modular elliptic curves E/F over a totally real field F and we
to try to shed some light on the distribution of analytic ranks in the family of base-changes
of E/F to quintic extensions of F. We were led to consider this setting by studying twisted
triple product L-functions attached to E/F and a Hilbert cuspform of parallel weight one for
a totally real quadratic extension L/F. Inspired by [DR17a], we hoped the twisted setting
could help us access the arithmetic of elliptic curves over non-solvable extensions in settings
when the sign of the functional equation is generically odd. We denote by G5(E/F; X) the
number of quintic extensions K of F such that the norm of the relative discriminant is at most
X and the analytic rank of E grows over K, i.e., ran(E/K) > ran(E/F). We can then prove
the following theorem.

Theorem 1.0.1. If the modular elliptic curve E/F has odd conductor and at least one prime of
multiplicative reduction, then G5(E/F; X) �+∞ X, i.e., there are constants c1, c2 > 0 such that
c1X ≤ G5(E/F; X) ≤ c2X for X large enough.

As Bhargava, Shankar and Wang [BSW15] showed that the number of quintic extensions
of F with norm of the relative discriminant at most X is asymptotic to c5,FX for some pos-
itive constant c5,F, our result exposes the growth of the analytic rank as a very common
circumstance over quintic extensions. Note that the BSD-conjecture implies that inequality
ran(E/K) ≥ ran(E/F)1 always holds and that the strict inequality has to be explained by
the presence of a non-torsion point in E(K) linearly independent from E(F). Therefore, we
like to think about Theorem 1.0.1 as evidence for the fact that there should be a systematic
way to produce non-torsion points over certain S5-quintic extensions of totally real fields, in
analogy with the case of Heegner points over CM fields.

1We establish the inequality unconditionally for a positive proportion of quintic fields and modular elliptic
curves with odd conductor.
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Theorem 1.0.1 is compatible with the conjectures in [DFK04], [DFK07] about the growth
of the analytic rank of rational elliptic curves over cyclic quintic extensions. In those works
growth is predicted to be a rare phenomenon, cyclic quintic extensions form a thin subset of
all quintic extensions: the counting function of cyclic quintic fields is asymptotic to αX1/4

for some positive constant α > 0 [Wri89]. Finally, we would like to remark that all elliptic
curves over a totally real field F with [F : Q] ≤ 2 are modular and that, in general, all but
finitely many Q-isomorphism classes of elliptic curves over a totally real field F are known
to be modular ([Wil95], [TW95], [Bre+01], [FLHS15]) making our result widely applicable.

Strategy of the proof

Let F be a totally real field, K/F an S5-quintic extension with a totally complex Galois closure
J such that the subfield of J fixed by A5 is a totally real quadratic extension L/F. For E/F a
modular elliptic curve corresponding to a primitive Hilbert cuspform fE of parallel weight
two, the key idea of the paper is to interpret the ratio of L-functions L(E/K, s)/L(E/F, s) as
the twisted triple product L-function attached to fE and a certain Hilbert cuspform g over L
of parallel weight one. Then, the sign εK/F of the functional equation of L(E/K, s)/L(E/F, s)
is determined by the splitting behaviour in K of the primes of multiplicative reduction of
E/F, and we can prove the existence of a positive proportion of quintic extensions K/F for
which εK/F = −1 by invoking [BSW15].

The twisted triple product L-function attached to a modular elliptic curve E/F and a cusp-
form g of parallel weight one over a totally real quadratic extension L/F is the L-function
L(E,⊗-IndF

L($g), s). Here, ⊗-IndF
L($g) denotes the tensor induction of the Artin representa-

tion attached to g. The main technical result of our work consists in proving the existence of
an eigenform g such that

⊗-IndF
L($g) = IndF

KI− I,

where I denotes the trivial representation. Thanks to the modularity of totally odd Artin
representations [PS16], the problem reduces to finding the solution of a Galois embedding
problem as follows. The group G(J/L) ∼= A5 does not admit any irreducible 2-dimensional
representation, but it has two conjugacy classes of embeddings into PGL2(C). Therefore, we
look for a lift of the 2-dimensional projective representation of GL � G(J/L) ↪→ PGL2(C)

which (i) is totally odd, (ii) has controlled ramification, and (iii) whose tensor induction is
IndF

KI− I. Note that every projective 2-dimensional representation has a minimal lift with
index a power of 2 (Lemma 1.1, [Que95]), thus we are led to consider the following Galois
embedding problem:

Given a finite set of primes Σ0, is it possible to find a Galois extension H/F un-
ramified at Σ0, containing J/F and such that 1→ C2r → G(H/F)→ G(J/F)→ 1
is a non-split extension for some r ≥ 1?

Here C2r denotes the cyclic group of order 2r considered as an S5-module via the homomor-
phism S5 � {±1} ↪→ Aut(C2r ), taking the non-trivial element of {±1} to the automorphism
x 7→ x−1. In Theorem 1.2.4, we are able to provide conditions for the Galois embedding
problem to have a solution.
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1.1 On exotic tensor inductions

Let A, B be groups, n ∈ N and φ : A→ Sn a group homomorphism. The wreath product of
B with A is B o A = B⊕n oφ A, where A acts permuting the factors through φ.

Let G be a group and Q a subgroup of index n. Denote by π : G → Sn the action of G
on right cosets by right multiplication and let {g1, . . . , gn} be a set of coset representatives.
For any g ∈ G and i ∈ {1, . . . , n}, we denote by qi(g) the unique element of Q such that
g · gi = giπ(g) · qi(g). The map ϕ : G → Q o Sn, given by g 7→ (q1(g), . . . , qn(g), π(g)),
is an injective group homomorphism. Moreover, a different choice of coset representatives
produces a homomorphism conjugated to ϕ by an element of G.

Definition 1.1.1. Let Q be a subgroup of G of index n, $ : Q→ Aut(V) a representation of Q. We
define the tensor induction ⊗-IndG

Q($) as the composition of the arrows in the following diagram

G

ϕ

��

⊗-IndG
Q($)

,,
Q o Sn

($,idSn )
// Aut(V) o Sn

(α,ψ)
// Aut(V⊗n),

where α : Aut(V)⊕n → Aut(V⊗n) is given by α( f1, . . . , fn) = f1 ⊗ · · · ⊗ fn, and ψ : Sn →
Aut(V⊗n) by σ 7→ [ψ(σ) : v1 ⊗ · · · ⊗ vn 7→ v1σ ⊗ · · · ⊗ vnσ].

Example 1.1.2. Suppose Q is a subgroup of of G index 2 and let {1, θ} be representatives for the
right cosets, then

q1(g) = g, q2(g) = θgθ−1 if g ∈ Q
q1(g) = gθ−1, q2(g) = θg if g ∈ G \Q.

Thus,

⊗-IndG
Q($)(g) =

$(g)⊗ ρ(θgθ−1) g ∈ Q

[$(gθ−1)⊗ $(θg)] ◦ ψ(12) g ∈ G \Q.

Proposition 1.1.3. Let Q be a subgroup of index 2 of G and {1, θ} a set of representatives for
the right cosets. Consider (V, $) an irreducible complex 2-dimensional representation of Q with
projective image isomorphic to either A4, S4 or A5.

Then the tensor induction (V⊗[G:Q],⊗-IndG
Q($)) is reducible if and only if V∗(λ) ∼= Vθ for some

character λ : Q→ C×, where (Vθ , $θ) is the representation obtained by conjugation by θ. Moreover,
when ⊗-IndG

Q($) is reducible its decomposition type is (3, 1).

Proof. If V∗(λ) ∼= Vθ then the tensor product V ⊗Vθ factors as

V ⊗Vθ ∼= Ad0(V)(λ)⊕C(λ),

where Ad0(V) is irreducible (Lemma 2.1, [DLR16]). By Frobenius reciprocity,

HomG(V⊗[G:Q], IndG
Q(λ)) = HomQ(V ⊗Vθ , C(λ)) 6= 0,

hence V⊗[G:Q] is reducible, and since
(
V⊗[G:Q]

)
|Q = V ⊗ Vθ has decomposition type (3, 1),

so does V⊗[G:Q].
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Suppose V⊗[G:Q] is reducible. We first show that if V⊗[G:Q] contains a 1-dimensional
subrepresentation, then V∗(λ) ∼= Vθ . Indeed, if C(χ) is a subrepresentation of V⊗[G:Q] then

0 6= HomG(V⊗[G:Q], C(χ)) ↪→ HomQ(V ⊗Vθ , C(χ|Q)).

Therefore, the tensor product V ⊗Vθ(χ−1
|Q ) has a non-zero Q-invariant vector, i.e.

0 6= H0(Q, V ⊗Vθ(χ−1
|Q )) = HomQ(V∗(χ|Q), Vθ),

which implies that V∗(χ|Q) ∼= Vθ given the irreducibility of V. Then we can apply the
previous step to compute the decomposition type of V⊗[G:Q]. We conclude the proof by
showing that V⊗[G:Q] cannot have decomposition type (2, 2). Indeed, suppose V⊗[G:Q] is of
type (2, 2), then at least one of the irreducible components decomposes into a sum of char-
acters when restricted to Q (Lemma 2.2, [DLR16]), but then (Lemma 2.1, [DLR16]) produces
a contradiction.

1.2 Galois embedding problems

Cohomological computation

Let F be a totally real number field, Σ0 a finite set of places of F disjoint from the set Σ∞ of
archimedean places and the set Σ2 of places above 2. For Σ the complement of Σ0, we let
GF,Σ denote the Galois group of the maximal Galois extension FΣ of F unramified outside Σ.
We consider L/F a totally real quadratic extension unramified outside Σ, and for all r ≥ 1 we
give C2r the structure of GF,Σ-module via the homomorphism GF,Σ � G(L/F) ↪→ Aut(C2r )

taking the non-trivial element of G(L/F) to the automorphism x 7→ x−1.
We denote by

M2 = lim
→, r

C2r

the GF,Σ-module obtained by taking the direct limit with respect to the natural inclusions
C2r → C2r+1 . Let C ′2r be the dual Galois module HomGr

(
C2r ,O×Σ

)
, where OΣ is the ring of

Σ-integers in FΣ. As a GL-module C ′2r is isomorphic to the group µ2r of 2rth-roots of unity
with the natural Galois action, hence the field Lr = L(µ2r ) trivializes C ′2r .

We are interested in analyzing the maps between the various kernels

X1(GF,Σ, C ′2r ) = ker

(
H1(GF,Σ, C ′2r ) −→ ∏

v∈Σ
H1(Fv, C ′2r )

)
.

Proposition 1.2.1. For all r ≥ 2 the map (j′r)∗ : X1(GF,Σ, C ′2r ) →X1(GF,Σ, C ′2r−2), induced by
the dual of the natural inclusion jr : C2r−2 → C2r , is zero.

Proof. We claim that the restriction

H1(GLr ,Σ, C ′2r )→ ∏
w∈Σ(Lr)

H1(Lr,w, C ′2r )

is injective, where the product is taken over all places of Lr above a place in Σ. Indeed, if
φ : GLr → C ′2r is in the kernel of the restriction map, then the field fixed by ker φ is a Galois
extension of Lr in which the primes that split completely have density 1. Cebotarev’s density
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theorem implies that such extension is Lr itself. By examining the commutative diagram

H1(GLr ,Σ, C ′2r )
� � // ∏

w∈Σ(Mr)
H1(Lr,w, C ′2r )

0 //X1(GF,Σ, C ′2r ) // H1(GF,Σ, C ′2r ) //

OO

∏
v∈Σ

H1(Fv, C ′2r )

OO

0 //X1(Lr/F, C ′2r ) //
?�

OO

H1(Lr/F, C ′2r ) //
?�

OO

∏
v∈Σ

H1(Lr,w/Fv, C ′2r ),
?�

OO

we see that X1(GF,Σ, C ′2r ) = X1(Lr/F, C ′2r ).
We claim that X1(GF,Σ, C ′2r ) is killed by multiplication by 4. Clearly, it suffices to prove

that H1(Lr/F, C ′2r ) is killed by multiplication by 4. Considering the inflation-restriction exact
sequence

0 // H1(L/F, (C ′2r )G(Lr/L)) // H1(Lr/F, C ′2r ) // H1(Lr/L, C ′2r ).

and the fact that both H1(L/F, (C ′2r )G(Lr/L)) and H1(Lr/L, C ′2r ) are isomorphic to Z/2Z

(Lemma 9.1.4 and Proposition 9.1.6, [NSW08]), the claim follows.
There is a natural factorization of multiplication by 4 on C ′2r ,

C ′2r
[4]′ //

j′r !!

C ′2r

C ′2r−2

(4)′

==

,

which induces the commutative diagram

H1(GF,Σ, C ′2r )
[4]′∗ //

(j′r)∗ ((

H1(GF,Σ, C ′2r )

H1(GF,Σ, C ′2r−2)

(4)′∗

66

.

Hence, to complete the proof we need to show that X1(GF,Σ, C ′2r−2) does not intersect the
kernel of (4)′∗ because it would provide the required inclusion X1(GF,Σ, C ′2r ) ⊂ ker(j′r)∗.
The exact sequence of GF,Σ-modules

1 // C ′2r−2

(4)′ // C ′2r // C ′22
// 1,

induces the exact sequence of cohomology groups

1 // C2 = H0(GF,Σ, C ′22)
δ // H1(GF,Σ, C ′2r−2)

(4)′∗ // H1(GF,Σ, C ′2r )
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because any complex conjugation in GF,Σ acts by inversion. Hence, δ(H0(GF,Σ, C ′22)) =

ker(4)′∗. Finally, for every real place v ∈ Σ∞ the connecting homomorphism

δv : C2 = H0(R, C ′22) ↪→ H1(R, C ′2r−2)

is injective. In particular, the non-trivial class of δ(H0(GF,Σ, C ′22)) is not locally trivial at the
real places.

Lemma 1.2.2. Let v be a place of F, then the local Galois cohomology group H2(Fv, M2) is trivial.

Proof. If v splits in L/F then GFv acts trivially on M2 and we can refer to Tate’s Theorem (The-
orem 4, [Ser77]). If v is inert or ramified (so non-archimedean under our assumptions), then
GK has cohomological dimension 2 and H2(Fv, M2) is 2-divisible. We conclude by noting
that multiplication by 2 factors through H2(Lv, M2) which is trivial because M2 is a trivial
GLv -module.

Theorem 1.2.3. Let F be a totally real number field, Σ0 a finite set of places of F disjoint from the set
Σ∞ of archimedean places and the set Σ2 of places above 2. For Σ the complement of Σ0, we consider
L/F a totally real quadratic extension unramified outside Σ. Then H2(GF,Σ, M2) = 0.

Proof. By Lemma 1.2.2, it suffices to show that the restriction map

H2(GF,Σ, M2)→
⊕

v∈Σ
H2(Fv, M2)

is injective. For every r ≥ 2, consider the exact sequence

0 //X2(GF,Σ, C2r ) // H2(GF,Σ, C2r ) // ⊕
v∈Σ

H2(Fv, C2r ).

Poitou-Tate duality (Theorem 8.6.7, [NSW08]) gives us a commuting diagram

X1(GF,Σ, C ′2r )

j′r∗

��

× X2(GF,Σ, C2r )

))
Q/Z

X1(GF,Σ, C ′2r−2) × X2(GF,Σ, C2r−2)

jr∗

OO

55

,

which in combination with Proposition 1.2.1, shows that

jr∗ : X2(GF,Σ, C2r−2)→X2(GF,Σ, C2r )

is zero because the pairings are perfect. Finally, direct limits are exact and commute with
direct sums, so

0 = lim
r,→

X2(GF,Σ, C2r ) // H2(GF,Σ, M2) // ⊕
v∈Σ

H2(Fv, M2)

is exact.
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Galois embedding problem

Let n ≥ 4, r ≥ 1 be integers. We consider the cyclic group C2 of order 2 endowed with the
trivial action of the symmetric group Sn. It is a classical computation that

H2(Sn, C2) ∼= Z/2Z×Z/2Z and H2(An, C2) ∼= Z/2Z.

We consider a class

[ω] : 1→ C2 → Ω→ Sn → 1 ∈ H2(Sn, C2)

that does not belong to the kernel of the restriction map H2(Sn, C2) → H2(An, C2). Let F
be a totally real field. A Sn-Galois extension J/F, ramified at a finite set Σram of places of
F, determines a surjection e : GF,Σ � Sn where Σ is the complement of any finite set Σ0 of
places of F disjoint from Σram ∪ Σ∞ ∪ Σ2. We denote by L = JAn the fixed field by An.

Theorem 1.2.4. Suppose the quadratic extension L/F cut out by An is totally real. For all [ω] ∈
H2(Sn, C2) restricting to the universal central extension of An it is possible to embed J/F into a
Galois extension H/F unramified outside Σ, such that the Galois group G(H/F) represents the
non-trivial extension ir∗[ω] of Sn by the Sn-module C2r for some r � 0.

Proof. Let ir : C2 ↪→ C2r be the natural inclusion. The obstruction to the solution of the
Galois embedding problem is encoded in the cohomology class e∗ir∗[ω] ∈ H2(GF,Σ, C2r ).
Indeed, the triviality of the cohomology class is equivalent to the existence of a continuous
homomorphism γ : GF,Σ → Ωr such that the following diagram commutes

e∗ir∗[ω] : 1 // C2r // e∗Ωr //

��

GF,Σ //

e
��

γ

||

1

ir∗[ω] : 1 // C2r // Ωr // Sn // 1.

The homomorphism γ need not be surjective, but it still defines a non-trivial extension of Sn

by a submodule of C2r as Ωr is a non-trivial extension. The non-triviality of the class ir∗[ω]

follows by the commutativity of the following diagram

H2(Sn, C2)
ir∗ //

��

H2(Sn, C2r )

��
H2(An, C2)

ir∗ // H2(An, C2r )

because by hypothesis the restriction of [ω] to H2(An, C2) is non-zero and the lower orizontal
arrow is injective as H1(An, C2r−1) = 0 for n ≥ 4. Finally,

lim
r,→

H2(GF,Σ, C2r ) = H2(GF,Σ, M2) = 0

by Theorem 1.2.3, hence the obstruction to the solution of the Galois embedding problem
vanishes for r � 0.
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1.3 On Artin representations

Let K/F be an S5-quintic extension ramified at a finite set Σram of places of F. Suppose the
Galois closure J is totally complex and that the subfield of J fixed by A5 is a totally real
quadratic extension L/F. Let Σ be the complement of a finite set Σ0 disjoint from Σram ∪
Σ∞ ∪ Σ2.

The simple group A5 does not admit an irreducible 2-dimensional representation. How-
ever, there are two conjugacy classes of embeddings of A5 into PGL2(C). We fix one such
embedding and we consider the projective representation

GL,Σ � G(J/L) ∼= A5 ⊂ PGL2(C).

We are interested in finding a lift with specific properties. Consider the double cover Ω+
5 of

S5 where transpositions lift to involutions, and that restricts to the universal central exten-
sion of A5 . By Theorem 1.2.4 there exists a positive integer r and a Galois extension H/F,
unramified outside Σ and containing J/F, such that the sequence

1 // C2r // G(H/F) // G(J/F) // 1

is exact. Given our choice of the double cover Ω+
5 , transpositions of S5 ∼= G(J/F) lift to

element of order 2 of G(H/F). Moreover, the conjugation action of transpositions of G(J/F)
on C2r is by inversion: x 7→ x−1. Let Ã5 denote the universal central extension of A5 ∼=
Ã5/{±1}. Complex two-dimensional representations of the group

G(H/L) ∼= (C2r × Ã5)/〈(−1,−1)〉

are constructed by tensoring a character of C2r with a 2-dimensional representation of Ã5

that takes the same value at −1. We consider $K : GL,Σ → GL2(C), a representation ob-
tained by composing the quotient map GL,Σ � G(H/L) with any irreducible 2-dimensional
representation of G(H/L).

Remark 1.3.1. Note that since the abelianization of Ã5 is trivial, there is a dihedral Galois extension
D/F such that det($K) factors through the quotient by the subgroup

G(H/D) ∼= (C2 × Ã5)/〈(−1,−1)〉.

Therefore, the composition of the determinant with the transfer map, det($K) ◦ V : GF −→ C×, is
the trivial character.

Proposition 1.3.2. The tensor induction ⊗-IndF
L($K) : GF −→ GL4(C) factors through GJ and

induces a faithful representation ⊗-IndF
L($K) : S5 −→ GL4(C) isomorphic to the standard repre-

sentation of S5 on 5 letters.

Proof. By construction, the action by conjugation of G(J/F) on G(H/J) factors through
G(L/F) and sends every element to its inverse. Let θ ∈ GF be an element mapping to a
transposition in G(J/F) ∼= S5, then

ker
(
⊗-IndF

L($K)
)
∩ GL = ker

(
$K ⊗ ($K)

θ
)

= {h ∈ GL| ∃α ∈ C× with $K(h) = αI2, $θ
K(h) = α−1I2}

= GJ .
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Thus, ⊗-IndF
L($K) induces a 4-dimensional representation ⊗-IndF

L($K) : S5 → GL4(C) of
S5. By Proposition 1.1.3, ⊗-IndF

L($K) has either decomposition type (3, 1) or it is irreducible.
Hence, it has to be irreducible since S5 does not have irreducible representations of dimen-
sion 3. Finally, S5 has only two irreducible 4-dimensional representations: the standard
representation StS5 on 5 letters and its twist by the sign character sign : S5 → {±1}. We
can distinguish between them by computing the trace of transpositions. Recall that our in-
put was the central extension Ω+

5 of S5 with the property that transpositions of S5 lift to
involutions. It follows that θ2 ∈ GH and $K(θ

2) = I2, hence we can compute that

⊗-IndF
L($K)(θ) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


has trace equal to 2.

Corollary 1.3.3. Let K/F be an S5-quintic extension whose Galois closure J is totally complex and
contains a totally real quadratic extension L/F. Let Σ be the complement of any finite set Σ0 of places
of F disjoint from Σram ∪Σ∞ ∪Σ2, then there exists a totally odd 2-dimensional Artin representation
$K : GL,Σ → GL2(C) such that ⊗-IndF

L($K) is equivalent to IndF
KI− I.

Proof. Thanks to Proposition 1.3.2, we only have to check that the given Artin representation
$K : GL,Σ → GL2(C) is totally odd. By assumption the Galois closure J is totally complex,
thus the projectivization of $K is a faithful representation of G(J/L), which contains every
complex conjugation of L.

1.4 Growth of the analytic rank

Let L/F be a quadratic extension of totally real fields, E/F a modular elliptic curve of con-
ductor N, and g a primitive Hilbert cuspform over L of parallel weight one and level Q.
Attached to this data, there is a unitary cuspidal automorphic representation Π = Πg,E of
the algebraic group G = ResL×F/F(GL2,L×F). Let φ : GF → S3 be the homomorphism
mapping the absolute Galois group of F to the symmetric group over 3 elements associated
with the étale cubic algebra (L× F)/F. The L-group LG is given by the semi-direct product
GL2(C)×3 oφ GF where GF acts on the first factor through φ.

Definition 1.4.1. The twisted triple product L-function associated with the unitary autormophic
representation Π is given by the Euler product

L(s, Π, r) = ∏
v

Lv(s, Πv, r)−1

where Πv is the local representation at the finite prime v of F appearing in the restricted tensor
product decomposition Π =

⊗′
v Πv, and the representation r gives the action of LG on C2⊗C2⊗C2

which restricts to the natural 8-dimensional representation of GL2(C)×3 and for which GF acts via φ

permuting the vectors.
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Remark 1.4.2. ([PSR87], page 111). When Πv is ramified, let qv be the cardinality of the residue
field of Fv, then the local L-factor at v of L(s, Π, r) is given by

Lv

(
1 + s

2
, Πv, r

)
= Pv(q−s

v )

for a certain polynomial Pv(X) ∈ 1 + XC[X]. In particular, it is non-vanishing at s = 1/2.

Assume the central character ωΠ of Π is trivial when restricted to A×F , then the com-
plex L-function L(s, Π, r) has meromorphic continuation to C with possible poles at 0, 1

4 , 3
4 , 1

and functional equation L(s, Π, r) = ε(s, Π, r)L(1− s, Π, r) ([PSR87], Theorems 5.1, 5.2, 5.3).
When all the primes dividing N are unramified in L/F and (N, NL/F(Q)) = 1, the sign of
the functional equation can be computed as follows (Theorems B, D, Remark 4.1.1, [Pra92]).
Write N = N+N−, where N− is the square-free part of N, and suppose that all prime factors
of N+ are split in L/F, then the sign of the functional equation is determined by the number
of prime divisors of N− which are inert in L/F:

ε
(1

2
, Π, r

)
=

(
L/F
N−

)
.

Theorem 1.4.3. Let E/F be a modular elliptic curve of odd conductor N and let K/F be an S5-quintic
extension with totally complex Galois closure J. Suppose J is unramified at N and contains a totally
real quadratic extension L/F, then the ratio of L-functions L(E/K, s)/L(E/F, s) has meromorphic
continuation to the whole complex plane and it is holomorphic at s = 1. Furthermore, if all prime
factors of N+ are split in L/F, then

ords=1
L(E/K, s)
L(E/F, s)

≡ 1 (mod 2) ⇐⇒
(

L/F
N−

)
= −1.

Proof. Thanks to Corollary 1.3.3 and the modularity of totally odd Artin representations of
the absolute Galois group of totally real fields (Theorem 0.3, [PS16]), there is a primitive
Hilbert cuspform g of parallel weight one over L, and level Q prime to N, such that $g = $K.
A direct inspection of the Euler product of the twisted triple product L-function L(s, Π, r)
attached to Π = Πg,E produces the equality of incomplete L-functions

LS(s, Π, r) = LS

(
E,⊗-IndF

L($g), s +
1
2

)
=

LS(E/K, s + 1
2 )

LS(E/F, s + 1
2 )

,

where S is any finite set containing the primes dividing N ·NL/F(Q) and the primes that
ramify in M/F. Remark 1.3.1 ensures the triviality of the central character ωΠ when re-
stricted to A×F , hence, meromorphic continuation, holomorphicity at the center and the cri-
terion for the parity of the order of vanishing at the center of L(E/K, s)/L(E/F, s) follow.

Corollary 1.4.4. Let E/F be an elliptic curve of odd conductor N and at least one prime of multi-
plicative reduction. We denote by G5(E/F; X) the number of quintic extensions K of F such that
the norm of the relative discriminant is at most X and the analytic rank of E grows over K, i.e.,
ran(E/K) > ran(E/F). Then G5(E; X) �+∞ X.

Proof. By Theorem 1.4.3, G5(E/F; X) contains all S5-quintic extension K/F with totally com-
plex Galois closure J containing a totally real quadratic extension in which the prime divisors
of N are unramified and have certain splitting behaviour. Then ([BSW15], Theorem 2) gives
G5(E/F; X)�+∞ X, while ([BSW15], Theorem 1) provides X �+∞ G5(E/F; X).
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Chapter 2

Twisted triple product L-functions
and Hirzebruch-Zagier cycles

This chapter is part of the program pioneered by Darmon and Rotger in [DR14], [DR17a]
devoted to studying the p-adic variation of arithmetic invariants for automorphic represen-
tations on higher rank groups, with the aim of shedding some light on the relation between
p-adic L-functions and Euler systems with applications to the equivariant BSD-conjecture.

Given a totally real number field F, the starting point of the program is to find a reductive
group G having GL2,F as a direct factor together with an automorphic L-function for which
there is an explicit formula for the central L-value. The expectation is that there exists a
transcendental period for which the ratio between the special value and the period becomes
a meaningful algebraic number varying p-adically. More precisely, these modified central
L-values should determine a rigid-analytic meromorphic function by interpolation. In the
present work, we consider the group GL×F = ResL×F/F(GL2,L×F) for L/F a quadratic exten-
sion of totally real number fields. Piatetski-Shapiro and Rallis [PSR87] studied the analytic
properties of the twisted triple product L-function attached to cuspidal representations of
GL×F and Ichino [Ich08] proved a formula for its central value, generalizing earlier work of
Harris-Kudla [HK91]. The first part of the paper is devoted to the construction of a p-adic
L-function, called the twisted triple product p-adic L-function.

Several far-reaching conjectures suggest a strong link between automorphic L-functions
and algebraic cycles: relevant cycles should live on a Kuga-Sato variety whose étale coho-
mology realizes the Galois representation (conjecturally) attached to the automorphic rep-
resentation of G, out of which one constructs the L-function. Furthermore, as the central
L-values should vary p-adically after a modification by an appropriate period, by tinkering
with these cycles it should be possible to produce Galois cohomology classes that p-adically
interpolate into a big cohomology class, giving rise to the p-adic L-function via Perrin-Riou’s
machinery. We remark that such p-adic L-function and big cohomology class are defined us-
ing completely different inputs, an automorphic and a geometric one; the fact that in certain
cases it is possible to prove these approaches produce the same object is in itself an amazing
confirmation of the power of the existing conjectures.

The relation between p-adic L-functions and algebraic cycles, as we just sketched it, can
be very hard to prove since it requires, among various things, a deep understanding of the
cohomology of semistable models of Shimura varieties. Therefore, we decided to dedicate
the second part of this work to the more humble goal of showing that the p-adic L-function,
built using the automorphic input, encodes geometric information of some kind. More pre-
cisely, we compute some values of the p-adic L-function in terms of the syntomic Abel-Jacobi
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image of generalized Hirzebruch-Zagier cycles. Our result is evidence that the twisted triple
product p-adic L-function and the generalized Hirzebruch-Zagier cycles are the right objects
to consider in the framework determined by GL×F and the twisted triple product L-function.

In the remainder of the introduction we present our results in more detail. We fix, once
and for all, a p-adic embedding ιp : Q ↪→ Qp for every rational prime p, and a complex
embedding ι∞ : Q ↪→ C. Given a number field E/Q we let IE be the set of field embeddings
of E into Q and tE = ∑τ∈IE

τ ∈ Z[IE]. For k, k′ ∈ Z[IF] we write k ≥ k′ if kτ ≥ k′τ for all
τ ∈ IF and k > k′ if k ≥ k′ and ∃τ◦ with kτ◦ > k′τ◦ .

The p-adic L-function

Let L/F be a quadratic extension of totally real number fields, Q / OL and N / OF ideals.
Consider primitive eigenforms g◦ ∈ S`◦ ,x◦(Q; L; Q) and f◦ ∈ Sk◦ ,w◦(N; F; Q), whose weights
satisfy n◦tL = `◦ − 2x◦ and m◦tF = k◦ − 2w◦ for n◦, m◦ ∈ Z, generating irreducible cuspidal
automorphic representations π, σ of GL(A), GF(A) respectively. We denote by πu, σu their
unitarizations and define a representation of GL2(AL×F) by Π = πu⊗ σu. Let ρ : ΓF → S3 be
the homomorphism mapping the absolute Galois group of F to the symmetric group over 3
elements associated with the étale cubic algebra (L× F)/F. The L-group L(GL×F) is given by
the semi-direct product Ĝ o ΓF where ΓF acts on Ĝ = GL2(C)×3 through ρ. One can define
the twisted triple product L-function L(s, Π, r) of Π via the representation r of L(GL×F) on
C2 ⊗C2 ⊗C2, which restricts to the natural 8-dimensional representation of Ĝ and through
which ΓF acts via ρ permuting the vectors. We assume the central character ωΠ of Π satisfies
ωΠ |A×F

≡ 1, so that the twisted triple product L-function has a functional equation and we
can talk about its central value.

Definition 2.0.1. We say that weights (`, x) ∈ Z[IL]
2, (k, w) ∈ Z[IF]

2 are F-dominated if there
exists r ∈ Z[IL], r ≥ 0, with k = (`+ 2r)|F and w = (x + r)|F. In particular, F-dominated weights
satisfy k− 2w = (`− 2x)|F.

Let η : A×F → C× be the idele character attached to the quadratic extension L/F by
class field theory. Suppose that the weights of g◦ and f◦ are F-dominated and that the local
ε-factors satisfy

εv

(
1
2

, Πv, rv

)
ηv(−1) = +1 ∀v finite place of F.

Building on Ichino’s formula [Ich08] and the proof of the Jacquet conjecture [PSP08], Theo-
rem 2.3.4 and Lemma 2.4.1 show that the non-vanishing of the central L-value L( 1

2 , Π, r) is
equivalent to the existence of a test vector ğ◦ in π of some level V11(A) such that the prime
factors of A are among those dividing N ·NL/F(Q) · dL/F. More precisely, ğ◦ is a cuspform
such that the Petersson inner product

I(φ) = 〈ζ∗ (δrğ◦) , f∗◦ 〉 , (2.1)

for some r ∈ N[IL], does not vanish. Therefore, we can take (2.1) as an avatar of the central
L-value and use it to construct the p-adic L-function.

Remark 2.0.2. The assumption on local ε-factors at the finite places of F can be satisfied by requiring
the ideals NL/F(Q) · dL/F and N to be coprime and by asking all prime ideals dividing N to split in
L/F.
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Definition 2.0.3. Let (`, x) ∈ Z[IL]
2, (k, w) ∈ Z[IF]

2 be weights and θ ∈ Z[IL] be an element
satisfying θ|F = 0 · tF. If θ ≡2 w holds, i.e. θµ ≡2 wµ|F for all µ ∈ IL, we define

r(θ) = ∑
µ∈IL

[
wµ|F + θµ

2
− xµ

]
· µ ∈ Z[IL].

Let p be a rational prime unramified in L, coprime to the levels Q,N. We writeP (resp. Q)
for the set of prime OL-ideals (resp. OF-ideals) dividing p. We choose an element θ ∈ Z[IL]

such that θ|F = 0 · tF and θ ≡2 w◦, and we let r̄ = ∑µ∈IL
r̄µ · µ, with r̄µ ∈ Z/(qpµ − 1)Z,

denote the reduction of r◦ = r◦(θ) defined using the weights of g◦ and f◦. We suppose g◦,
f◦ are p-nearly ordinary and we denote by G ∈ Sn.o.

L (Q, χ; IG ) and F ∈ Sn.o.
F (N, ψ; IF ) the

Hida families passing through nearly ordinary p-stabilizations g(p)
◦ and f

(p)
◦ . We have

χ|ZL(Q)tor = χ◦N n◦
L and ψ|ZF(N)tor = ψ◦Nm◦

F

for characters χ◦ : cl+L (Q) → C×, ψ◦ : cl+F (N) → C× and we suppose that χ◦|F · ψ◦ ≡ 1.
We let F ∗ ∈ Sn.o.

F (A, ψ−2
◦ ψ; IF ∗) ([Hid91], Section 7F) be the twisted Hida family, where

IF ∗
∼= IF (ψ−2

◦ ) as an ΛF,ψ−2
◦ ψ-algebra.

Definition 2.0.4. Let W = WG ,F ∗ be the rigid analytic space Spf(IG ⊗̂OIF ∗)
rig. The subset

of F-dominated crystalline points with respect to (θ, r̄), denoted Cθ,r̄
F , is the subset of arithmetic

points (P, Q) ∈ W whose weights are F-dominated, r(θ) ∈ Z[IL] is a lift of r̄, and such that the
specialization of the Hida families are old at p; that is, they are the p-stabilization of eigenforms of
prime-to-p level: GP = g

(p)
P and FQ = f

(p)
Q .

Set KG ,F ∗ = (IG ⊗̂OIF ∗) ⊗ Q and KG = IG ⊗ Q. We define a KG -adic cuspform Ğ

passing through the nearly ordinary p-stabilization of the test vector ğ◦ as in [DR14] Sec-
tion 2.6. Then Lemma 2.4.4 ensures the existence of a meromorphic rigid-analytic function

r̄L θ
p (Ğ , F ) : W −→ Cp whose value at crystalline points (P, Q) ∈W , with r(θ) ∈ Z[IL] a

lift of r̄, is

r̄L
θ
p
(
Ğ , F

)
(P, Q) =

1
E(f∗Q)

〈
en.o.ζ

∗(dr(θ)ğ
[P ]
P
)
, f∗Q
〉〈

f∗Q, f∗Q
〉 .

The number E(f∗Q) is defined in (2.16). We are justified in calling r̄L θ
p
(
Ğ , F

)
a p-adic L-

function because it interpolates the algebraic avatar (2.1) of central L-values L( 1
2 , ΠP,Q, r) at

points (P, Q) ∈ Cθ,r̄
F , as the next theorem shows.

Theorem 2.0.5. Consider the partition Qinert äQsplit of the set of OF-prime ideals above p deter-
mined by the splitting behavior of the primes in the quadratic extension L/F. The value of the twisted
triple product p-adic L-function r̄L θ

p (Ğ , F ) : W −→ Cp at any (P, Q) ∈ Cθ,r̄
F satisfies

r̄L
θ
p (Ğ , F )(P, Q) =± 1

E(f∗Q)

 ∏
℘∈Qinert

E in
℘ (gP, f∗Q) ∏

℘∈Qsplit

E sp
℘ (gP, f∗Q)

E1,℘(f
∗
Q)


×

〈
ζ∗
(

δs(w−x|F)ğP

)
, f∗Q
〉〈

f∗Q, f∗Q
〉 ,

where s : IF → IL is any section of the restriction IL → IF, µ 7→ µ|F, and the Euler factors appearing
in the formula are defined in Lemmas 2.4.6 and 2.4.8.
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A p-adic Gross-Zagier formula.

The second part of the paper deals with the evaluation of the p-adic L-function outside the
range of interpolation. From now on, we assume L/Q to be a real quadratic number field.

Definition 2.0.6. A triple of integers (a, b, c) ∈ Z3, is said to be balanced if none among a, b, c is
greater or equal than the sum of the other two. We say that the weights (`, x) ∈ Z[IL]

2, (k, w) ∈
Z[IQ]

2 are balanced if there exists r ∈ Z[IL], r > 0, such that k = |` − 2r| := (` − 2r)|Q,
w = |x− r| := (x− r)|Q and the triple of integers (`1, `2, k) is balanced.

Definition 2.0.7. The set of balanced crystalline points with respect to (θ, r̄), denoted Cθ,r̄
bal, is

the subset of arithmetic points (P, Q) ∈ W , whose weights are balanced, r(θ) ∈ Z[IL] is a lift
of r̄, and such that the specialization of the Hida families are old at p. This set is a disjoint union,
indexed by balanced triples (`, k), of subsets Cθ,r̄

bal(`, k) consisting of points whose weights have the
form (`, x) ∈ Z[IL]

2, (k, w) ∈ Z[IQ]
2.

For a balanced crystalline point (P, Q) ∈ Cθ,r̄
bal, the global sign of the functional equation

of L(s, ΠP,Q, r) is −1. This forces the vanishing of the central value, which one expects to
be accounted for by the family of generalized Hirzebruch-Zagier cycles. Interestingly, the
twisted triple product p-adic L-function is not forced to vanish on Cθ,r̄

bal and we can try to
compute its values there. Let (`, k) be a balanced triple such that either ` is not parallel or
(`, k) = (2tL, 2). Let A → ShK(G∗L) be the universal abelian surface over the Shimura vari-
ety for G∗L and let E → ShK′(GL2,Q) be the universal elliptic curve over the modular curve,
both defined over some open subset of Spec(OE), where E/Q is a large enough finite Galois
extension. For all but finitely many primes p, let ℘ /OE be the prime above p induced by
the fixed p-adic embedding ιp, and consider U`−4×OE,℘ Wk−2 a smooth and proper compact-
ification of A|`|−4 × E k−2. The generalized Hirzebruch-Zagier cycle of weight (`, k) is a De
Rham null-homologous cycle

∆`,k ∈ CHγ+2(U`−4 ×OE,℘ Wk−2)0 ⊗Z L

of dimension γ + 2 = |`|+k−2
2 . Given a pair of eigenforms ğP ∈ S`,x(V11(AOL); L; E) and

fQ ∈ Sk,w(V1(N); E) we can produce cohomology classes ωP and ηQ, as in Definition 2.7.5,
such that π∗1 ωP ∪ π∗2 ηQ ∈ F|`|−2−sH|`|+k−3

dR

(
U`−4 ×E℘ Wk−2

)
where s = |`|−k−2

2 ; that is, the
cohomology class π∗1 ωP ∪ π∗2 ηQ lives in the domain of the syntomic Abel-Jacobi image of
∆`,k,

AJp(∆`,k) : F|`|−2−sH|`|+k−3
dR

(
U`−4 ×E℘ Wk−2

)
−→ E℘,

and we can compute the number AJp(∆`,k)(π
∗
1 ωP ∪ π∗2 ηQ) as follows.

Theorem 2.0.8. Let L/Q be a real quadratic field and (`, k) a balanced triple. Let p be a prime
splitting in L for which the generalized Hirzebruch-Zagier cycle ∆`,k is defined. Then for all (P, Q) ∈
Cθ,r̄

bal(`, k) we have

r̄L
θ
p (Ğ , F )(P, Q) =

±1
s!E(f∗Q)

E sp
p (gP, f∗Q)

E1,p(f
∗
Q)

AJp(∆`,k)(π
∗
1 ωP ∪ π∗2 ηQ).

Remark 2.0.9. The assumption on the splitting behaviour of p in L/Q should not be necessary.
It could be dispensed with by showing the overconvergence of the p-adic cuspform d

1−`µ
µ (ğ

[p]
P ) for

µ ∈ IL. It seems reasonable to believe that by generalizing the recent work of Andreatta and Iovita
[AI17] one could prove such a result.
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Let A be an elliptic curve over L of conductor Q and B a rational elliptic curve of con-
ductor N, both without complex multiplication over Q. We denote by (MA,B)p the Ga-
lois representation AsVp(A)(−1) ⊗Qp Vp(B) of the absolute Galois group of Q. We can
use Theorem 2.0.8 to give a criterion for the Bloch-Kato Selmer group H1

f (Q, (MA,B)p) to
be of dimension one in terms of the non-vanishing of a value of one of our twisted triple
product p-adic L-functions. We build on the recent work of Liu [Liu16], where he com-
putes the dimension of H1

f (Q, (MA,B)p) assuming the non-vanishing of the étale Abel-Jacobi
map of certain cycle closely related to our Hirzebruch-Zagier cycle of weight (2tL, 2). Let
gA ∈ S2tL ,tL(V1(Q); L; Q), fB ∈ S2,1(V1(N); Q) be the newforms attached to A and B by mod-
ularity and p a rational prime coprime to N ·NL/Q(Q) · dL/F. If gA, fB are p-nearly ordinary,
we denote by G , F the Hida families passing through the p-nearly ordinary stabilizations
GPA = g

(p)
A and FQB = f

(p)
B , respectively.

Corollary 2.0.10. Suppose that N and NL/Q(Q) · dL/Q are coprime ideals and that all the primes
dividing N split in L. For all but finitely many primes p that are split in L and such that gA, fB are
p-nearly ordinary we have

r̄L
θ
p (Ğ , F )(PA, QB) 6= 0 =⇒ dimQp H1

f (Q, (MA,B)p) = 1,

where θ = −µ + µ′ ∈ Z[IL], r̄ = −µ.

The setting of this Chapter had been considered by several independent groups: [BCS17],
[For17] and [Ish17]. Ivan Blanco and Ignacio Sols computed syntomic Abel-Jacobi images
of some Hirzebruch-Zagier cycles in terms of p-adic modular forms, while Ishikawa con-
structed twisted triple product p-adic L-functions over Q following the refined approach of
Hsieh [Hsi17]. Given the similarities between the computations of syntomic Abel-Jacobi im-
ages in the work of Blanco-Sols and M.F., the two groups agreed to publish together [BCF].

2.1 Automorphic forms

2.1.1 Adelic Hilbert modular forms

Let F/Q be a totally real number field and let IF be the set of field embeddings of F into Q.
We denote by GF the algebraic group ResF/QGL2,F. We choose a square root i ∈ C of −1
which allows us to define the Poincaré half-plane H, we consider the complex manifold HIF

which is endowed with a transitive action of GF(R)+ ∼= ∏IF
GL2(R)+ and contains the point

i = (i, . . . , i). For any K ≤ GF(A
∞) compact open subgroup we denote by Sk,w(K; F; C),

or simply Sk,w(K; C) when there is no risk of confusion, the space of holomorphic Hilbert
cuspforms of weight (k, w) ∈ Z[IF]

2, k − 2w = mtF for some m ∈ Z, and level K. It is
defined as the space of functions f : GF(A)→ C that satisfy the following list of properties:

• f(αxu) = f(x)jk,w(u∞, i)−1 where α ∈ GF(Q), u ∈ K · C+
∞ for C+

∞ the stabilizer of i in

GF(R)+ and the automorphy factor is jk,w

((
a b
c d

)
, z
)

= (ad − bc)−w(cz + d)k for(
a b
c d

)
∈ GF(R), z ∈ HIF ;

• for every finite adelic point x ∈ GF(A
∞) the well-defined function fx : HIF → C

given by fx(z) = f(xu∞)jk,w(u∞, i) is holomorphic, where for each z ∈ HIF we choose
u∞ ∈ GF(R)+ such that u∞i = z.
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• for all adelic points x ∈ GF(A) and for all additive measures on F\AF we have

∫
F\AF

f

((
1 a
0 1

)
x
)

da = 0.

• If the totally real field is just the field of rational numbers, F = Q, we need to im-
pose the extra condition that for all finite adelic point x ∈ GQ(A

∞) the function
|Im(z)

k
2 fx(z)| is uniformly bounded on H.

Definition 2.1.1. We denote by G∗F the algebraic group ResF/QGL2,F×ResF/QGm,F Gm. By replacing
GF by G∗F in the previous definition, we define S∗k,ν(K; C) to be the space of cuspforms for G∗F of weight
(k, ν) ∈ Z[IF]×Z and level K, for any K ≤ G∗F(Q) compact open subgroup.

Note that for all pairs of weights (k, ν), (k, ν′) ∈ Z[IF]×Z there is a natural isomorphism

Ψν,ν′ : S∗k,ν(K; C)
∼−→ S∗k,ν′(K; C) (2.2)

given by f(x) 7→ f(x)|det(x)|ν′−ν
AQ

.
Each irreducible automorphic representation π spanned by some form in Sk,w(K; C) has

central character equal to |−|−m
AF

up to finite order characters. The twist πu := π ⊗ |−|
m
2

AF
is

called the unitarization of π. Note that there is an isomorphism of function spaces (not of
GF(A)-modules)

π
∼−→ πu

f 7→ fu
where fu(x) = f(x)|det(x)|

m
2

AF
. (2.3)

Let dx be the Tamagawa measure on [GF(A)] = A×F GF(Q)\GF(A), for any two cuspforms
f1, f2 ∈ Sk,w(K; C), with k− 2w = mtF, we define their Petersson inner product to be

〈f1, f2〉 =
∫
[GF(A)]

f1(x)f2(x)|det(x)|mAF
dx = 〈fu

1 , fu
2 〉. (2.4)

For an OF-ideal N we consider the following compact open sugroups of GF(Ẑ):

• U0(N) =

{(
a b
c d

)
∈ GF(Ẑ)

∣∣∣∣ c ∈ NÔF

}
,

• V1(N) =

{(
a b
c d

)
∈ U0(N)

∣∣∣∣ d ≡ 1 (mod NÔF)

}
,

• V11(N) =

{(
a b
c d

)
∈ V1(N)

∣∣∣∣ a ≡ 1 (mod NÔF)

}
,

• U(N) =

{(
a b
c d

)
∈ V11(N)

∣∣∣∣ b ≡ 0 (mod NÔF)

}
For any prime p coprime to N and any compact open subgroups satisfying V1(N) ≤ K ≤
U0(N), we set K(pα) = K ∩ V11(pα) and ZF(K) = A×F /F× det K(p∞)F×∞,+. One can decom-
pose the ideles of F as

A×F =
h+F (N)

ä
i=1

F×ai det V11(N)F×∞,+
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where ai ∈ A
∞,×
F and h+F (N) is the cardinality of cl+F (N) := F×+ \A

∞,×
F / det V11(N). The

ideles decomposition induces a decomposition of the adelic points of GF

GF(A) =
h+F (N)

ä
i=1

GF(Q)tiV11(N)GF(R)+ for ti =

(
a−1

i 0
0 1

)
.

Adelic q-expansion

The Shimura variety ShK(GF), determined by GF and a compact open subgroup K, is not
compact, therefore there is a notion of q-expansion for Hilbert modular forms. Even more,
Shimura found a way to package the q-expansions of each connected component of ShK(GF)

into a unique adelic q-expansion. Fix dF ∈ A
∞,×
F such that dFOF = dF is the absolute

different ideal of F. Let FGal be the Galois closure of F in Q and write V for the ring of
integers or a valuation ring of a finite extension F0 of FGal such that for every ideal a of OF,
for all τ ∈ IF, the ideal aτV is principal. Choose a generator {qτ} ∈ V of qτV for each prime
ideal q of OF and by multiplicativity define {av} ∈ V for each fractional ideal a of F and
each v ∈ Z[IF]. Given a Hilbert cuspform f ∈ Sk,w(V11(N); C), one can consider for every
index i ∈ {1, . . . , h+F (N)}, the holomorphic function fi : HIF → C

fi(z) = y−w
∞ f

(
ti

(
y∞ x∞

0 1

))
= ∑

ξ∈(aid
−1
F )+

a(ξ, fi)eF(ξz)

for z = x∞ + iy∞, ai = aiOF and eF(ξz) = exp
(
2πi ∑τ∈IF

τ(ξ)zτ

)
. Every idele y in A×F,+ :=

A
∞,×
F F×∞,+ can be written as y = ξa−1

i du for ξ ∈ F×+ and u ∈ det U(N)F×∞,+; the following
functions

a(−, f) : A×F,+ −→ C, ap(−, f) : A×F,+ −→ Qp

are defined by

a(y, f) := a(ξ, fi){yw−tF}ξtF−w|ai|AF and ap(y, f) := a(ξ, fi)y
w−tF
p ξtF−wNF(ai)

−1

if y ∈ ÔFF×∞,+ and zero otherwise. HereNF : ZF(1)→ Q
×
p is the p-adic cyclotomic character

given by y 7→ y−tF
p |y∞|−1

AF
. Clearly, the function ap(−, f ) makes sense only if the coefficients

a(ξ, fi) ∈ Q are algebraic ∀ξ, i. For each V-algebra A contained in C we denote by Sk,w(K; A)

the A-module
{
f ∈ Sk,w(K; C)

∣∣ a(y, f) ∈ A ∀y ∈ A×F,+
}

.

Theorem 2.1.2. ([Hid91], Theorem 1.1) Consider the map eF : CIF −→ C× defined by eF(z) =

exp
(
2πi ∑τ∈IF

zτ

)
and the additive character of the ideles χF : AF/F −→ C× which satisfies

χF(x∞) = eF(x∞). Each cuspform f ∈ Sk,w(V11(N); C) has an adelic q-expansion of the form

f

((
y x
0 1

))
= |y|AF ∑

ξ∈F+

a(ξydF, f){(ξydF)
tF−w}(ξy∞)w−tF eF(iξy∞)χF(ξx)

for y ∈ A×F,+, x ∈ A×F , where a(−, f) : A×F,+ −→ C vanishes outside ÔFF×∞,+ and depends only
on the coset y∞ det V11(N).
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Nearly holomorphic cuspforms

For K compact open subgroup satisfying V11(N) ≤ K ≤ GF(A
∞) we denote by

Nk,w,q(K; F; C) = Nk,w,q(K; C)

the space of nearly holomorphic cuspforms of weight (k, w) ∈ Z[IF]
2 and order less or equal

to q ∈ N[IF] with respect to K. It is the space of functions f : GF(A) → C that satisfy the
following list of properties:

• f(αxu) = f(x)jk,w(u∞, i)−1 where α ∈ GF(Q), u ∈ K · C+
∞;

• for each x ∈ GF(A
∞) the well-defined function fx(z) = f(xu∞)jk,w(u∞, i) can be writ-

ten as
fx(z) = ∑

ξ∈L(x)+

a(ξ, fx)((4πy)−1)eF(ξz)

for polynomials a(ξ, fx)(Y) in the variables (Yτ)τ∈I of degree less than qτ in Yτ for each
τ ∈ IF and for L(x) a lattice of F.

As before fi stands for fti and we consider adelic Fourier coefficients

a(y, f)(Y) = {yw−tF}ξtF−w|ai|AF a(ξ, fi)(Y), ap(y, f)(Y) = yw−t
p ξtF−wNF(ai)

−1a(ξ, fi)(Y)

if y = ξa−1
i dFu ∈ ÔFF×∞,+ and zero otherwise. The adelic Fourier expansion of a nearly

holomorphic cuspform f is given by

f

((
y x
0 1

))
= |y|AF ∑

ξ∈F+

a(ξydF, f)(Y){(ξydF)
tF−w}(ξy∞)w−tF eF(iξy∞)χF(ξx)

for Y = (4πy∞)−1 and for A a subring of C one can consider the A-module Nk,w,q(K; A)

defined by {f ∈ Nk,w,q(K; C)| a(y, f) ∈ A[Y] ∀y ∈ A×F,+}.
There are Maass-Shimura differential operators for r ∈N[IF], k ∈ Z[IF] defined as

δr
k = ∏

τ∈IF

(δτ
kτ+2rτ−2 ◦ · · · ◦ δτ

kτ
), where δτ

λ =
1

2πi

(
λ

2iyτ
+

∂

∂zτ

)
. (2.5)

They act on a nearly holomorphic cuspform f ∈ Nk,w,q(K; C) via the expression

a(y, δr
kf)(Y) = {y

w−tF+r}ξtF−w−r|ai|AF a(ξ, δr
kfi)(Y).

Suppose that Q ⊂ A, then Hida showed ([Hid91], Proposition 1.2) the differential operator δr
k

maps Nk,w,q(K; A) to Nk+2r,w+r,q+r(K; A) and if kτ > 2qτ ∀τ ∈ IF, then there is a holomorphic
projector Πhol : Nk,w,q(K; A) −→ Sk,w(K; A).

2.1.2 Hecke theory

Consider a compact open subgroup K ≤ GF(A
∞) of the finite adelic points of GF that satis-

fies V11(N) ≤ K ≤ U0(N). Suppose that V is the valuation ring corresponding to the fixed
embedding ιp : FGal ↪→ Qp, so that we may assume {ytF−w} = 1 whenever the ideal yOF

generated by y is prime to pOF. Let v be a uniformizer of the completion OF,q of OF at a
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prime q. We are interested in Hecke operators defined by the following double cosets

T0(v) = {vw−tF}
[

V11(N)

(
v 0
0 1

)
V11(N)

]
if q - N,

U0(v) = {vw−tF}
[

V11(N)

(
v 0
0 1

)
V11(N)

]
if q | N,

and for a ∈ O×F,N := ∏q|NO×F,q the double coset

T(a, 1) =

[
V11(N)

(
a 0
0 1

)
V11(N)

]
.

If the prime q is coprime to the level, then the Hecke operator T0(v) acting on modular
forms is independent of the choice of the uniformizer v and we simply denote it T0(q). For
any finite adelic point z ∈ ZG(A

∞) of the center of GF we define the diamond operator
associated to it by f|〈z〉(x) = f(xz), for any modular form f. For a prime ideal q such that
GL2(OF,q) ⊂ K, we write 〈q〉 for the operator 〈v〉, where v is a uniformizer of OF,q. The
action of the operators on adelic q-expansion is given by the following formulas. If q - N one
can compute

ap(y, f|T0(q)
) = ap(yv, f){vw−tF}vtF−w

p + NF/Q(q){q2(w−tF)}ap(yv−1, f|〈q〉){vtF−w}vw−tF
p

and
a(y, f|T0(q)

) = a(yv, f) + NF/Q(q){q2(w−tF)}a(yv−1, f|〈q〉).

If q | N one can compute

ap(y, f|U0(v)) = ap(yv, f){vw−tF}vtF−w
p

and
a(y, f|U0(v)) = a(yv, f).

Finally, for a ∈ O×F,N one finds ap(y, f|T(a,1)) = ap(ya, f)atF−w
p . It follows that if v ∈ OF,q

is a uniformizer and a ∈ O×F,q then U0(av) = T(a, 1)U0(v). The Hecke algebra hk,w(K;V)
is defined to be the V-subalgebra of EndC

(
Sk,w(K; C)

)
generated by the Hecke operators

T0(q)’s for primes outside the level q - N, U0(v)’s for primes dividing the level q | N,
T(a, 1)’s for a ∈ O×F,N and the diamond operators. For each V-algebra A contained in C one
defines hk,w(K; A) = hk,w(K;V)⊗V A.

Theorem 2.1.3. ([Hid91], Theorem 2.2) For any finite field extension L/FGal and any V-subalgebra
A of L, there is a natural isomorphism Sk,w(K; L) ∼= Sk,w(K; A) ⊗A L. Moreover, if A an inte-
grally closed domain containing V , finite flat over either V or Zp, then Sk,w(K; A) is stable under
hk,w(K; A) and the pairing ( , ) : Sk,w(K; A)× hk,w(K; A)→ A given by ( f , h) = a(1, f|h) induces
isomorphisms of A-modules

hk,w(K; A) ∼= Sk,w(K; A)∗ and Sk,w(K; A) ∼= hk,w(K; A)∗,

where (−)∗ denotes the A-linear dual HomA (−, A).
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Every idele y ∈ ÔF ∩A×F can be written as y = a ∏q v
e(q)
q u with u ∈ det V11(N) and

a ∈ O×F,N. Write n for the ideal
(

∏q-N v
e(q)
q

)
OF, then the Hecke operator

T0(y) = T(a, 1)T0(n) ∏
q|N

U0(v
e(q)
q ) (2.6)

depends only on the idele y. A cuspform that is an eigenvector for all the Hecke operators
is called an eigenform and it is normalized when a(1, f) = 1. Shimura proved ([Shi78],
Proposition 2.2) that the eigenvalues for the Hecke operators are algebraic numbers, hence a
normalized eigenform f ∈ Sk,w(K; C) is an element of Sk,w(K; Q) since the T0(y)-eigenvalue
is a(y, f) for every idele y. For an idele y ∈ ÔF ∩A×F , let T(y) = T0(y){ytF−w}.

Definition 2.1.4. Let p | p be a prime ofOF coprime to the level K and (k, w) ∈ Z[IF] with k ≥ 2tF.
A normalized eigenform f ∈ Sk,w(K; Q) is nearly ordinary at p if the T0(p)-eigenvalue is a p-adic
unit with respect to the specified embedding ιp : Q ↪→ Qp. If f is nearly ordinary at p for all p | p we
say that f is p-nearly ordinary.

Definition 2.1.5. For every idele b ∈ A×F there is an operator V(b) on cuspforms defined by

f|V(b)(x) = NF/Q(bOF)f

(
x

(
b−1 0

0 1

))

that acts on p-adic q-expansions as ap(y, f|V(b)) = bw−tF
p ap(yb−1, f) (this operator is denoted [b] in

[Hid91], Section 7B). Its normalization [b] = {btF−w}V(b) acts on q-expansions by a(y, f|[b]) =

a(yb−1, f).

Remark 2.1.6. We have U0(v) ◦ [v] = U(v) ◦V(v) = 1.

Let f ∈ Sk,w(K, Q) be a normalized eigenform of level prime to p. Set

〈p〉0 := {v2(w−tF)
p }〈p〉,

then the 〈p〉0-eigenvalue of f is ψf ,0(p) = {v
2(w−tF)
p }ψf(p) for ψf(p) the 〈p〉-eigenvalue of f.

The T0(p)-Hecke polynomial for f is given by

1− a(p, f)X + NF/Q(p)ψf ,0(p)X2 = (1− α0,pX)(1− β0,pX).

If f is nearly ordinary at p, a(p, f) is a p-adic unit and we can assume that α0,p is a p-adic
unit too. The nearly ordinary p-stabilization of f is the cuspform f(p) = (1− β0,p[vp])f that
has the same Hecke eigenvalues of f away from p and whose U0(vp)-eigenvalue is α0,p. For
S a finite set of prime OF-ideals, the S-depletion of a cuspform f is the cuspform f [S ] =

∏p∈S (1−V(vp) ◦U(vp)) f whose Fourier coefficient ap(y, f [S ]) equals ap(y, f) if yS ∈ O×F,S
and 0 otherwise.

Lemma 2.1.7. For all pairs of weights (k, ν), (k, ν′) ∈ Z[IF] × Z we have the equality V(p) ◦
Ψν,ν′ = pν′−νΨν,ν′ ◦V(p) of maps from S∗k,ν(K, C) to S∗k,ν′(K, C).

Proof. Follows directly from the definitions.
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2.2 Hida families

We consider compact open subgroups that satisfy V1(N) ≤ K ≤ U0(N). The group ZF(K)
has a finite torsion, so we can fix a prime p coprime to N and the order of Cl+F (N). Let O
be a valuation ring in Qp finite flat over Zp containing ιp(V). Consider the space of p-adic
cuspforms

Sk,w(K(p∞); O) = lim
α,→

Sk,w(K(pα); O)

on which the p-adic Hecke algebra

hk,w(K(p∞); O) = lim
←,α

hk,w(K(pα); O)

naturally acts. The Hecke operators defined by T(y) = lim
←

T(y)yw−tF
p play an important

role in the theory. There is a p-adic norm on the space of p-adic cuspforms Sk,w(K(p∞); O)

defined by |f|p = supy{|ap(y, f)|p}; the resulting completed space is denoted by

Sk,w(K(p∞); O)

and it has a natural perfect O-pairing with the p-adic Hecke algebra ([Hid91], Theorem 3.1).
Each element f ∈ Sk,w(K(p∞); O) induces a continuous function f : J −→ O, defined by
y 7→ ap(y, f), on the topological semigroup

J = ÔF
×

F×∞,+/ det V11(p∞)F×∞,+,

isomorphic to O×F,p ×IF for IF the free semigroup of integral ideals of F. Hence, there is
a continuous embedding Sk,w(K(p∞); O) ↪→ C(J; O) of the completed space of p-adic cusp-
forms into the continuous functions from J to O. The image of the embedding, denoted
SF(K; O), is independent of the weight (k, w) since there exists a canonical algebra isomor-
phism

hk,w (K(p∞); O) ∼= h2tF ,tF (K(p∞); O)

which takes T(y) to T(y) ([Hid89b], Theorem 2.3). Hence, we are justified in choosing the
notation hF(K; O) for hk,w(K(p∞); O) which is independ of the weights up to a canonical
isomorphism. From now on, SF(N, O) and hF(N; O) stand respectively for SF(V1(N); O)

and hF(V1(N); O).

Remark 2.2.1. Nearly holomorphic cuspforms can be seen as p-adic cuspforms ([Hid91], Proposition
7.3). For each nearly holomorphic cuspform f ∈ Nk,w,q(K(pα); F; O) one can define a p-adic cuspform
by setting

c(f) = NF(y)−1 ∑
ξ∈F×+

ap(ξydF, f)(0)qξ ∈ SF(K; O).

It is possible to decompose the compact ring hF(K; O) as a direct sum of algebras

hF(K; O) = hn.o.
F (K; O)⊕ hss

F (K; O)

in such a way that T(p) is a unit in hn.o.
F (K; O) and it is topologically nilpotent in hss

F (K; O).
Furthermore, the idempotent en.o. of the nearly ordinary part hn.o.

F (K; O) has the familiar
expression en.o. = lim

n→∞
T(p)n!. Let Sn.o.

F (K; O) = en.o.SF(K; O) be the space of nearly ordinary
p-adic cuspforms.
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Consider the topological group GF(K) = ZF(K) × O×F,p equipped with the continuous
group homomorphism GF(K) −→ hn.o.

F (K; O)× given by 〈z, a〉 7→ 〈z〉T(a−1, 1). As p is
prime to the order of GF(K)tor, there is a canonical decomposition GF(K) ∼= GF(K)tor ×WF

for a Zp-torsion free subgroup WF. Then WF ∼= Zr
p for r = [F : Q] + 1 + δ, where δ is

Leopoldt’s defect for F, and we denote by OJWFK ∼= OJX1, . . . , XrK the completed group
ring.

Theorem 2.2.2. ([Hid89b], Theorem 2.4) The universal nearly ordinary Hecke algebra hn.o.
F (K; O)

is finite and torsion-free over ΛF = OJWFK.

One can write OJGF(K)K =
⊕

χ ΛF,χ as a direct sum ranging over all the characters of
GF(K)tor where ΛF,χ ∼= ΛF, and obtain a similar decomposition of the universal nearly
ordinary Hecke algebra hn.o.

F (K; O) =
⊕

χ hn.o.
F (K; O)χ.

Definition 2.2.3. Let K be a compact open subgroup satisfying V1(N) ≤ K ≤ U0(N) for an OF-
ideal N prime to p. Given a character χ : G(K)tor → O× and a ΛF,χ-algebra I, we define the space
of nearly ordinary I-adic cuspforms of tame level K and character χ to be

Sn.o.
F (K, χ; I) = HomΛF,χ-mod(h

n.o.
F (K; O)χ, I).

We call Hida families those homomorphisms that are homomorphisms of ΛF,χ-algebras.

Given a pair of weights (k, w) ∈ Z[IF]
2, with k− 2w = mtF, and finite order characters

ψ : ZF(K)→ O×, ψ′ : O×F,p → O× one can define a homorphism GF(K)→ O× by

(z, a) 7→ ψ(z)ψ′(a)NF(z)matF−w,

which determines an O-algebra homomorphism Pk,w,ψ,ψ′ : OJGF(K)K → O. Let’s fix an
algebraic closure L of the fraction field L of ΛF,χ with an embedding Qp ↪→ L. Suppose
λ : hn.o.

F (K; O)χ → L is an ΛF,χ-linear map; since the universal nearly ordinary Hecke algebra
is finite over ΛF,χ, the image of λ is contained in the integral closure Iλ of ΛF,χ in a finite
extension Kλ of L.

Definition 2.2.4. Let I be a finite integrally closed extension of ΛF,χ. We denote by Aχ(I) the set of
arithmetic points, i.e., the subset of HomO-alg(I, Qp) consisting of homomorphisms that coincide
with some Pk,w,ψ,ψ′ (with k ≥ 2tF, w ≤ tF) on ΛF,χ.

If P ∈ Aχ(Iλ), P|ΛF,χ
= Pk,w,ψ,ψ′ |ΛF,χ

, the composite λP = P ◦ λ induces a Qp-linear
map λP : hn.o.

k,w (K(pα); Qp) −→ Qp for some α > 0 ([Hid89b], Theorem 2.4). Therefore,
the duality between Hecke algebra and cuspforms produces a unique p-adic cuspform fP ∈
Sn.o.

k,w (K(pα); Qp) that satisfies ap(y, fP) = λP(T(y)) for all integral ideles y. Furthermore, if λ

is an algebra homomorphism, each specialization at an arithmetic point is an eigenform and
so classical, i.e., an element of Sn.o.

k,w (K(pα); Q). On the other hand, if f ∈ Sk,w(K(pα); Q) is an
eigenform for all Hecke operators and its U0(p)-eigenvalue is a p-adic unit with respect to
the fixed p-adic embedding ιp, then there is character χ, a finite integrally closed extension
IF of ΛF,χ and a nearly ordinary IF -adic Hida family F : hn.o.

F (K; O)→ IF passing through
f ([Hid89b], Theorem 2.4).

Definition 2.2.5. We define the set of crystalline points, A◦χ(I), to be the subset of arithmetic
points P ∈ Aχ(I) such that P|ΛF,χ

= Pk,w,ψ,1|ΛF,χ
for ψ factoring through ψ : cl+F (N) → O× and

the eigenform fP is p-old.
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Specializations of Hida families with trivial nebentype at p are automatically p-old when
k > 2tF ([Hid89b], Lemma 12.2).

2.2.1 Diagonal restriction

If L/F is an extension of totally real fields, there is a restriction map IL → IF which induces
a group homomorphism Z[IL]→ Z[IF] denoted by ` 7→ `|F and satisfies (tL)|F = [L : F] · tF.
Let N an ideal ofOF, the natural inclusion ζ : GL2(AF) ↪→ GL2(AL) defines by composition
a diagonal restriction map

ζ∗ : S`,x(V11(NOL); L; C)→ S`|F ,x|F (V11(N); F; C).

Proposition 2.2.6. Let b ∈ A×F . For any cuspform g ∈ S`,x(V11(NOL); L; C) we have

ζ∗(g|V(b)) = NF/Q(bOF)
1−[L:F](ζ∗g)|V(b).

Proof. Follows directly from the definitions.

Definition 2.2.7. Let L/F be an extension of totally real number fields and let N be anOF-ideal. For
every prime p coprime to N and the orders of ZF(V1(N))tor, ZL(V1(NOL))tor, diagonal restriction
of cuspforms induces by O-duality a map between universal Hecke algebras

ζ : hF(N; O) −→ hL(NOL; O).

The element ζ(T(y)) is determined by the equality

ap
(
1, g|ζ(T(y))

)
= ap

(
1, (ζ∗g)|T(y)

)
∀g ∈ SL(NOL; O).

We endow OJGL(V1(NOL))K with the OJGF(V1(N))K-algebra structure [(z, a)] 7→ [(z, a)]a−tF .
The homomorphism ζ is also OJGF(V1(N))K-linear because diamond operators and operators T(a, 1)
for a ∈ O×F,p commute with diagonal restriction:

(ζ∗g)|〈z〉 = ζ∗(g|〈z〉) and (ζ∗g)|T(a,1) = ζ∗(g|T(a,1)).

2.2.2 On differential operators

For each µ ∈ IL there is an operator on p-adic cuspforms dµ : SL(Q; O) → SL(Q; O) given
on q-expansions by ap(y, dµg) = yµ

pap(y, g). The definition can be extended to all r ∈ N[IL]

by setting dr = ∏µ∈IL
d

rµ
µ ([Hid91], Section 6G).

Lemma 2.2.8. Let r ∈N[IL] and let g ∈ S`,x(V1(Qpα); L; O) be a cuspform, then

en.o.Πholζ∗(δr
`g) = en.o.ζ

∗(drg),

where δr
` is the Maass-Shimura differential operator (2.5).

Proof. Proposition 7.3 of [Hid91] gives the equality en.o.Πholζ∗(δr
`g) = en.o.c(ζ∗(δr

`g)). Since
c(ζ∗(δr

`g)) = ζ∗c(δr
`g), we conclude by showing that c(δr

`g) = drc(g). Indeed,

ap(y, c(δr
`g)) = ap(y, δr

`g)(0) = yx−tL+r
p NL(ai)

−1ξtL−x−ra(ξ, δr
`gi)(0)

= yx−tL+r
p NL(ai)

−1ξtL−xa(ξ, gi) = ap(y, drc(g)).
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2.3 Twisted triple product L-functions

2.3.1 Complex L-functions

Let L/F be a quadratic extension of totally real number fields, Q /OL and N /OF ideals. Two
primitive eigenforms g ∈ S`,x(V1(Q); L; Q) and f ∈ Sk,w(V1(N); F; Q) generate irreducible
cuspidal automorphic representations π, σ of GL(A), GF(A) respectively.
Let πu = π ⊗ |•|n/2

AL
, σu = σ ⊗ |•|m/2

AF
be their unitarizations, where n, m are the integers

satisfying n · tL = ` − 2x, m · tF = k − 2w. One can define a unitary representation of
GL×F = ResL×F/F(GL2,L×F) by Π = πu ⊗ σu. Let ρ : ΓF → S3 be the homomorphism
mapping the absolute Galois group of F to the symmetric group over 3 elements associated
with the étale cubic algebra (L × F)/F. The L-group L(GL×F) is given by the semi-direct
product Ĝ o ΓF where ΓF acts on Ĝ = GL2(C)×3 through ρ.

Definition 2.3.1. The twisted triple product L-function associated with the unitary autormophic
representation Π is given by the Euler product

L(s, Π, r) = ∏
v

Lv(s, Πv, r)−1

where Πv is the local representation at the finite prime v of F appearing in the restricted tensor
product decomposition Π =

⊗′
v Πv and representation r gives the action of the L-group of GL×F on

C2⊗C2⊗C2 which restricts to the natural 8-dimensional representation of Ĝ and for which ΓF acts
via ρ permuting the vectors.

Remark 2.3.2. ([PSR87], page 111). When Πv is ramified, let qv be the cardinality of the residue
field of Fv, then the local L-factor at v of L(s, Π, r) is given by

Lv

(
1 + s

2
, Πv, r

)
= Pv(q−s

v )

for a certain polynomial Pv(X) ∈ 1 + XC[X]. In particular, it is non-vanishing at s = 1/2.

Let v be a prime of F unramified in L for which Πv is an unramified principal series, i.e.,
v - N ·NL/F(Q) · dL/F. We write vv for a uniformizer of Fv and qv for the cardinality of the
residue field of Fv. If v = V · V splits in L, the GL2(Fv)×3-representation Πv can be written
as Πv = π(χ1,V , χ2,V )⊗ π(χ1,V , χ2,V )⊗ π(ψ1,v, ψ2,v) and the local Euler factor is given by

Lv(s, Πv, r) = ∏
i,j,k

(
1− χi,V (vv)χj,V (vv)ψk,v(vv)q−s

v
)
. (2.7)

When the prime v is inert in L, the GL2(Lv)×GL2(Fv)-representation Πv can be written as
Πv = π(χ1,v, χ2,v)⊗ π(ψ1,v, ψ2,v) and the local Euler factor is given by

Lv(s, Πv, r) = ∏
i,j

(
1− χi,v(vv)ψj,v(vv)q−s

v
)
×∏

k

(
1− χ1,v(vv)χ2,v(vv)ψ

2
k,v(vv)q−2s

v
)
. (2.8)

Assume the central character ωΠ of Π is trivial when restricted to A×F , then the complex
L-function L(s, Π, r) has meromorphic continuation to C with possible poles at 0, 1

4 , 3
4 , 1 and

functional equation L(s, Π, r) = ε(s, Π, r)L(1− s, Π, r) ([PSR87], Theorems 5.1, 5.2, 5.3).
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Remark 2.3.3. The relation between Satake parameters of πu, σu and Hecke eigenvalues of the prim-
itive eigenforms gu, fu can be given explicitly as follows. Suppose v - Q and v = V V splits in L,
then

gu
|T(V ) = q1/2

v
(
χ1,V (vv) + χ2,V (vv)

)
gu, gu

|T(V ) = q1/2
v

(
χ1,V (vv) + χ2,V (vv)

)
gu.

(2.9)
Moreover, if v - Q and v is inert in L then

gu
|T(vOL)

= qv (χ1,v(vv) + χ2,v(vv)) g
u. (2.10)

Finally, if v - N a finite place of F we have

fu
|T(v) = q1/2

v (ψ1,v(vv) + ψ2,v(vv)) f
u. (2.11)

2.3.2 Central L-values and period integrals

Let D/F be a quaternion algebra. We denote be ΠD the irreducible unitary cuspidal auto-
morphic representation of D×(AL×F) associated with Π by the Jacquet-Langlands correpon-
dence when it exists. For a vector φ ∈ ΠD one defines its period integral as

ID(φ) =
∫
[D×(AF)]

φ(x)dx

where [D×(AF)] = A×F D×(F)\D×(AF). To simplify the notation we write I(φ) to denote
the period integral for the quaternion algebra M2(F).

Theorem 2.3.4. Let η : A×F → C× be the quadratic character attached to L/F by class field theory.
Then the following are equivalent:

(1) The central L-value L( 1
2 , Π, r) does not vanish, and for every place v of F the local ε-factor

satisfies εv(
1
2 , Πv, r) · ηv(−1) = 1.

(2) There exists a vector φ ∈ Π, called a test vector, whose period integral I(φ) does not vanish.

Proof. (1) =⇒ (2). By the Jacquet conjecture, as proved in ([PSP08], Theorem 1.1), the
non-vanishing of the central value implies that there exists a quaternion algebra D/F and a
vector φ ∈ ΠD such that its period integral is non-zero, i.e., ID(φ) 6= 0. We want to show
that the assumption on local ε-factors forces the quaternion algebra to be split everywhere.
Ichino’s formula ([Ich08], Theorem 1.1) gives an equality, up to non-zero constants,

ID · ĨD .
= L

(1
2

, Π, r
)
·∏

v
ID
v

of linear forms in HomD×(AF)×D×(AF)

(
ΠD ⊗ Π̃D, C

)
where Π̃D is the contragredient rep-

resentation and the ID
v ’s are local linear forms in

HomD×(Fv)×D×(Fv)

(
ΠD

v ⊗ (Π̃D)v, C
)

.

Suppose v is a place of F at which the quaternion algebra D ramifies, i.e. v | discD. Requir-
ing the value of the expression εv(

1
2 , Πv, r) · ηv(−1) to be equal to 1 forces the local Hom-

space HomD×(Fv)×D×(Fv)

(
ΠD

v ⊗ (Π̃D)v, C
)

to be trivial ([Gan08], Theorem 1.2); in particular
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it forces the local linear form ID
v to be trivial. This produces a contradiction because the LHS

of Ichino’s formula is non-trivial. Indeed, choosing the complex conjugate φ̄ ∈ ΠD ∼= Π̃D of
the test vector φ we compute that

ID · ĨD(φ⊗ φ̄) =
∣∣∣ID(φ)

∣∣∣2 6= 0.

Hence, the discriminant of D has to be trivial, i.e., D = M2(F).
(2) =⇒ (1). The existence of a test vector φ ∈ Π implies the non-vanishing of the central
value L( 1

2 , Π, r) by Jacquet conjecture. Moreover, Ichino’s formula provides us with non-
trivial local linear forms, the Iv’s, in the local Hom-spaces

HomGL2(Fv)×GL2(Fv)

(
Πv ⊗ (Π̃)v, C

)
which force the equality εv(

1
2 , Πv, r) · ηv(−1) = 1 for every place v of F ([Gan08], Theorem

1.1).

Remark 2.3.5. We can give sufficient conditions on the eigenforms g ∈ S`,x(V1(Q); L; Q) and
f ∈ Sk,w(V1(N); F; Q) such that the local ε-factors of the automorphic representation Π satisfy the
hypothesis of Theorem 2.3.4. The local ε-factor at the archimedean places of F satisfy the hypothesis
of the theorem if the weights of g and f are F-dominated (Definition 2.0.1). Moreover, the same is true
for the ε-factors at the finite places if we assume that NL/F(Q) · dL/F and N are coprime and that
every finite prime v dividing N splits in L ([Pra92], Theorems B, D and Remark 4.1.1).

Proposition 2.3.6. For all finite places v of F away from the level of Π and unramified in L/F, a
newvector in Πv is a choice of test-vector for Ichino’s local linear functional.

Proof. If v is a place splitting in L, the claim follows from ([Pra90], Theorem 5.10). We show
that the proof given by Prasad can be adapted to deal with the inert case as follows. Our
claim is that the image of the spherical vector under the non-trivial linear functional Υ :
(πu)v → (σ̃u)v, unique up to scaling, is non-zero. As in ([Pra92], Section 4) we can assume
that (πu)v is the principal series Vχ for the character of the Borel

χ

(
a b
0 d

)
= α(a)β(d)−1, for unramified characters α, β : L×v → C×,

so that the representation Vχ can be realized in the space of functions over P1
Lv

and the
spherical vector corresponds to the constant function 1P1

Lv
. The projective line P1

Lv
can be

decomposed into an open and a closed orbit for the action of GL2(Fv),

P1
Lv

=
(

P1
Lv
\P1

Fv

)
ä P1

Fv
,

which produces an exact sequence of GL2(Fv)-modules

0 // indGL2(Fv)

L×v
(χ′) // Vχ

// IndGL2(Fv)
B(Fv)

(χδ1/2
Fv

) // 0 (2.12)

for χ′ : L×v → C× the character defined by χ′(x) = α(x)β(x). If IndGL2(Fv)
B(Fv)

(χδ1/2
Fv

) is isomor-

phic to the contragradient representation (σ̃u)v then we are done, because 1P1
Lv
7→ 1P1

Fv
6= 0.
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Otherwise, suppose Υ(1P1
Lv
) = 0. Let Tv be the Hecke operator given by the double coset

Tv =

[
GL2(OFv)

(
vv 0
0 1

)
GL2(OFv)

]
,

then the function

1
(qv + 1)χδ1/2(vv)

(
Tv(1P1

Lv
)− qvχδ1/2(vv)− χδ1/2(1/vv)

)
(2.13)

is the constant function 1 on the GL2(OFv)-orbit of P1
Lv

consisting of those points that re-
duce to a point in P1(OLv /vv) \ P1(OFv /vv), and the constant function zero everywhere
else. Therefore, the function (2.13) is an element of indGL2(Fv)

L×v
(χ′) because of the short

exact sequence (2.12). The function (2.13) is sent to zero by Υ by GL2(Fv)-equivariance,
but at the same time that is not possible because we can explicitly describe the elements
of HomGL2(Fv)

(
indGL2(Fv)

L×v
(χ′), (σ̃u)v

)
in terms of integration over GL2(OFv)-orbits of P1

Lv

giving a contradiction.

2.4 p-adic L-functions

Let g ∈ S`,x(V1(Q); L; E), f ∈ Sk,w(V1(N); F; E) be primitive eigenforms defined over a num-
ber field E whose weights are F-dominated. We assume the central character ωΠ of Π to be
trivial when restricted to A×F , that the central L-value L( 1

2 , Π, r) does not vanish, and that for
every place v of F we have the condition εv(

1
2 , Πv, r)ηv(−1) = 1 on local ε-factors satisfied.

Then there exists a vector φ ∈ Π such that the period integral I(φ) is non-zero (Theorem
2.3.4). Let J be the element

J =

(
−1 0
0 1

)IF

∈ GL2(R)IF .

For any h ∈ σu we define hJ ∈ σu to be the vector obtained by right translation hJ(g) =

h(gJ). If h has weight k ∈ Z[IF] then hJ(h) has weight −k.

Lemma 2.4.1. Let r ∈ N[IL] be such that k = (` + 2r)|F and w = (x + r)|F. Then there is an
OF-ideal A supported on a subset of the prime factors of N ·NL/F(Q) · dL/F such that a test vector
φ can be chosen to be of the form φ = (δrğ)u ⊗ (fJ)u for ğ ∈ S`,x(V11(AOL); L; E) eigenform for all
Hecke operators outside N ·NL/F(Q) · dL/F with the same Hecke eigenvalues of g.

Proof. By linearity of the period integral we can assume φ to be a simple tensor. We can also
assume φ = δrϑ⊗ νJ ∈ Π because the archimedean linear functional appearing in Ichino’s
formula is non-zero if and only if the sum of the weights of the local vectors is zero.

Proposition 2.3.6 allows us to take ϑv and νv newvectors for all finite places that do
not divide N · NL/F(Q) · dL/F. Moreover, by direct inspection of Ichino’s local function-
als – expressed in terms of matrix coefficients – one can see that we are allowed to choose
the newvector νv for all finite places. Note that newvectors are mapped to newvectors by
the isomorphism π ⊗ σ

∼→ πu ⊗ σu as in (2.3). Therefore we can write φ = δrϑ ⊗ νJ as
(δrğ)u ⊗ (fJ)u, for ğ ∈ π of level U(BOL) for some OF-ideal B supported on a subset of
the places dividing N ·NL/F(Q) · dL/F. We conclude by showing that we can assume that
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ğ ∈ S`,x(V11(AOL); L; E) for A = B2. Indeed, right translation by

γ =

(
1 0
0 b

)
, bOF = B,

induces an injection S`,x(U(BOL); L; E) ↪→ S`,x(V11(B
2OL); L; E) equivariant for the action

of Hecke operators away from the level and that change the period by a non-zero constant.

When the test-vector φ is as in Lemma 2.4.1, we can rewrite the period integral I(φ) as a
Petersson inner product

I(φ) =
∫
[GL2(AF)]

(δrğ)u ⊗ (fJ)ud×x = 〈ζ∗ (δrğ) , f∗〉 (2.14)

where f∗ =
(
fJ
)

is the cuspform in Sk,w(V1(N); F; E) whose Fourier coefficients are complex
conjugates of those of f. We conclude the section with a proposition showing that a good
transcendental period for the central L-value of the twisted triple product L-function is the
Petersson norm of the eigenform f∗.

Proposition 2.4.2. Let E be a number field and let f ∈ Sk,w(V1(N); F; E) be a primitive cuspform
spanning an irreducible cuspidal automorphic representation σ. Then for any ϕ ∈ Sk,w(V11(A); F; E)
the Petersson inner product 〈ϕ, f〉 is a E-rational multiple of 〈f, f〉.

Proof. We follow the argument of ([DR14], Lemma 2.12). Note that the Petersson inner prod-
uct 〈ϕ, f〉 depends only on the projection ef ϕ of ϕ to σ. In fact, by the orthogonality of the
character eigenspaces for the action of V1(A)/V11(A), the only relevant part is the projection
to efSk,w(V1(A); F; E). This E-vector space is spanned by the cuspforms

{fa| fa(x) = f(xsa)}a| AN , sa =

(
1 0
0 a

)
, aOF = a

for all ideals a dividing A/N ([Miy71], Proposition 6 and [Shi78], Proposition 2.3). Thus, it
suffices to prove the statement for fa when a | A/N. We prove the claim by induction on the
prime divisors of a. If a = OF then the claim is clear. Let q be a prime dividing a. If q | N,
we compute

ap(vq, f)〈f, fa/q〉 = 〈U0(vq)f, fa/q〉 =
χf(vq)

NF/Q(q)m−1 〈f, fa〉,

while, if q - N,

ap(vq, f)〈f, fa/q〉 =


(NF/Q(q)+1)χf (vq)

NF/Q(q)m 〈f, fa〉 if q2 - a
χf (vq)

NF/Q(q)m−1 〈f, fa〉+ NF/Q(q)
m〈f, fa/q2〉 if q2 | a,

concluding the inductive step.

2.4.1 Construction

Given primitive eigenforms

g◦ ∈ S`◦ ,x◦(V1(Q); L; Q) and f◦ ∈ Sk◦ ,w◦(V1(N); F; Q)
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with n◦tL = `◦ − 2x◦, m◦tF = k◦ − 2w◦ for n◦, m◦ ∈ Z, we choose an element θ ∈ Z[IL] such
that θ|F = 0 · tF, θ ≡2 w◦ and set

r◦ = r◦(θ) = ∑
µ∈IL

[
(w◦)µ|F + θµ

2
− (x◦)µ

]
· µ ∈ Z[IL].

Let p be a rational prime unramified in L, coprime to the levels Q,N. We write P (resp. Q)
for the set of prime OL-ideals (resp. OF-ideals) dividing p. We suppose g◦, f◦ are p-nearly
ordinary and we denote by G ∈ Sn.o.

L (Q, χ; IG ) and F ∈ Sn.o.
F (N, ψ; IF ) the Hida families

passing through nearly ordinary p-stabilizations g(p)
◦ and f

(p)
◦ . We have

χ|ZL(Q)tor = χ◦N n◦
L and ψ|ZF(N)tor = ψ◦Nm◦

F

for characters χ◦ : cl+L (Q) → C×, ψ◦ : cl+F (N) → C× and we suppose that χ◦|F · ψ◦ ≡ 1.
Let F ∗ ∈ Sn.o.

F (A, ψ−2
◦ ψ; IF ∗) ([Hid91], Section 7F) be the twisted Hida family, where IF ∗

∼=
IF (ψ−2

◦ ) as an ΛF,ψ−2
◦ ψ-algebra.

Set KG ,F ∗ = (IG ⊗̂OIF ∗) ⊗ Q and KG = IG ⊗ Q. We define a KG -adic cuspform Ğ

passing through the nearly ordinary p-stabilization of the test vector ğ◦ as in [DR14] Section
2.6. Let r̄ = ∑µ∈IL

r̄µ · µ, with r̄µ ∈ Z/(qpµ − 1)Z, denote the reduction of r◦. We define a
homomorphism of OJGL(V1(AOL))K-modules r̄d•θĞ

[P ] : hL(AOL; O) −→ KG ,F ∗ by

r̄d•θĞ
[P ] (〈z〉T(y)) =

Ğ (〈z〉T(y)) [〈yp〉]⊗ [NL/F〈yp〉−1/2]〈yp〉
θ−tL

2 ω(yp)r̄ if yp ∈ O×L,p

0 otherwise,

where KG ,F ∗ is given the OJGL(V1(AOL))K-algebra structure

[(z, a)] 7→ Ğ (〈z〉T(a−1, 1))[〈a〉−1]⊗ [NL/F〈a〉1/2]〈a〉
−θ+tL

2 ω(a)−r̄

and 〈 〉 : O×L,p → (O×L,p)pro-p, ω : O×L,p → (O×L,p)tor are the canonical projections. The
composition of the natural maps hn.o.

F (A; O) → hF(A; O) → hL(AOL; O) with the homo-
morphism r̄d•θĞ

[P ] : hL(AOL; O) → KG ,F ∗ defines a nearly ordinary KG ,F ∗ -adic cuspform
en.o.ζ

∗(
r̄d•θĞ

[P ]) ∈ Sn.o.
F (A, ψ−2

◦ ψ; KG ,F ∗).

Proposition 2.4.3. Let s : IF → IL be any section of the restriction IL → IF, µ 7→ µ|F. For any
crystalline point (P, Q) ∈W , with r(θ) a lift of r̄, we have

en.o.ζ
∗(

r̄d•θĞ
[P ])(P, Q) = en.o.ζ

∗(dr(θ)ğ
[P ]
P
)
= ±en.o.ζ

∗
(

ds(w−x|F)ğ
[P ]
P

)
.

Proof. For a crystalline point (P, Q) ∈ W , with r(θ) a lift of r̄, the explicit description of

r̄d•θĞ
[P ] produces the equality of modular forms

en.o.ζ
∗(

r̄d•θĞ
[P ])(P, Q) = en.o.ζ

∗(dr(θ)ğ
[P ]
P
)
.

Let now µ, µ′ ∈ IL, µ 6= µ′, be such that τ = µ|F = µ′|F. A direct computation shows that

0 = en.o.dτζ∗g = en.o.ζ
∗(dµ + dµ′)g

for any g, which implies
en.o.ζ

∗(dα
µg) = (−1)αen.o.ζ

∗(dα
µ′g)
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for any α ∈N. When g = g[P ] is P-depleted, we also have

en.o.ζ
∗(dα

µg
[P ]) = (−1)αen.o.ζ

∗(dα
µ′g

[P ])

for any α ∈ lim
←,n

Z/pn(qpµ − 1) by taking p-adic limits. Thus, the second equality follows.

Lemma 2.4.4. There is an element J(en.o.ζ
∗(

r̄d•θĞ
[P ]), F ∗) ∈ IG ⊗̂OFrac(IF ∗) such that for any

crystalline point (P, Q) ∈W , with r(θ) ∈ Z[IL] a lift of r̄, we have

J
(
en.o.ζ

∗(
r̄d•θĞ

[P ]), F ∗)(P, Q) =

〈
en.o.ζ

∗(dr(θ)ğ
[P ]
P
)
, f∗(p)

Q

〉
〈
f
∗(p)
Q , f∗(p)

Q

〉 . (2.15)

Proof. We follow the argument of ([DR14], Lemma 2.19). The relevant part of the F ∗-isotypic
projection eF ∗ζ

∗(
r̄d•θĞ

[P ]) is a IG ⊗̂OFrac(IF ∗)-linear combination of the IF ∗ -adic cuspforms
F ∗a for a | A/N. Hence, the element J exists because we can interpolate expressions of the
form 〈

f
∗(p)
a,Q , f∗(p)

Q

〉
/
〈
f
∗(p)
Q , f∗(p)

Q

〉
for Q ∈ A◦(IF ∗) using the explicit computations in the proof of Proposition 2.4.2 and the
fact that A is prime to p.

Definition 2.4.5. The twisted triple product p-adic L-function attached to
(
Ğ , F , θ, r̄

)
is the mero-

morphic rigid-analytic function

r̄L
θ
p (Ğ , F ) : WG ,F ∗ −→ Cp

determined by J
(
en.o.ζ

∗(
r̄d•θĞ

[P ]), F ∗) ∈ IG ⊗̂OFrac(IF ∗).

For every OF-prime p above p, let αp and βp be the inverses of the roots of the T(p)-
Hecke polynomial of f∗Q. Let hP,Q = ef∗Q,n.o.ζ

∗(dr(θ)ğ
[P ]
P ) where ef∗Q,n.o. = ef∗Q en.o. denotes the

composition of the f∗Q-isotypic projection with the nearly ordinary projector, and suppose

we named the roots of the Hecke polynomials such that h(p)
P,Q = ∏p|p(1− βpV(p))hP,Q is the

nearly ordinary p-stabilization of hP,Q. By definition en.o.h
(p)
P,Q = h

(p)
P,Q and we can compute

that
h
(p)
P,Q = en.o.h

(p)
P,Q = ∏

p|p

(
1− βpα−1

p

)
· en.o.hP,Q.

More explicitly, if we set E(f∗Q) = ∏p|p
(
1− βpα−1

p

)
, then

(
ef∗Q,n.o.ζ

∗(dr(θ)ğ
[P ]
P )

)(p)
= E(f∗Q) · ef∗Q,n.o.ζ

∗(dr(θ)ğ
[P ]
P ).

Therefore, we can rewrite the values of the p-adic L-function at every crystalline point
(P, Q) ∈W , with r(θ) ∈ Z[IL] a lift of r̄, as

r̄L
θ
p (Ğ , F )(P, Q) =

1
E(f∗Q)

〈
en.o.ζ

∗(dr(θ)ğ
[P ]
P
)
, f∗Q
〉〈

f∗Q, f∗Q
〉 . (2.16)

2.4.2 Interpolation formulas

The interpolation formulas satisfied by the twisted triple product p-adic L-function include
Euler factors that depend on whether the primes in P are above a prime of F that is split or
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inert in the extension L/F. We partition the set of primes of F above p accordingly to the
splitting behavior in L/F, Q = Qinert äQsplit. For every prime OF-ideal ℘ ∈ Q we denote
by q℘ the cardinality of its residue field.

Inert case. For a prime ideal p ∈ P with ℘ = p∩OF ∈ Qinert, we write p = ℘OL.

Lemma 2.4.6. Let g ∈ S`,x(V11(AOL); L; E) be a T(p)-eigenvector, f ∈ Sk,w(V1(N); F; E) a p-
nearly ordinary eigenform. Suppose N | A and that the weights of g, f are F-dominated, then we
have

ef ,n.o.ζ
∗(drg[p]

)
= E in

℘ (g, f)ef ,n.o.ζ
∗ (drg)

for
E in
℘ (g, f) =

(
1− αgα−1

f q−1
℘

)(
1− βgα−1

f q−1
℘

)
where αg, βg are the inverses of the roots of the T(p)-Hecke polynomial of g and αf is determined by
(en.o.f)|U(v℘) = αf · en.o.f.

Proof. Let g(p)α = (1− βgV(vp))g, g(p)β = (1− αgV(vp))g be the two p-stabilizations of g,

they satisfy U(vp)g
(p)
• = (•)g

(p)
• and g = 1/(αg − βg)

(
αgg

(p)
α − βgg

(p)
β

)
. Using Proposition

2.2.6, we compute

ef ,n.o.ζ
∗
[
dr (1−V(vp) ◦U(vp)) g

(p)
•

]
= ef ,n.o.ζ

∗
[
(1− (•)V(vp)) drg(p)•

]
= ef ,n.o.

(
1− (•)q−1

℘ V(v℘)
)

ζ∗(drg(p)• )

=
(

1− (•)q−1
℘ α−1

f

)
ef ,n.o.ζ

∗(drg(p)• ).

Noting that the p-depletions of the p-stabilizations are equal, (g(p)α )[p] = (g
(p)
β )[p] = g[p], we

deduce the claim:

ef ,n.o.ζ
∗(drg) =

1
αg − βg

(
αgef ,n.o.ζ

∗(drg
(p)
α )− βgef ,n.o.ζ

∗(drg
(p)
β )

)
=

1(
1− αgαf−1q−1

℘

) (
1− βgαf−1q−1

℘

) ef ,n.o.ζ
∗(drg[p]).

Split case. For a prime ideal p ∈ P with ℘ = p∩OF ∈ Qsplit, we write ℘OL = p1p2.

Lemma 2.4.7. Let Q be any OL-ideal and g ∈ S`,x(V11(Q); L; E) a cuspform. If the indexes i, j ∈
{1, 2} are different, then

U(p)ζ∗
(
(g[pj ])|V(vpi )

)
= 0,

which implies
en.o.ζ

∗(g|V(vpi )
) = en.o.ζ

∗((U(vpj)g)|V(v℘)).

In particular, en.o.ζ
∗(g[p1,p2]

)
= en.o.ζ

∗(g[p1]) = en.o.ζ
∗(g[p2]).

Proof. For any y ∈ ÔFF×∞,+ we can compute that

ap
(
y, U(p)[ζ∗

(
(g[pj ])|V(vpi )

)
]
)
= p

tF−x|F
p ap

(
py, ζ∗

(
(g[pj ])|V(vpi )

))
= C ∑

TrL/F(ξ)=p
ap(ξyd−1

F dL, (g[pj ])|V(vpi )
)((ξdL)pξ−1)tL−x,
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where C is a non-zero explicit constant. Suppose that ap(ξyd−1
F dL, (g[pj ])|V(vpi )

) 6= 0 for some

ξ ∈ L×+ with TrL/F(ξ) = p, then ξyd−1
F dL ∈ ÔLL×∞,+, vpi | (ξyd−1

F dL)pi and vpj - (ξyd−1
F dL)pj .

Since p is unramified in L, that is equivalent to vpi | (ξy)pi and vpj - (ξy)pj which implies
that vpi - (TrL/F(ξ)y)pi = (py)pi . This is absurd.

Regarding the second claim, for any pi-stabilizations g
[pj ],(pi)
• we have that

en.o.ζ
∗(g[p1,p2]

)
= en.o.ζ

∗((1−V(vpi )U(vpi ))g
[pj ],(pi)
•

)
= en.o.ζ

∗((1− (•)V(vpi ))g
[pj ],(pi)
•

)
= en.o.ζ

∗(g[pj ],(pi)
•

)
.

Taking the appropriate linear combination we prove the statement.

Lemma 2.4.8. Let g ∈ S`,x(V11(AOL); L; E) be an eigenvector for the Hecke operators T(p1) and
T(p2), f ∈ Sk,w(V1(N); F; E) a p-nearly ordinary eigenform. Suppose N | A and that the weights of
g, f are F-dominated. For αi, βi the inverses of the roots of the T(pi)-Hecke polynomial for g, i = 1, 2,
and (en.o.f)|U(v℘) = αf · en.o.f we have

ef ,n.o.ζ
∗(drg[pi ]

)
=
E sp
℘ (g, f)
E1,℘(g, f)

ef ,n.o.ζ
∗(drg),

where

E sp
℘ (g, f) = ∏

•,?∈{α,β}

(
1− •1 ?2 α−1

f q−1
℘

)
, E1,℘(g, f) = 1− α1β1α2β2(α

−1
f q−1

℘ )2.

Proof. Let g(pi)
αi = (1− βiV(vpi ))g, g(pi)

βi
= (1− αiV(vpi ))g be the two pi-stabilizations of

g. They satisfy U(vpi )g
(pi)
• = (•)g

(pi)
• and g = 1/(αi − βi)

(
αig

(pi)
αi − βig

(pi)
βi

)
. Using Lemma

2.4.7 we compute

ef ,n.o.ζ
∗
[

dr
(
g(pi)
•

)[pi ]
]
= ef ,n.o.ζ

∗
[
dr(1− (•)V(vpi ))g

(pi)
•

]
= ef ,n.o.ζ

∗
[
drg(pi)

•

]
− (•)ef ,n.o.ζ

∗
[
dr(U(vpj)g

(pi)
• )|V(v℘)

]
= ef ,n.o.ζ

∗
[
drg(pi)

•

]
− (•)α−1

f q−1
℘ ef ,n.o.ζ

∗
[
dr(T(pj)− αjβ jV(vpj))g

(pi)
•

]
.

(2.17)

Recall that g(pi)
• is an eigenform for the operator T(pj) of eigenvalue αj + β j. The chain of

identities in (2.17) continues as:

ef ,n.o.ζ
∗
[

dr
(
g(pi)
•

)[pi ]
]
= ef ,n.o.ζ

∗
[
drg(pi)

•

]
− (•)α−1

f q−1
℘

[
(αj + β j)ef ,n.o.ζ

∗
[
drg(pi)

•

]
+

− αjβ jef ,n.o.ζ
∗
[
dr(U(vpi )g

(pi)
• )|V(v℘)

] ]
=

(
1− (•)α−1

f q−1
℘ (αj + β j) + αjβ j

[
(•)α−1

f q−1
℘

]2
)

ef ,n.o.ζ
∗
(

drg(pi)
•

)
=
(

1− (•)αjα
−1
f q−1

℘

) (
1− (•)β jα

−1
f q−1

℘

)
ef ,n.o.ζ

∗
(

drg(pi)
•

)
.
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Finally, noting that
(
g
(pi)
αi

)[pi ] =
(
g
(pi)
βi

)[pi ] = g[pi ], we can put together the previous identities
to prove the claim:

ef ,n.o.ζ
∗(drg) =

1
αi − βi

(
αief ,n.o.ζ

∗(drg
(pi)
αi )− βief ,n.o.ζ

∗(drg
(pi)
βi

)
)

=
1− αiβiαjβ j(α

−1
f q−1

℘ )2

∏
•,?∈{α,β}

(1− •i ?j α−1
f q−1

℘ )
ef ,n.o.ζ

∗(drg[pi ]).

Remark 2.4.9. When (P, Q) ∈ Cθ,r̄
F we write E1,℘(f

∗
Q) for E1,℘(gP, f∗Q) since the quantity depends

only on f∗Q because of the condition on central characters.

Theorem 2.4.10. The value of the twisted triple product p-adic L-function r̄L θ
p (Ğ , F ) : W → Cp

at all (P, Q) ∈ Cθ,r̄
F satisfies

r̄L
θ
p (Ğ , F )(P, Q) =± 1

E(f∗Q)

 ∏
℘∈Qinert

E in
℘ (gP, f∗Q) ∏

℘∈Qsplit

E sp
℘ (gP, f∗Q)

E1,℘(f
∗
Q)


×

〈
ζ∗
(

δs(w−x|F)ğP

)
, f∗Q
〉〈

f∗Q, f∗Q
〉 ,

where s : IF → IL is any section of the restriction IL → IF, µ 7→ µ|F and the Euler factors appearing
in the formula are defined in Lemmas 2.4.6 and 2.4.8.

Proof. We use (2.16) and Proposition 2.4.3 to obtain an explicit expression for the value of
the p-adic L-function at a point (P, Q) ∈ Cθ,r̄

F . Then Lemmas 2.4.6, 2.4.8 give us

r̄L
θ
p (Ğ , F )(P, Q) =± 1

E(f∗Q)

〈
en.o.ζ

∗(ds(w−x|F)ğ
[P ]
P
)
, f∗Q
〉〈

f∗Q, f∗Q
〉

=± 1
E(f∗Q)

 ∏
℘∈Qinert

E in
℘ (gP, f∗Q) ∏

℘∈Qsplit

E sp
℘ (gP, f∗Q)

E1,℘(f
∗
Q)


×
〈
en.oζ∗

(
ds(w−x|F)ğP

)
, f∗Q
〉〈

f∗Q, f∗Q
〉 .

We conclude the proof applying Lemma 2.2.8 to compare p-adic and real analytic differential
operators on cuspforms: en.oζ∗

(
ds(w−x|F)ğP

)
= en.oΠholζ∗

(
δs(w−x|F)ğP

)
.

Remark 2.4.11. Recall that for every (P, Q) ∈ Cθ,r̄
F there is a unitary automorphic representation

ΠP,Q of prime-to-p level. The Euler factors in Theorem 2.4.10 also appear the expression for the local
L-factor L℘(

1
2 , ΠP,Q, r). Indeed, if ℘ ∈ Qinert by using (2.11), (2.10) we compute

E in
℘ (g, f∗) =

(
1− αgα−1

f∗ q−1
℘

) (
1− βgα−1

f∗ q−1
℘

)
=
(

1− χ1,p(v℘)ψi,℘(v℘)q−1/2
℘

) (
1− χ2,p(v℘)ψi,℘(v℘)q−1/2

℘

)
.

Similarly if ℘ ∈ Qsplit by using (2.11), (2.9) we obtain

E sp
℘ (g, f∗) = ∏

•,?∈{α,β}

(
1− •1 ?2 α−1

f∗ q−1
℘

)
= ∏

i,j

(
1− χi,p1(v℘)χj,p2(v℘)ψk,℘(v℘)q−1/2

℘

)
.
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2.5 Geometric theory

2.5.1 Geometric Hilbert modular forms

Let F be a totally real number field and GF = ResL/Q(GL2,F). For any open compact sub-
group K ≤ GF(A

∞) we consider the Shimura variety

ShK(GF)(C) = GF(Q)\(H±)IF × GF(A
∞)/K

where γ ∈ GF(Q) = GL2(F) acts on z = (zτ)τ ∈ (H±)IF via Moebius transformations
γ · z = (τ(γ)zτ)τ . The complex manifold ShK(GF)(C) has a canonical structure of quasi-
projective variety over its reflex field Q ([Mil90], Chapter II, Theorem 5.5). Let ω be the dual
of the tautological quotient bundle on P1

C with p : ω → P1
C the natural projection. The

group GL2(C) acts on P1
C via Moebius transformations and there is a natural way to define a

GL2(C)-action on ω such that the projection p is equivariant. For any weight (k, w) ∈ Z[IF]
2

such that k− 2w = mtF, one can define a line bundle

ω(k,w) =
⊗
τ∈IF

pr∗τ

(
ω⊗kτ ⊗ det

m+kτ
2

)
(2.18)

on (P1
C)

IF with GF(C)-action given as follows. For each τ ∈ IF, the action of GF(C) on

pr∗τ
(
ω⊗kτ ⊗det

m+kτ
2
)

factors through the τ-copy of GL2(C), which in turn acts as the product

of det
m+kτ

2 and the kτ-th power of the natural action on ω. One has to twist the action by such
a power of the determinant because it allows the line bundle to descend to the Galois closure
FGal of F over Q. Indeed, consider the subgroup Zs = Ker

(
NF/Q : ResF/Q(Gm) → Gm

)
of

the center Z = ResF/Q(Gm) of GF and denote by Gc
F the quotient of GF by Zs. The action of

GF(C) on ω(k,w) factors through Gc
F(C), thus ω(k,w) descends to an algebraic invertible sheaf

on ShK(GF)C if K is sufficiently small by ([Mil90], Chapter III, Proposition 2.1), and it has a
canonical model over FGal by ([Mil90], Chapter III, Theorem 5.1).

Suppose F 6= Q, then for every field E, FGal ⊂ E ⊂ C, and sufficiently small compact
open subgroup K ≤ GF(A

∞), one can give a geometric interpretation of Hilbert modular
forms of weight (k, w), level K, defined over E as Mk,w(K; E) = H0(ShK(GF)E, ω(k,w)). To
deal with cuspforms and treat the case F = Q, one has to consider compactifications of the
Shimura variety ShK(GF)Q, which we discuss in Section 2.6.

2.5.2 Integral models

Fix p a rational prime unramified in F and consider a level structure of type K = KpKp, where
Kp is an open compact subgroup of GF

(
ÔF

p)
and Kp = GL2(OF ⊗Zp). The determinant

map det : GF → ResF/Q(Gm) induces a bijection between the set of geometric connected
components of ShK(GF) and cl+F (K), the strict class group of K, cl+F (K) = F×+ \A

∞,×
F / det(K).

Since det(K) ⊆ ÔF
×

, there is a surjection cl+F (K) � cl+F to the strict ideal class group of
F, which one uses to label the geometric components of the Shimura variety ShK(GF). Fix
fractional ideals c1, . . . , ch+F

, coprime to p, forming a set of representatives of cl+F . Then by
strong approximation there is a decomposition

ShK(GF)(C) = G(Q)+\HIF × GF(A
∞)/K = ä

[c]∈cl+F

Shc
K(GF)(C),
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where each Shc
K(GF)(C) is the disjoint union of quotients of HIF by groups of the form

Γ(g, K) = gKg−1 ∩ G(Q)+. A different choice c′ of fractional ideal representing [c] ∈ cl+F
produces a canonically isomorphic manifold Shc′

K (GF)(C) ∼= Shc
K(GF)(C) ([TX16], Remark

2.8). Suppose Kp is sufficiently small so there exists a smooth, quasi-projective Z(p)-scheme
Mc

K representing the moduli problem of isomorphism classes of quadruples (A, ι, λ, αKp)/S

where (A, ι) is a Hilbert-Blumenthal abelian variety over S of dimension g = [F : Q], λ a
c-polarization and αKp a level-Kp structure, ([TX16], Section 2.3).

The group of totally positive units O×F,+ acts on Mc
K by modifying the c-polarization.

The subgroup (K ∩ O×F )2 of O×F,+ acts trivially, where by K ∩ O×F we mean the intersection
of K andO×F ↪→ Z(A∞) in GF(A

∞). Therefore, the finite groupO×F,+/(K ∩O×F )2 acts on the
moduli schemeMc

K and the stabilizer of each geometric connected component is
(

det(K) ∩
O×F,+

)
/(K ∩O×F )2.

Proposition 2.5.1. There is an isomorphism between the quotient ofMcd−1

K (C) by the finite group
O×F,+/(K ∩ O×F )2 and ShcK(GF)(C). Moreover, if det(K) ∩ O×F,+ = (K ∩ O×F )2, then the quo-

tient map Mcd−1

K (C) → ShcK(GF)(C) induces an isomorphism between any geometric connected
component ofMcd−1

K (C) and its image.

Proof. This is ([TX16], Proposition 2.4) with a shift in the indices by the absolute different.
It is necessary for the conventions for the complex uniformization used in ([Hid04], Section
4.1.3).

Definition 2.5.2. Let p be a prime unramified in F, K = KpKp a compact open subgroup of GF(A
∞)

such that Kp is sufficiently small, Kp = GL2(OF ⊗Zp) and det(K) ∩ O×F,+ = (K ∩ O×F )2. The
integral model of the Shimura variety ShK(GF) over Z(p) is the quotient ofMK,F = ä[c]∈cl+F

Mc
K

by O×F,+/(K ∩OF)
2, which we denote ShK(GF).

Note that the assumptions on the level K in the definition are always satisfied up to
replacing Kp by an open compact subgroup ([TX16], Lemma 2.5). Moreover, by Proposition
2.5.1, the scheme ShK(GF) is smooth quasi-projective over Z(p) and has an abelian scheme
with real multiplication over it.

Remark 2.5.3. An integral model ShK(G∗F) of the Shimura variety for the algebraic group G∗F of
level K∗ = K ∩ G∗F(A

∞) is the subscheme ofMd−1

K whose components are indexed by the image of
cl+Q(K

∗) in cl+F (K) [Rap78]. We let ξ : ShK(G∗F)→ ShK(GF) be the natural morphism.

2.5.3 Diagonal morphism

Let L/F be an extension of totally real fields with [F : Q] = g. Consider the map of algebraic
groups ζ : GF −→ GL defined by the natural inclusion ζ(B) : GL2(B⊗Q F) → GL2(B⊗Q L)
of groups for any Q-algebra B. For compact open subgroups K ≤ GL(A

∞) and K′ ≤ K ∩
GF(A

∞) we have a commutative diagram

ShK′(GF)(C)
ζ //

det
��

ShK(GL)(C)

det
��

cl+F (K
′)

ζ //

��

cl+L (K)

��
cl+F

ζ // cl+L ,

(2.19)
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hence for every fractional ideal c of F there is an induced map

ζ : Shc
K′(GF)(C)→ Shc

K(GL)(C).

Suppose that K ≤ GL(A
∞) and K′ ≤ K∩GF(A

∞) satisfy the assumptions in Definition 2.5.2.
There is a morphism of Z(p)-schemes ζ : ShK′(GF) −→ ShK(GL) induced by morphisms
ζ̃ : MK′ ,F → MK,L that maps any quadruple [A, ι, λ, α(K′)p ]/S over a Z(p)-scheme S to the
quadruple

ζ̃
(
[A, ι, λ, α(K′)p ]

)
= [A′, ι′, λ′, α′Kp ]/S

over S defined as follows. First, the abelian scheme A′ is A⊗OF OL, then we can describe
the OL-action on OL via a ring homomorphism ῑ : OL → Mg(OF) by choosing an OF-basis
of OL; the choice of basis induces an identification between A ⊗OF OL and Ag. Thus, the
ring homomorphism ι′ : OL → EndS(A′) is defined as the arrow that makes the following
diagram commute

OL

ι′

((

ῑ // Mg(OF)

��
Mg
(
EndS(A)

) ∼= EndS(A′).

By ([BBGK07], Lemma 5.11), one can compute the dual abelian scheme (A′)∨ ∼= A∨⊗OF d
−1
L/F

and realize that if λ : (c, c+) ∼→ (Homsym
OF

(A, A∨), Homsym
OF

(A, A∨)+) is a c-polarization of
A then λ′ = λ⊗ id is a c⊗OF d

−1
L/F-polarization of A′ = A⊗OF OL . Finally, it is enough to

define ζ̃ for principal N-level structures, for N an OF-ideal. A principal N-level structure is
an OF-linear isomorphism of group schemes (OF/N)2 ∼→ A[N], thus by tensoring such an
isomorphism with OL over OF we obtain a principal N-level structure on A′.

Remark 2.5.4. For any fractional ideal c of F there is a commutative diagram

Mcd−1
F

K′ ,F
ζ̃ //

��

Mcd−1
L

K,L

��
Shc

K′(GF)
ζ // Shc

K(GL)

giving, when F = Q,

ShK′(GL2,Q)

ζ &&

ζ̃ //Md−1
L

K,L

ξ

��
ShK(GL).

2.6 Compactifications and p-adic theory

Sometimes we drop part of the decorations from the symbols denoting Shimura varieties
when we believe it does not cause confusion, both to simplify the notation and to state facts
that hold for both groups G and G∗. We denote by Sh∗K the minimal compactification of
ShK which is normal and projective. By choosing some auxiliary data Σ, one can construct
an arithmetic toroidal compactification Shtor

K,Σ smooth and projective over Z(p). It comes
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equipped with a natural map
∮

: Shtor
K −→ Sh∗K and an open immersion ShK ↪→ Shtor

K

such that the boundary D = Shtor
K \ ShK is a relative simple normal crossing Cartier divi-

sor. The Hilbert-Blumenthal abelian scheme A over ShK extends to a semi-abelian scheme
Asa → Shtor

K with an OF-action, a K-level structure and a zero section e : Shtor
K → Asa

([Rap78]; [Lan13], Chapter VI). There is a canonical way to extend the rank 2 vector bundle
of relative de Rham cohomology H1

dR(A/ShK,R) to an (OShtor
K
⊗Z OF)-module H1 locally

free of rank 2 over Shtor
K,R together with a logarithmic Gauss-Manin connection and Kodaira-

Spencer isomorphism. If ω = e∗
(
Ω1
Asa/Shtor

K

)
is the cotangent space at the origin of the uni-

versal semi-abelian scheme, the vector bundle H1 has an OF-equivariant Hodge filtration

0 // ω // H1 // Lie((Asa)∨) // 0.

Let R be an OFGal,(p)-algebra in which the discriminant dF/Q is invertible. For a coherent
(OShtor

K,R
⊗Z OF)-module M, we denote by M =

⊕
τ∈IF

Mτ its canonical decomposition for
the OF-action ([Kat78], Lemma 2.0.8): Mτ is the direct summand of M on which OF acts via
τ : OF → R→ OShtor

K,R
. Then the τ-component of the Hodge filtration is

0 // ωτ
// H1

τ
// ∧2(H1

τ)⊗ω−1
τ

// 0 .

For a weight (k, w) ∈ Z[IF]
2 with k − 2w = mtF, we define the integral model of the line

bundle (2.18) by
ω
(k,w)
G :=

⊗
τ∈IF

(
(∧2H1

τ)
−m+kτ

2 ⊗ωkτ
τ

)
as a sheaf over Shtor

K,R(G). Hilbert cuspforms can be identified with its global sections

Sk,w(K; R) = H0(Shtor
K (G)R, ω

(k,w)
G (−D)

)
.

Remark 2.6.1. A general compact open subgroup K ≤ G(A∞) of prime-to-p level doesn’t satisfy the
assumptions in Definition 2.5.2. Anyway, one can work with modular forms of level K by considering
a subgroup K′ that does satisfy them and then take K/K′-invariants ([TX16], Section 6.4).

Definition 2.6.2. Let R be an OFGal,(p)-algebra and let (k, ν) ∈ Z[IF]×Z be any weight. We fix
one τ◦ ∈ IF and set ∧2H1

◦ := ∧2H1
τ◦ . We define a line bundle over Shtor

K,R(G
∗) by

ω
(k,ν)
G∗ := (∧2H1

◦)
ν−|k| ⊗

⊗
τ∈IF

ωkτ
τ .

It provides a geometric incarnation of cuspforms on G∗ of weight (k, ν) ∈ Z[IF] ×Z by setting
S∗k,ν(K; R) = H0(Shtor

K (G∗)R, ω
(k,ν)
G∗ (−D)

)
.

According to [TX16], a weight (k, w) ∈ Z[IF]
2, k− 2w = mtF, is cohomological if 2−m ≥

kτ ≥ 2 for all τ ∈ IF. For any cohomological weight we define the vector bundle F (k,w)
G on

Shtor
K,R(G) by F (k,w)

G :=
⊗

τ∈IF
F (k,w)

τ for

F (k,w)
τ := (∧2H1

τ)
2−m−kτ

2 ⊗ Symkτ−2H1
τ .
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Similarly, a weight (k, ν) ∈ Z[IF]×Z is cohomological if k ≥ 2tF and ν ≥ |k− tF|. For any
cohomological weight we define the vector bundle F (k,ν)

G∗ on Shtor
K,R(G

∗) by

F (k,ν)
G∗ := (∧2H1

◦)
ν+|tF−k| ⊗

⊗
τ∈IF

Symkτ−2H1
τ .

The extended Gauss-Manin connection on H1 induces by functoriality logarithmic inte-
grable connections

∇ : F (k,w)
G → F (k,w)

G ⊗Ω1
Shtor

K,R(G)
(log D)

and
∇ : F (k,ν)

G∗ → F
(k,ν)
G∗ ⊗Ω1

Shtor
K,R(G∗)

(log D)

out of which one can form the complexes

DR•
(
F (k,w)

G
)
=

[
0→ F (k,w)

G
∇−→ · · · ∇−→ F (k,w)

G ⊗Ωg
Shtor

K,R(G)
(log D)→ 0

]
, (2.20)

DR•
(
F (k,ν)

G∗
)
=

[
0→ F (k,ν)

G∗
∇−→ · · · ∇−→ F (k,ν)

G∗ ⊗Ωg
Shtor

K,R(G∗)
(log D)→ 0

]
(2.21)

equipped with their natural Hodge filtration. We denote by DR•c
(
F (k,w)

G
)

(resp. DR•c
(
F (k,ν)

G∗
)
)

the complex of sheaves obtained from (2.20) (resp.(2.21)) by tensoring with OShtor
K,R(G)(−D)

(resp. OShtor
K,R(G∗)

(−D)).

One can associate dual BGG complexes to DR•
(
F (k,w)

G
)
, DR•

(
F (k,ν)

G∗
)

and their compactly

supported versions. We recall the definition of BGG(F (k,ν)
G∗ ) and we refer to ([TX16], Section

2.15) for the definition of BGG(F (k,w)
G ). The compactly supported version is obtained by

tensoring with the sheaf of functions vanishing at the boundary divisor. For any subset
J ⊂ IF, let sJ ∈ {±1}IF be the element whose τ-component is −1 if τ 6∈ J and 1 if τ ∈ J. For
0 ≤ j ≤ g we put

BGGj(F (k,ν)
G∗ ) =

⊕
J⊂IF , #J=j

ω
sJ ·(k,ν)
G∗ eJ

for eJ the Cech symbol and ω
sJ ·(k,ν)
G∗ = (∧2H1

◦)
ν−|IF\J|−∑τ∈J kτ ⊗⊗τ 6∈J ω2−kτ

τ ⊗⊗τ∈J ωkτ
τ .

There are differential operators d : BGGj(F (k,ν)
G∗ ) → BGGj+1(F (k,ν)

G∗ ) given on local sections
by d : feJ 7→ ∑τ 6∈J Θτ,kτ−1(f)eτ ∧ eJ where

Θτ,kτ−1(f) =
(−1)kτ−2

(kτ − 2)! ∑
ξ

τ0(ξ)
kτ−1(ξ)aξ qξ

if the local section is written as f = ∑ξ aξ qξ .

Theorem 2.6.3. ([TX16], Theorem 2.16; [LP], remark 5.24) Let R be an FGal-algebra, then for S =

F (k,w)
G (resp. F (k,ν)

G∗ ) there are canonical quasi-isomorphic embeddings BGG•
(
S
)
↪→ DR•

(
S
)

and
BGG•c

(
S
)
↪→ DR•c

(
S
)

of complexes of abelian sheaves on Shtor
K,R(G) (resp. Shtor

K,R(G
∗)). Moreover,

the Hodge spectral sequences for both complexes degenerate at the first page.

p-Adic theory

Katz’s idea for a geometric theory of p-adic modular forms [Kat73] consists in removing
from the relevant Shimura variety the preimages, under the specialization map, of those
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points in the special fiber that correspond to non-ordinary abelian varieties.
Let E ⊂ C be a number field containing FGal. The fixed embedding ιp : Q ↪→ Qp deter-

mines a prime ideal ℘ | p of E. We denote by E℘ the completion, O℘ the ring of integers and
κ the residue field. Let Asa

κ be the semi-abelian scheme over the special fiber Shtor
K,κ of the

Shimura variety. The determinant of the map, induced by Verschiebung V : (Asa
κ )(p) → Asa

κ

between cotangent spaces at the origin, corresponds to a characteristic p Hilbert modular
form Ha ∈ H0(Shtor

K,κ , det(ω)⊗(p−1)), called the Hasse invariant. The ordinary locus Shtor,ord
K,κ

is the complement of the zero locus of the Hasse invariant. Let S tor
K denote the formal com-

pletion of Shtor
K,O℘

along its special fiber and j :
]
Shtor,ord

K,κ
[
↪→ S tor

K,rig the inverse image of the
ordinary locus under the specialization map sp : S tor

K,rig → Shtor
K,κ . Let F be a coherent sheaf

on S tor
K,rig; one defines j†F to be the sheaf whose sections on an admissible open U ⊂ S tor

K,rig

are the direct limit of Γ(V ∩U,F ) computed over strict neighborhoods V of
]
Shtor,ord

K,κ
[

in
S tor

K,rig. For the minimal compactification Sh∗K,κ one can similarly define the ordinary locus

Sh∗,ord
K,κ of the special fiber, which is an affine scheme, since det(ω) is an ample line bundle

on Sh∗K,κ . This is a very convenient feature because it implies the existence of a fundamental
system of strict affinoid neighborhoods of ]Sh∗,ord

K,κ [.

Theorem 2.6.4. We recall that overconvergent cuspforms of weight (k, w) ∈ Z[IF]
2 are defined

as S†
k,w(K; E℘) = H0(S tor

K,rig, j†(ω(k,w)
G (−D)

))
. For any cohomological weight (k, w) ∈ Z[IF]

2,

k− 2w = mtF, the hypercohomology group Hg(S tor
K,rig, j†DR•c

(
F (k,w)

G
))

can be computed either as

S†
k,w(K; E℘)

∑τ∈IF
Θτ,kτ−1

(
S†

sτ ·(k,w)
(K; E℘)

) or
H0

rig
(
S tor

K,rig, j†
(
F (k,w)

G ⊗Ωg
S tor

K,rig(G)

))
∇H0

rig
(
S tor

K,rig, j†
(
F (k,w)

G ⊗Ωg−1
S tor

K,rig(G)

)) .

Proof. This theorem can be proved as ([TX16], Theorem 3.5). Indeed, Theorem 2.6.3 gives us
a quasi-isomorphism of complexes

DR•c (F
(k,w)
G ) ∼= BGG•c (F

(k,w)
G ),

then the isomorphism of Hg(S tor
K,rig, j†DR•c

(
F (k,w)

G
))

with

Hg(S ∗K,rig, j†∮
∗BGGc(F (k,w)

G
)) ∼= Hg(S ∗K,rig, j†

∮
∗DR•c

(
F (k,w)

G
))

follows by applying the Leray spectral sequence for the composition

S tor
K,rig → S ∗K,rig → SpaQp

together with the vanishing of the higher derived images of subcanonical automorphic bun-
dles ([Lan17], Theorem 8.2.1.2). We conclude that

Hg(S tor
K,rig, j†DR•c

(
F (k,w)

G
)) ∼= H0

rig
(
S tor

K,rig, j†(F (k,w)
G ⊗Ωg

S tor
K,rig(G)

))
∇H0

rig
(
S tor

K,rig, j†
(
F (k,w)

G ⊗Ωg−1
S tor

K,rig(G)

))
because there is a fundamental system of affinoid neighborhoods of the ordinary locus on
the minimal compactification.

Remark 2.6.5. Replacing the group G by G∗ in Theorem 2.6.4, the conclusion still holds for any
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cohomological weight (k, ν) ∈ Z[IF] ×Z and the group Hg(S tor
K,rig, j†DR•c

(
F (k,ν)

G∗
))

, if we define

overconvergent cuspforms for G∗ as S∗,†k,ν (K; E℘) = H0(S tor
K,rig, j†(ω(k,ν)

G∗ (−D)
))

.

Lemma 2.6.6. Let p | p be a prime OF-ideal. The partial Frobenius Frp ([TX16], Section 3.12)
acts on the image of S†

k,w(K, E℘) in the cohomology group Hg(S tor
K,rig, j†DR•c

(
F (k,w)

G
))

as Frp =

NF/Q(p)V(p).

Proof. Taking into account the action of the partial Frobenius on j†Ωg
S tor

K,rig(G)
, the same com-

putation as in ([Col96], Remark p.339) shows that Frp acts on the image of S†
k,w(K, E℘)

in Hg(S tor
K,rig, j†DR•c

(
F (k,w)

G
))

as v
k−tF+

(2−m)tF−k
2

p [p], since [p] is the operator that acts on q-

expansion by a(y, f|[p]) = a(yv−1
p , f). We conclude noting that [p] = vtF−w

p V(p) as operators
on S†

k,w(K, E℘).

If we denote by Up the operator defined in ([TX16], Section 3.18), the equality UpFrp =

〈p−1〉vtF
p of ([TX16], Lemma 3.20) implies that U(p) = Up〈p〉 as operators on S†

k,w(K; E℘). In
particular, we can restate ([TX16], Corollary 3.24) by saying that if f ∈ S†

sJ ·(k,w)(K; E℘) is a
generalized eigenform for U0(p) with non-zero eigenvalue λp, then

valp(λp) ≥ ∑
τ∈IF,p\J

(kτ − 1) (2.22)

where IF,p is the subset of those embeddings F ↪→ Q that induce the prime p when composed
with the fixed p-adic embedding ιp : Q ↪→ Qp.

Corollary 2.6.7. Let F/Q be a real quadratic field in which pOF = p1p2 splits. Let f ∈ Sk,w(K; Q)

an eigenform of prime to p level. Then the p-adic cuspforms d1−k1
1 (f [p1,p2]), d1−k2

2 (f [p1,p2]) are over-
convergent.

Proof. We prove the corollary building on an idea of Loeffler, Skinner and Zerbes ([LSZ16],
Proposition 4.5.3). Let

1− a(vp2 , f)X + εf(p2)v
k−tF
p2 X2 = (1− α0,2X)(1− β0,2X)

be the Hecke polynomial of f for T0(p2). We denote by fα2 , fβ2 the two p2-stabilizations of f
and without loss of generality suppose valp(α0,2) ≤ valp(β0,2). If we write Θi = Θτi ,kτi−1 for

i = 1, 2, then the classes of f [p1]
α2 , f [p1]

β2
are trivial in the quotient

S†
k,w(K; E℘)

Im(Θ1) + Im(Θ2)

because they are annihilated by the invertible operator U0(p1). For i = 1, 2 consider the
Hecke-equivariant projections

pri : Im(Θ1) + Im(Θ2)→
Im(Θi)

Im(Θ1) ∩ Im(Θ2)
.

We immediately see that pr2(f
[p1]
α2 ) = 0 because of the lower bound (2.22) on the slopes of

U0(p2), therefore pr2(f
[p1]) =

β2,0
β2,0−α2,0

pr2(f
[p1]
β2

) which implies

U0(p2)pr2(f
[p1]) = β0,2 · pr2(f

[p1]).
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We claim that [p2]pr2(f
[p1]) = 1

β0,2
pr2(f

[p1]). Indeed, the equality of Hecke operators

T0(p2) = U0(p2) + α0,2β0,2[p2]

allows us to compute that

[p2]pr2(f
[p1]) =

1
α0,2β0,2

[
T0(p2)pr2(f

[p1])−U0(p2)
β2,0

β2,0 − α2,0
pr2(f

[p1]
β2

)
]

=
1

α0,2β0,2

[
a(p2, f)pr2(f

[p1])− β0,2pr2(f
[p1])

]
=

1
β0,2

pr2(f
[p1]).

Thus, pr2(f
[p1,p2]) = 0. By exchanging the roles of the two primes p1, p2 we also have that

pr1(f
[p1,p2]) = 0, which proves f [p1,p2] ∈ Im(Θ1) ∩ Im(Θ2).

2.7 A p-adic Gross-Zagier Formula

2.7.1 De Rham realization of modular forms

Let E be a number field, following Voevodsky [Voe00] we consider two categories of mo-
tives over E: the category of effective Chow motives denoted CHMeff with a natural functor
h : SmProj/E → CHMeff from the category SmProj/E of smooth and projective schemes
over E, and the triangulated category DMeff of effective geometric motives with the natural
functor Mgm : Sm/E → DMeff from the category Sm/E of smooth schemes over E. Since
number fields have characteristic zero, these two categories are related by a full embedding
CHMeff → DMeff that makes the diagram

SmProj/Q
//

h
��

Sm/Q

Mgm
��

CHMeff // DMeff

commute ([Voe00], Proposition 2.1.4 and Remark).
Let F be a totally real number field of degree g over Q and let E be any field containing

FGal. The Shimura variety ShK(G∗)Q has a universal Hilbert-Blumenthal abelian scheme
A → ShK(G∗), the OF-action induces a ring homomorphism F ↪→ EndShK(G∗)(A) ⊗Z Q.
We denote by CMH(ShK(G∗)) the category of Chow motives over ShK(G∗) [DM91]. Since
the decomposition of the Chow motive h(A/ShK(G∗)) =

⊕
i hi(A/ShK(G∗)) of A over

ShK(G∗) is functorial ([DM91], Theorem 3.1), there is an isomorphism of Q-vector spaces
([Kin98], Proposition 2.2.1)

EndShK(G∗)(A)⊗Z Q
∼−→ EndCHM(ShK(G∗)) (h1(A/ShK(G∗)))⊗Z Q.

One denotes by eτ ∈ EndCHM(ShK(G∗)) (h1(A/ShK(G∗))) ⊗Z E, τ ∈ IF, the idempotents
coming from ∏τ F = F⊗ E ↪→ EndCHM(ShK(G∗)) (h1(A/ShK(G∗)))⊗Z E.

Definition 2.7.1. Let k ∈ N[IF], k ≥ 2tF. The relative motive V k ∈ CHM(ShK(G∗))E is defined
as

V k =
⊗
τ∈IF

Symkτ−2h1(A/ShK(G∗))eτ
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following the conventions of ([Kin98], p.72) for the symmetric products. The motive V k is a direct
factor of h(A|k−2tF |/ShK(G∗)), where A|k−2tF | denotes the (|k| − 2g)-fold fiber product of A over
ShK(G∗), thus it corresponds to an idempotent

ek ∈ CHg(|k|−2g)
(
A|k−2tF | ×ShK(G∗) A

|k−2tF |
)
⊗Z E

such that Mgm(A|k−2tF |)ek = V k.

Proposition 2.7.2. ([Wil12], Corollary 3.9) Suppose k > 2tF and let Uk−2g be any smooth compact-
ification of A|k−2tF |, then the graded part of weight zero with respect to the motivic weight structure
on CHMeff

E , Gr0Mgm

(
A|k−2tF |

)ek
, is canonically a direct factor of the Chow motive Mgm(Uk−2g).

Hence, it corresponds to an idempotent θk ∈ CHg(|k|−2g+1)(Uk−2g ×Q Uk−2g)⊗Z E.

Proposition 2.7.3. Suppose F = Q and let k > 2 be an integer. For any smooth compactifica-
tion Wk−2 of the (k − 2)th-fold product of the universal elliptic curve E over the modular curve
ShK′(GL2,Q), there exists an idempotent θk ∈ CHk−1(Wk−2 ×Q Wk−2)⊗Z Q such that

θ∗k H∗dR(Wk−2/Q) = θ∗k Hk−1
dR (Wk−2/Q)

is functorially isomorphic to parabolic cohomology H1
par
(
Shtor

K′ , (F
(k,k−1)
GL2,Q

,∇)
)

with its Hodge filtra-
tion ([BDP13], Section 2.1).

Proof. Proposition 2.7.2 provides an idempotent θk such that

θ∗k Mgm(Wk−2) = Gr0Mgm(E k−2)ek .

We claim that the proof of ([BDP13], Lemma 2.2) applies to our situation. Indeed, the main
ingredient of that proof is a result of Scholl ([Sch90], Theorem 3.1.0), which can be applied
to any smooth compactification Wk−2 since the motive considered by Scholl is isomorphic
to Gr0Mgm(E k−2)ek by ([Wil09] Corollary 3.4(b)). Note that the idempotent e in ([Wil09],
Definition 3.1) acts as the idempotent ek on Mgm(E k−2) because the action of the torsion
appearing in e is trivial since E k−2 → ShK′(GL2,Q) is an abelian scheme.

Proposition 2.7.4. Let L/Q be a real quadratic extension and ` ∈ N[IL], ` > 2tF a non-parallel
weight. For any smooth compactification U`−4 of the (|`| − 4)th-fold product of the universal abelian
surface over ShK(G∗L), there exists an idempotent

θ` ∈ CH2(|`|−3)(U`−4 ×Q U`−4)⊗Z L

such that θ∗` Hi+|`|−4
dR (U`−4/Q) is functorially isomorphic to Hi(ShK, DR•(F (`,|`−tL |)

G∗L
)) with its

Hodge filtration.

Proof. Since the weight ` is not parallel, Proposition 2.7.2 and ([Wil12], Theorem 3.6) provide
an idempotent θ` such that θ∗`Mgm(U`−4) = V ` . Then Kings proved in ([Kin98], Corollary
2.3.4) that the (i + |`| − 4)-th cohomology of the de Rham realization of V ` is isomorphic to
Hi(ShK, DR•(F (`,|`−tL |)

G∗L
)).
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2.7.2 Generalized Hirzebruch-Zagier cycles

Let L/Q be a real quadratic extension, K ⊂ V11(AOL) a small enough (Definition 2.5.2)
congruence subgroup, K′ = K ∩GL2(A

∞), and let ξ : ShK(G∗L) → ShK(GL) be the map of
Shimura varieties derived from the inclusion G∗L ↪→ GL.

Let ğ ∈ S`,x(V11(AOL); L; Q) be a eigenform of either parallel weight ` = 2tL or non-
parallel weight ` > 2tL such that ` − 2x = ntL. Let f ∈ Sk,w(V1(N); Q) be an elliptic
newform such that k − 2w = m. We suppose that the weights of ğ and f are balanced.
We consider E/Q a finite Galois extension containing the Fourier coefficients of ğ and f.
We want to realize these modular forms in the de Rham cohomology of some proper and
smooth variety. The pullback ξ∗ğ lives in S∗`,x(K; L; E), which by (2.2) is isomorphic to
S∗`,`−tL

(K; L; E). Thanks to Theorem 2.6.3 we can realize the latter space as a subgroup of

the hypercohomology group H2(Shtor
K,E, DR•(F `,|`−tL |

G∗L
)), which is simply the de Rham coho-

mology group H2
dR(ShK(G∗L)/E) when ` = 2tL. Instead, when ` > 2tL is not parallel, let

U`−4 be any smooth compactification of A|`|−4; then, we can invoke Proposition 2.7.4 to es-
tablish that the differential attached to Ψx,|`−tL |(ξ

∗ğ), where Ψx,|`−tL | is defined in (2.2), lives

in F|`|−2H|`|−2
dR (U`−4/E). Similarly, if k = 2, Ψw,1(f) ∈ S2,1(K′; E) ⊂ F1H1

dR(Shtor
K′ (GL2,Q)/E),

while when k > 2 we can consider any smooth compactification Wk−2 of E k−2 to see that the
class of the differential ωΨw,k−1(f)

lives in Hk−1
dR (Wk−2/E), by Proposition 2.7.3.

Definition 2.7.5. Choose a prime p coprime to M. Let E℘ be the closure of ιp(E) in Qp and suppose
that ğ, f are p-nearly ordinary. We write ω for the differential ωΨx,|`−tL |(ξ

∗ğ) and we take η to be the

class in the Ψw,k−1(f)-isotypic part of H1
par
(
Shtor

K′ , (F
(k,k−1)
GL2,Q

,∇)
)u.r. whose image in the 0-th graded

piece, H1(Shtor
K′ ,E℘

, ω2−k
GL2,Q

), is equal to the image of vol(K′)
〈f∗ ,f∗〉 ·ωΨw,k−1(f∗).

The class η ∈ H1
par
(
Shtor

K′ , (F
(k,k−1)
GL2,Q

,∇)
)u.r. satisfies

Frp(η) = αf∗ pw−1η, (2.23)

where the eigenvalue is a p-adic unit since f∗ is p-nearly ordinary. Indeed, by definition
η = [c · Ψw,k−1(fβ)] for some non-zero constant c, and applying Lemmas 2.1.7 and 2.6.6 we
can compute

Frp(η) = pV(p)[c ·Ψw,k−1(fβ)] = p · pk−1−w[c ·Ψw,k−1(V(p)fβ)]

= pk−w[c ·Ψw,k−1(U(p)−1fβ)] = pk−wβ−1
f η = αf∗ pw−1η,

since β−1
f = αfψf(p)−1 p−1 = αf∗ p−m−1.

For all s ≥ 0 we want to consider the cohomology class

π∗1 ω ∪ π∗2 η ∈ F|`|−2−sH|`|+k−3
dR

(
U`−4 ×E℘ Wk−2

)
.

Our goal is to define a null-homologous cycle on U`−4×E Wk−2 whose syntomic Abel-Jacobi
map can be evaluated at π∗1 ω ∪ π∗2 η. Let Z`,k be a proper smooth model of U`−4 ×E℘ Wk−2

over OE℘ of relative dimension d, and denote by Z`,k its generic fiber. For all integers i ≥ 0,
the syntomic cohomology groups of Z`,k sit in a short exact sequence of the form

0 // H2i−1
dR (Z`,k)/Fi ι // H2i

syn(Z`,k, i) π // Fi H2i
dR(Z`,k).
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The syntomic cycle class map ([Bes00], Proposition 5.4) is compatible with the de Rham cycle
class map producing a commuting diagram

CHi(Z`,k)
clsyn //

Res
��

H2i
syn(Z`,k, i)

π

��
CHi(Z`,k)

cldR // Fi H2i
dR(Z`,k),

where on the left hand side are the Chow groups of algebraic cycles modulo rational equiv-
alence. The restriction of the syntomic cycle class map clsyn to the subgroup of de Rham
null-homologous cycles CHi(Z`,k)0, i.e., the kernel of the composition cldR ◦ Res, has image
landing in H2i−1

dR (Z`,k)/Fi. The syntomic Abel-Jacobi map

AJp : CHi(Z`,k)0 −→
(

Fd−i+1H2(d−i)+1
dR (Z`,k)

)∨
(2.24)

is obtained by identifying the target using Poincaré duality.
We determine the positive integer s and make sure the numerology works. The di-

mension of the variety U`−4 ×E Wk−2 is d = 2|`| + k − 7, therefore the cycle we want has
to be of dimension d − i such that 2(d − i) + 1 = |`| + k − 3, and s ≥ 0 has to satisfy
|`| − 2− s = (d− i) + 1. Hence

(d− i) =
|`|+ k− 4

2
, s =

|`| − k− 2
2

(2.25)

with s ≥ 0 since the weights are balanced.

Definition of the cycles

We treat separately the case (`, k) = (2tL, 2) and the general case (`, k) > (2tL, 2) with ` not
parallel. Set γ + 1 = |`|+k−4

2 and consider the finite map

ϕ : Eγ −→ A|`|−4 ×E E k−2

(x, P1, . . . , Pγ) 7→ (ζ(x), P′1 ⊗ 1, . . . , P′|`|−4 ⊗ 1; x, P′|`|−3, . . . , P′2γ)

where (P′1, . . . , P′2γ) = (P1, . . . , Pγ, P1, . . . , Pγ) and P′i ⊗ 1 is the point P′i ⊗ 1 → E ⊗Z OF →
A. The definition makes sense because 2γ = |`| − 4 + k − 2. The variety Eγ has dimen-
sion equal to γ + 1 and we will define the null-homologous cycle by first compactifying
and then by applying an appropriate correspondence. Let W0 be the smooth and pro-
jective compactification of the modular curve ShK′(GL2,Q). We consider Wγ, U`−4, Wk−2

smooth and projective compactifications of Eγ,A|`|−4, E k−2 respectively, such that Wγ has
a map Wγ → W0 extending Eγ → ShK′(GL2,Q); then the map ϕ defines a rational mor-
phism ϕ : Wγ

// U`−4 ×E Wk−2 . Using Hironaka’s work on resolution of singularities
([Hir64], Chapter 0.5, Question (E)), we can assume the rational map ϕ has a representative
ϕ : Wγ −→ U`−4 ×E Wk−2 defined everywhere, up to replacing the smooth and projective
compactification of Eγ. Furthermore, by desingularizing the fibers over the cusps, we can as-
sume that Wγ → W0 is smooth. By spreading out, there is an open of Spec(OE) over which
all our geometric objects can be defined simultaneously and retain their relevant features:
we have smooth and projective models Wγ, U`−4, Wk−2 of Wγ, U`−4, Wk−2 respectively, the
map ϕ extends to a map ϕ̃ : Wγ −→ U`−4 ×Wk−2 and Wγ → W0 is smooth.
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Remark 2.7.6. If X → Spec(E) is a quasi-compact scheme of finite type and X1, X2 are two models
defined over some open U ⊂ Spec(OE), then every identification (X1)E ∼= (X2)E of their generic
fibers can be spread out to an isomorphism (X1)V ∼= (X2)V over some open V ⊂ U.

In particular, up to shrinking further the open subset of Spec(OE), we can also assume
that the fibers of Wγ and Wk−2 over the integral model of the open modular curve, and the
fiber of U`−4 over the integral model of the open Hilbert modular surface come equipped
with isomorphisms with the canonical models E γ, E k−2 and A |`|−4 – obtained as the solu-
tion of the relevant moduli problems – of Eγ, E k−2 and A|`|−4 respectively.

When ` = 2tL and k = 2 we define correspondences on U0 ×W0 as follows. We assume
the number field E is large enough such that U0/E (resp. W0/E) is the disjoint union of
its geometrically connected components U0/E = äi U0,i (resp. W0/E = äj W0,j) and we
pick an E-rational point ai ∈ U0,i (resp. bj ∈ W0,j) for every such component. Consider the
following morphisms: for every pair (i, j) indexing a geometrically irreducible component of
Z = U0 ×E W0, we define qi,j : Z → U0,i ×E W0,j ↪→ Z as the map that restricts to the natural
inclusion of U0,i ×E W0,j into Z and maps any other geometrically irreducible component
to the point (ai, bj). Similarly, we define the morphisms qai ,j : Z → {ai} ×W0,j ↪→ Z,
qi,bj

: Z → U0,i × {bj} ↪→ Z and qai ,bj
: Z → {ai} × {bj} ↪→ Z. Consider the correspondences

Pi,j = graph(qi,j), Pai ,j = graph(qai ,j), Pi,bj
= graph(qi,bj

), Pai ,bj
= graph(qai ,bj

),

in CH6(Z×E Z). We define

P = ∑
i,j

(
Pi,j − Pai ,j − Pi,bj

+ Pai ,bj

)
that acts on CH•(Z) by P∗ = pr2,∗(P · pr∗1); in particular, for any cycle S ∈ CH•(Z), we have

P∗(S) = ∑
i,j

[
(qi,j)∗ − (qai ,j)∗ − (qi,bj

)∗ + (qai ,bj
)∗
]
(S).

For i, j running in the set of indices of the geometrically connected components of U0 and W0

the correspondences (Pi,j− Pai ,j− Pi,bj
+ Pai ,bj

) are idempotents and orthogonal to each other,
hence P ◦ P = P in CH6(Z×E Z), i.e., P is a projector. We denote by P̃ the correspondence
on U0 ×W0 defined over some open of Spec(OE) obtained by spreading out P.

When (`, k) > (2tL, 2) with ` non-parallel, we obtain a correspondence on U`−4 ×Wk−2

by spreading out those correspondences considered in Section 2.7.1. Indeed, the idempo-
tents θ` ∈ CH2(|`|−3)(U`−4 ×E U`−4) ⊗Z L and θk ∈ CH|k|−1(Wk−2 ×E Wk−2) ⊗Z Q ex-
tend to correspondences on the integral models θ̃` ∈ CH2(|`|−3)(U`−4 × U`−4) ⊗Z L and
θ̃k ∈ CH|k|−1(Wk−2 ×Wk−2)⊗Z Q respectively.

Definition 2.7.7. For all but finitely many primes p, we define the Hirzebruch-Zagier cycle of weight
(2tL, 2) to be

∆2tL ,2 = P̃∗ ϕ̃∗[W0] ∈ CH2(U0 ×OE,℘ W0).

Proposition 2.7.8. The Hirzebruch-Zagier cycle ∆2tL ,2 ∈ CH2(U0 ×OE,℘ W0) is de Rham null-
homologous.

Proof. To verify that cldR(∆2tL ,2) is zero in H4
dR(Z/E℘), it suffices to show that the projec-

tion P∗H4
dR(Z/E) is trivial since the cycle is defined over E. After base-change to C, via
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the fixed complex embedding ι∞ : Q ↪→ C, Poincaré duality tells us that it is enough to
prove the projector annihilates the second singular homology, i.e., P∗H2(Z(C)) = 0. By
Kunneth formula and the fact that each connected component of U0(C) is simply connected,
we compute that P∗H2(Z(C)) = P∗(H0(U0(C))⊗ H2(W0(C))⊕ H2(U0(C))⊗ H0(W0(C))),
which we can show to be zero by the explicit definition of the projector P. Indeed, let
[x] ⊗ [C] ∈ H0(U0(C)) ⊗ H2(W0(C)) be a simple tensor for x ∈ U0(C) a point, then for
all i, j we find(

Pi,j − Pai ,j − Pi,bj
+ Pai ,bj

)
([x]⊗ [C]) =

(
(qi,j)∗ − (qai ,j)∗ − (qi,bj

)∗ + (qai ,bj
)∗
)
([x]⊗ [C])

= [ai]⊗ [Cj]− [ai]⊗ [Cj] = 0,

where (qi,bj
)∗([x]⊗ [C]) = 0 = (qai ,bj

)∗([x]⊗ [C]) because the dimension of the pushforward
drops. Similarly, if [D]⊗ [y] ∈ H2(U0(C))⊗ H0(W0(C)) is a simple tensor for y ∈ W0(C) a
point, then

(
Pi,j − Pai ,j − Pi,bj

+ Pai ,bj

)
([D]⊗ [y]) = 0 for all i, j.

Definition 2.7.9. Let ` ∈ Z[IL], ` > 2tL, be a non-parallel weight and k > 2 an integer such that
(`, k) is a balanced triple. For all but finitely many primes p, the generalized Hirzebruch-Zagier cycle
of weight (`, k) is

∆`,k = (θ̃`, θ̃k)∗ ϕ̃∗[Wγ] ∈ CHi(U`−4 ×OE,℘ Wk−2)⊗Z L.

Proposition 2.7.10. Let ` ∈ Z[IL], ` > 2tL, be a non-parallel weight and k > 2 an integer such
that (`, k) is a balanced triple. The generalized Hirzebruch-Zagier cycle ∆`,k ∈ CHi(U`−4 ×OE,℘

Wk−2)⊗Z L is de Rham null-homologous.

Proof. The class cldR(∆`,k) belongs to (θ`, θk)∗H2i
dR(U`−4 ×E℘ Wk−2) and by Poincaré duality,

it is trivial if and only if

(θ`, θk)
∗H2(d−i)

dR (U`−4 ×E℘ Wk−2) =
⊕

µ+ν=2(d−i)

(θ`)
∗Hµ

dR(U`−4)⊗ (θk)
∗Hν

dR(Wk−2) (2.26)

is trivial. By Propositions 2.7.4 and 2.7.3, we have

θ∗` Hµ
dR(U`−4) = Hµ−|`|+4(ShK, DR•(F (`,`−t)

G∗L
)
)

and θ∗k H∗dR(Wk−2) = θ∗k Hk−1
dR (Wk−2) = H1

par
(
Shtor

K , (F (k,k−1)
GL2,Q

,∇)
)
. Hence, ν = k− 1 forces µ

to be µ = |`| − 3 and the group

θ∗` H|`|−3
dR (U`−4) = H1(ShK, DR•(F (`,`−t)

G∗L
)) (2.27)

is trivial. Indeed, by ([Nek18], proof of A6.17 and A6.20), the cohomology group

H1(ShK, DR•(F (`,`−t)
G∗L

))

is identified with the intersection cohomology of the BB-compactification of ShK(G∗L), that in
turn is trivial in degree 1 by computations using Lie algebra cohomology ([Nek18], Sections
5.11, 6.3, 6.4).
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2.7.3 Evaluation of syntomic Abel-Jacobi

We are interested in computing AJp(∆`,k)(π
∗
1 ω ∪ π∗2 η) and to relate it to some value of the

twisted triple product p-adic L-function outside the range of interpolation. Let ω̃ (resp. η̃) be
a lift of ω (resp. η) to fp-cohomology; since the Hirzebruch-Zagier cycle is null-homologous
the computation is independent of the choice of lifts. We start by treating the case (`, k) =

(2tL, 2):

AJp(∆2tL ,2)(π
∗
1 ω ∪ π∗2 η) = 〈clsyn(∆2tL ,2), π∗1 ω̃ ∪ π∗2 η̃〉fp

= 〈P̃∗clsyn(ϕ̃∗[W0]), π∗1 ω̃ ∪ π∗2 η̃〉fp
= 〈clsyn(ϕ̃∗[W0]), ∑ i,j(P̃i,j − P̃ai ,j − P̃i,bj

+ P̃ai ,bj
)∗(π∗1 ω̃ ∪ π∗2 η̃)〉fp

= 〈clsyn(ϕ̃∗[W0]), π∗1 ω̃ ∪ π∗2 η̃〉fp
= trW0(ϕ̃∗(π∗1 ω̃ ∪ π∗2 η̃)) = trW0(ζ̃

∗ω̃ ∪ η̃).

The fourth equality is justified by the vanishing of the groups

H1
fp(Spec(OE,℘), 0) and H2

fp(Spec(OE,℘), 2),

which implies that ∑i,j P̃∗i,j = (idU0×W0)
∗ and that all the other pullbacks are zero.

To deal with the general case, we first need to analyze the action of the correspondences
θ̃k, θ̃` on fp-cohomology. The exact sequence in ([Bes00] (8)) induces a functorial isomor-
phism Hk−1

fp (Wk−2, 0) ∼= Hk−1
dR (Wk−2), we denote by η̃ the preimage of η ∈ θ∗k Hk−1

dR (Wk−2)

that satisfies θ̃∗k η̃ = η̃ since θ∗k η = η. By functoriality of the short exact sequence ([Bes00] (8)),
there is a commuting diagram

H|`|−3
dR (U`−4)/F|`|−2−s

θ∗`=0
��

� � ι // H|`|−2
fp (U`−4, |`| − 2− s)

θ̃∗`
��

π // // F|`|−2−sH|`|−2
dR (U`−4)

θ∗`
��uu

H|`|−3
dR (U`−4)/F|`|−2−s � � ι // H|`|−2

fp (U`−4, |`| − 2− s) π // // F|`|−2−sH|`|−2
dR (U`−4),

where the leftmost vertical arrow is zero because of the vanishing (2.27). Therefore, there is
a canonical lift ω̃ = θ̃∗` ω to H|`|−2

fp (U`−4, |`| − 2− s) of any class ω ∈ θ∗`F|`|−2−sH|`|−2
dR (U`−4),

with the property θ̃∗` ω̃ = ω̃. At this point we can compute

AJp(∆`,k)(π
∗
1 ω ∪ π∗2 η) = 〈clsyn(∆`,k), π∗1 ω̃ ∪ π∗2 η̃〉fp

= 〈(θ̃`, θ̃k)∗clsyn(ϕ̃∗[Wγ]), π∗1 ω̃ ∪ π∗2 η̃〉fp
= 〈clsyn(ϕ̃∗[Wγ]), π∗1 θ̃∗` ω̃ ∪ π∗2 θ̃∗k η̃〉fp
= 〈clsyn(ϕ̃∗[Wγ]), π∗1 ω̃ ∪ π∗2 η̃〉fp
= trWγ

(ϕ̃∗(π∗1 ω̃ ∪ π∗2 η̃)) = trWγ
(ϕ̃∗1ω̃ ∪ ϕ̃∗2 η̃),

where ϕ̃i = (πi ◦ ϕ̃). The fundamental exact sequence of fp-cohomology induces an iso-
morphism ι : H|`|−3

dR (Wγ)
∼→ H|`|−2

fp (Wγ, |`| − 2− s) since the filtered piece Fn H j
dR(Wγ) is

trivial for n > dimE℘ Wγ and indeed |`| − 2− s > dimE℘ Wγ = γ + 1. Therefore, if we write
ϕ̃∗1ω̃ = ιΥ(ω), we can rewrite the quantity we want to evaluate as

AJp(∆`,k)(π
∗
1 ω ∪ π∗2 η) = trWγ

(Υ(ω) ∪dR ϕ∗2η) = 〈Υ(ω), ϕ∗2η〉dR, (2.28)
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for the Poincaré pairing 〈 , 〉dR : H|`|−3
dR (Wγ)× Hk−1

dR (Wγ)
∪−→ H|`|+k−4

dR (Wγ)
trdR−→ E℘.

2.7.4 Description of AJp(∆`,k) in terms of p-adic modular forms

Let YK′ ↪→ ShK′(GL2,Q)OE℘
be the OE℘ -scheme defined as the complement of the supersin-

gular points and let E → YK′ be the universal elliptic curve over it.

Proposition 2.7.11. There are natural inclusions of parabolic cohomology in the de-Rham cohomol-
ogy of proper and smooth compactifications of Kuga-Sato varieties

H1
par
(
Shtor

K′ ,E℘
, (F (k,k−1+s)

GL2,Q
,∇)

)
↪→ H|`|−3

dR (Wγ),

H1
par
(
Shtor

K′ ,E℘
, (F (k,k−1)

GL2,Q
,∇)

)
↪→ Hk−1

dR (Wγ)

compatible with Poincaré duality.

Proof. Let Dγ,κ be the inverse image of cusps and supersingular points under Wγ,κ → W0,κ ;
then Dγ,κ = Wγ,κ \ E

γ
κ and it is a smooth and projective subscheme of codimension 1 in Wγ,κ .

Consider the diagram

H|`|−3
rig (Wγ,κ) // H|`|−3

rig (E γ
κ ) // H|`|−4

rig (Dγ,κ)(−1)

H1
par
(
Shtor

K′ ,E℘
, (F (k,k−1+s)

GL2,Q
,∇)

)?�

OO

� � // H1(S tor
K′ ,rig, j†DR•(F (k,k−1+s)

GL2,Q
)
)?�

OO

where the top horizontal arrow is exact and comes from excision. The composition

H1
par
(
Shtor

K′ ,E℘
, (F (k,k−1+s)

GL2,Q
,∇)

)
−→ H|`|−4

rig (Dr,k)(−1)

is identically zero because the two cohomology groups are pure of different weights. Thus,
H1

par
(
Shtor

K′ ,E℘
, (F (k,k−1+s)

GL2,Q
,∇)

)
↪→ H|`|−3

rig (Wγ,κ) ∼= H|`|−3
dR (Wγ). A similar argument provides

the other inclusion H1
par
(
Shtor

K′ ,E℘
, (F (k,k−1)

GL2,Q
,∇)

)
↪→ Hk−1

rig (Wγ,κ) ∼= Hk−1
dR (Wγ).

It is clear that ϕ∗2η ∈ Hk−1
dR (Wγ) is equal to η ∈ H1

par
(
Shtor

K′ ,E℘
, (F (k,k−1)

GL2,Q
,∇)

)
↪→ Hk−1

dR (Wγ),

so our task is to describe Υ(ω) ∈ H|`|−3
dR (Wγ) using p-adic modular forms.

Let XK ↪→ ShK(G∗L)OE℘
be the OE℘ -scheme defined as the complement of the supersin-

gular locus and ζ : YK′ −→ XK the diagonal morphism. Let A → XK be the universal
abelian surface, then we have a commuting diagram

E γ

ν

��

ϕ̃1 // A |`|−4

υ

��
Wγ

ϕ̃1 // U`−4
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that induces

θ̃∗` H̃|`|−2
f,Q (U`−4, |`| − 2− s) υ∗ //

ϕ̃∗1
��

θ̃∗` H̃|`|−2
f,Q (A |`|−4, |`| − 2− s)

ϕ̃∗1
��

H̃|`|−2
f,Q (Wγ, |`| − 2− s) ν∗ // H̃|`|−2

f,Q (E γ, |`| − 2− s),

where we consider the Gros-style version of fp-cohomology ([Bes00], Section 9) for a suitable
choice of polynomial Q. We choose to work with the Gros-style version because for schemes
that can be embedded in a smooth and proper scheme it is defined using rigid complexes
in place of de Rham ones; in particular, the two versions coincide for proper and smooth
schemes.

The pull back υ∗ω̃ ∈ θ̃∗` H̃|`|−2
f,Q (A |`|−4, |`| − 2− s) can be directly described in terms of

p-adic modular forms. Indeed, we can write υ∗ω̃ = [ω, f ] for

ω ∈ H0(S tor
K,rig, j†(F (`,`−tL)

G∗L
⊗Ω2(log D))

)
and

f ∈ H0(S tor
K,rig, j†(F (`,`−tL)

G∗L
⊗Ω1(log D))

)
satisfying Q(Frp)ω = ∇ f , as the group θ̃∗` H`−i

rig (A
|`|−4

k /E℘) is the same as the cohomology
of the rigid realization of the motive V ` over ]ShK(G∗L)

ord
k [, that is, the rigid cohomology

Hi(S tor
K,rig; j†DR•(F (`,`−tL)

G∗L
)
)
, for i = 1, 2.

To express the class υ∗ω̃ explicitly we need to make a judicious choice of a polynomial.
From now on we assume that p splits in L/Q, pOL = p1p2. By observing the form of the
Euler factors appearing in Theorem 2.4.10 and the formulas in Corollary 2.6.7 we are led to
consider the polynomial P(T) = ∏•,?∈{α,β}(1 − •1 ?2 T). Following ([LSZ16], Proposition
4.5.5), if we set T = T1T2, we can write P(T1, T2) = a2(T1, T2)P1(T1) + b1(T1, T2)P2(T2) for
Pi(Ti) = (1− αiTi)(1− βiTi) and

a2(T1, T2) = α1β1α2β2(α2 + β2)T2
1 T3

2 − α1β1α2β2T2
1 T2

2 − α2β2(α1 + β1)T1T2
2 + 1,

b1(T1, T2) = α2
1β2

1α2β2T4
1 T2

2 − α1β1(α2 + β2)T2
1 T2 − α1β1T2

1 + (α1 + β1)T1.

The index 2 in a2 (resp. the index 1 in b1) is there to remind us that the monomials compos-
ing the polynomial are of the form Ta1

1 Ta2
2 with a1 ≤ a2 (resp. Tb1

1 Tb2
2 with b1 > b2). The

polynomial P(T1, T2) is symmetric in the indices 1, 2, hence we can also write

P(T1, T2) = a1(T1, T2)P2(T1) + b2(T1, T2)P1(T2)

where a1(T1, T2) (resp. b2(T1, T2)) is obtained from a2(T1, T2) (resp. b1(T1, T2)) by swapping
all the indices. Therefore,

P(T1, T2)
2 = a1a2P1P2 + a2P1b2P1 + a1P2b1P2 + b1b2P1P2

= a1a2P1P2 + (P− b1P2)b2P1 + (P− b2P1)b1P2 + b1b2P1P2

= (a1a2 − b1b2)P1P2 + P(b2P1 + b1P2)

= P(1− α1β1α2β2T2)P1P2 + P(b2P1 + b1P2).
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We are going to use the handy identity

P(T1, T2) = (1− α1β1α2β2T2)P1(T1)P2(T2) + (b2(T1, T2)P1(T1) + b1(T1, T2)P2(T2)).

The class of ω
ğ[pi ] is zero in H2(S tor

K,rig, j†DR•c(F (`,x))), hence there are overconvergent cusp-

forms g
(i)
j ∈ S†

sτj ·(`,x)(K; E℘) such that ğ[pi ] = d`1−1
1 (g

(i)
1 ) + d`2−1

2 (g
(i)
2 ). Furthermore, the

p-adic modular form d1−`1
1 ğ[p1,p2] overconverges by Corollary 2.6.7. It follows we can write

P(V(p))ğ as

P(V(p))ğ = (1− α1β1α2β2V(p)2)ğ[p1,p2] + b2(V(p1), V(p2))ğ
[p1] + b1(V(p1), V(p2))ğ

[p2]

= d`1−1
1 (h) + d`1−1

1 (h1) + d`2−1
2 (h2),

where h = (1− α1β1α2β2V(p)2)d1−`1
1 ğ[p1,p2], h1 = b2g

(1)
1 + b1g

(2)
1 and h2 = b2g

(1)
2 + b1g

(2)
2 .

Proposition 2.7.12. Let L/Q be a real quadratic extension and g ∈ S†
`,x(K, L; E℘) an overconver-

gent cuspform whose class ωg in H2(S tor
K,rig(GL), j†DR•c

(
F (`,x))) is trivial. By Theorem 2.6.4 there

are p-adic modular forms gj ∈ S†
sj ·(`,x)(K; E℘) for j = 1, 2, such that g = d`1−1

1 (g1) + d`2−1
2 (g2).

We can use them to explicitly construct sections

Gj ∈ H0(S tor
K,rig(GL), j†(F (`,x) ⊗Ω1

τj

))
, j = 1, 2,

that satisfy
ωg = ∇(G1 + G2)

in H0(S tor
K,rig(GL), j†(F (`,x) ⊗Ω2)).

Proof. For j = 1, 2, let ωj, ηj be a local basis of the τj-part of the first de Rham cohomology of

the universal abelian surface. Set v(a,b)
j = ωa

j ηb
j , wj = ωj ∧ ηj and consider the sections

G1 =
`1−2

∑
i=0

(−1)i (`1 − 2)!
(`1 − 2− i)!

d`1−2−i
1 (g1)

(
w

2−n−`2
2

2 ⊗ v(`2−2,0)
2 ⊗ w

2−n−`1
2

1 ⊗ v(`1−2−i,i)
1

)
⊗ dq2

q2
.

G2 = −
`2−2

∑
i=0

(−1)i (`2 − 2)!
(`2 − 2− i)!

d`2−2−i
1 (g2)

(
w

2−n−`1
2

1 ⊗ v(`1−2,0)
1 ⊗ w

2−n−`2
2

2 ⊗ v(`2−2−i,i)
2

)
⊗ dq1

q1
.

of H0(S tor
K,rig(GL), j†

(
F (`,x) ⊗Ω1)). Differentiating them we obtain telescopic sums which

collapse to

∇(Gj) = d
`j−1
j (gj)

2⊗
c=1

(
w

2−n−`c
2

c ⊗ v(`c−2,0)
c

)
⊗ (

dq1

q1
∧ dq2

q2
).

Therefore, ωg = ∇(G1) +∇(G2) as claimed.

It follows that there are sections Gh, Gh1
, Gh2 associated with h, h1, h2 respectively, that

satisfy P(p−tL Frp)ωg = ∇(Gh + Gh1
+ Gh2) since Frp = ptL V(p) in cohomology (Lemma

2.6.6). The pullback by the morphism ξ : ShK(G∗L) → ShK(GL) gives P(p−tL Frp)ωξ∗g =

∇(Gξ∗h + Gξ∗h1
+ Gξ∗h2) and to land in the right cohomology group we need to change the

central character using the isomophism Ψ = Ψx,|`−tL |. Lemma 2.1.7 implies

P(px−`Frp)ωΨξ∗g = ∇(GΨξ∗h + GΨξ∗h1
+ GΨξ∗h2).
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We set G = GΨξ∗h + GΨξ∗h1
+ GΨξ∗h2 and we let ε` :

⊗
τ(H

1
τ)

`τ−2 → ⊗
τ Sym`τ−2H1

τ be
the symmetrization projector which identifies the target sheaf with a subsheaf of the first.
Finally, if we set Q(T) = P(px−`T), then the cohomology class υ∗ω̃ is represented by [ω, ε`G]

in H̃|`|−2
f,Q

(
A |`|−4, |`| − 2− s

)
.

Proposition 2.7.13. The class ν∗(ϕ̃∗1ω̃) is represented by [0, ϕ̃∗1ε`G] in H̃|`|−2
f,Q

(
E γ, |`| − 2− s

)
and

the image of ϕ̃∗1ε`G under the unit-root splitting is equal to the p-adic modular form

Splur(ϕ̃∗1ε`G) = (−1)ss!Ψw,k−1+sζ∗
(
d`1−2−s

1 (h) + d`1−2−s
1 (h1) + d`2−2−s

2 (h2)
)

in Sp-adic
k,k−1+s(K

′, E℘).

Proof. The class ν∗(ϕ̃∗1ω̃) = ϕ̃∗1υ∗(ω̃) = [0, ϕ̃∗1ε`G] because ϕ∗1ω = 0 as a section of

ϕ∗1
(
F (`,`−tL)

G∗L
⊗Ω2) = 0.

The diagonal morphism ϕ̃1 : E γ → A |`|−4 is a map of XK-schemes, so the pull-back ϕ̃∗1 :
H|`|−3

rig (A
|`|−4

κ ) → H|`|−3
rig (E γ

κ ) is compatible with the pull-backs between the terms of the

Leray spectral sequences for A |`|−4 → XK → SpecOE℘ and E γ → XK → SpecOE℘ . Since
ζ : YK′ → XK is a finite morphism, we have an induced map

ϕ̃∗1 : H1(S tor
K,rig; j†DR•(F (`,`−tL)

G∗L
)
)
−→H1(S tor

K′ ,rig; j†DR•(F (k,k−1+s)
GL2,Q

)
)
.

It is possible to describe explicitly the pullback ϕ̃∗1ε`G as in ([DR14], Proposition 2.9) and a
direct calculation reveals that

Splurζ∗(ε`Gj) = (−1)ss!ζ∗Ψx,|`−tL |
(
d`1−2−s

1 (ξ∗h) + d`1−2−s
1 (ξ∗h1) + d`2−2−s

2 (ξ∗h2)
)

= (−1)ss!Ψx−s−1,k−1+sζ∗
(
d`1−2−s

1 (h) + d`1−2−s
1 (h1) + d`2−2−s

2 (h2)
)

= (−1)ss!Ψw,k−1+sζ∗
(
d`1−2−s

1 (h) + d`1−2−s
1 (h1) + d`2−2−s

2 (h2)
)
,

as p-adic modular forms.

Remark 2.7.14. We proved that the image of Υ(ω) under H|`|−3
rig (Wγ,κ)→ H|`|−3

rig (E γ
κ ) is given by

[ϕ̃∗1ε`G] ∈ H1
par
(
Shtor

K′ ,E℘
, (F (k,k−1+s)

GL2,Q
,∇)

)
⊂H1(S tor

K′ ,rig, j†DR•c (F
(k,k−1+s)
GL2,Q

)
)
.

Lemma 2.7.15. Let (ω, η) ∈ H1
par
(
Shtor

K′ ,E℘
, (F (k,k−1+s)

GL2,Q
,∇)

)
× H1

par
(
Shtor

K′ ,E℘
, (F (k,k−1)

GL2,Q
,∇)

)
be a

pair such that Frpη = αη for α a p-adic unit, then 〈ω, η〉 = 〈en.o.ω, η〉.

Proof. We have the equalities of operators Frp = pV(p) and U0(p) = prU(p), therefore the
computation

〈ω, η〉 = α−1〈ω, Frpη〉 = α−1Frp〈Fr−1
p ω, η〉

= α−1 pr+1〈Fr−1
p ω, η〉 = α−1 pr+1〈p−1U(p)ω, η〉 = α−1〈U0(p)ω, η〉,

implies that 〈ω, η〉 = lim
n→∞

α−n!〈U0(p)n!ω, η〉 = 〈en.o.ω, η〉.

Theorem 2.7.16. Let L/Q be a real quadratic extension. Consider ğ ∈ S`,x(V11(AOL); L; Q)

a cuspform of either parallel weight ` = 2tL or non-parallel weight ` > 2tL over L and f ∈
Sk,w(V1(N); Q) an elliptic newform. Suppose their weights are balanced and choose a prime p split-
ting in F, pOF = p1p2, coprime to A, such that both cuspforms are p-nearly ordinary and the cycle
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∆`,k is defined. Then

AJp(∆`,k)(π
∗
1 ω ∪ π∗2 η) = s!(−1)s 1− α1β1α2β2(α

−1
f∗ p−1)2

∏•,?∈{α,β}(1− •1 ?2 α−1
f∗ p−1)

〈en.o.ζ
∗(d−1−s

1 ğ[p1,p2]), f∗〉
〈f∗, f∗〉 ,

where ω and η are the classes in Definition 2.7.5 and s = |`|−k−2
2 .

Proof. Recall that (2.28) states that AJp(∆`,k)(π
∗
1 ω∪π∗2 η) = 〈Υ(ω), η〉dR, where the Poincaré

pairing takes values in E℘(−(γ + 1)), a one dimensional space on which Frp acts as multi-
plication by pγ+1. The isomorphism ι : H|`|−3

dR (Wγ)
∼→ H|`|−2

f,Q (Wγ, |`| − 2− s) is given by
ι(−) = [0, Q(Frp)(−)], therefore Q(Frp)Υ(ω) = ϕ̃∗1(ε`G). On the one hand,

〈Q(Frp)Υ(ω), η〉dR = Q(pγ+1α−1
f∗ p1−w)〈Υ(ω), η〉dR,

because we computed in (2.23) that Frp
(
ν∗ϕ∗2η

)
= αf∗ pw−1(ν∗ϕ∗2η

)
. On the other hand,

〈Q(Frp)Υ(ω), η〉dR = 〈ϕ̃∗1(ε`G), η〉dR

= s!(−1)s 〈Ψw,k−1en.o.ζ
∗(d`1−2−s

1 (h) + d`1−2−s
1 (h1) + d`2−2−s

2 (h2)
)
, Ψw,k−1(f

∗)〉
〈f∗, f∗〉

= s!(−1)s 〈en.o.ζ
∗(d`1−2−s

1 (h) + d`1−2−s
1 (h1) + d`2−2−s

2 (h2)
)
, f∗〉

〈f∗, f∗〉 .

Indeed, the class of ϕ̃∗1(ε`G) in H1(S tor
K′ ,rig, j†DR•c (F

(k,k−1+s)
GL2,Q

)
)

is represented by an overcon-
vergent cuspform whose nearly ordinary projection is equal to en.o.Splur ϕ̃∗1(ε`G) (see [DR14],
Lemma 2.7), then Lemma 2.7.15 justifies the computation.

For j = 1, 2 the nearly ordinary projection

en.o.ζ
∗d

`j−2−s
j (hj) = en.o.ζ

∗[d
`j−2−s
j (b2g

(1)
j + b1g

(2)
j )] = 0

thanks to Lemma 2.4.7 because the cuspform g
(i)
j is pi-depleted, i = 1, 2 and bι, ι = 1, 2, can

be written as a polynomial only in the variables V(p), V(pι) divisible by V(pι). Moreover,

ef∗ ,n.o.ζ
∗(d`1−2−s

1 (h)) = ef∗ ,n.o.ζ
∗(1− α1β2α2β2V(p)2)(d−1−s

1 ğ[p1,p2])

= (1− α1β1α2β2(α
−1
f∗ p−1)2)ef∗ ,n.o.ζ

∗(d−1−s
1 ğ[p1,p2]).

Finally, the last bit we need to unravel is the polynomial Q(pγ+1α−1
f∗ p1−w); we compute

Q(pγ+1α−1
f∗ p1−w) = ∏

•,?∈{α,β}
(1− •1 ?2 px−`pγ+1α−1

f∗ p1−w)

= ∏
•,?∈{α,β}

(1− •1 ?2 α−1
f∗ p−n+ m

2 −1) = ∏
•,?∈{α,β}

(1− •1 ?2 α−1
f∗ p−1)

since under our assumptions 2n = m. Hence, putting all together

AJp(∆`,k)(π
∗
1 ω ∪ π∗2 η) = s!(−1)s 1− α1β1α2β2(α

−1
f∗ p−1)2

∏•,?∈{α,β}(1− •1 ?2 α−1
f∗ p−1)

〈en.o.ζ
∗(d−1−s

1 ğ[p1,p2]), f∗〉
〈f∗, f∗〉 .

Remark 2.7.17. The right-hand side of the equality in Theorem 2.7.16 is independent of the particular



Chapter 2. Twisted triple product L-functions and Hirzebruch-Zagier cycles 58

choice of small enough levels K, K′ because of the normalization of the cohomology class η (Definition
2.7.5).

Corollary 2.7.18. Let L/Q be a real quadratic field and (`, k) a balanced triple. Let p be a prime
splitting in L for which the generalized Hirzebruch-Zagier cycle ∆`,k is defined. Then for all (P, Q) ∈
Cθ,r̄

bal(`, k) we have

r̄L
θ
p (Ğ , F )(P, Q) =

±1
s!E(f∗Q)

E sp
p (gP, f∗Q)

E1,p(f
∗
Q)

AJp(∆`,k)(π
∗
1 ωP ∪ π∗2 ηQ).

Proof. It follows from the formula (2.16), Proposition 2.4.3 and Theorem 2.7.16.

2.8 An application to Bloch-Kato Selmer groups

Let A be an elliptic curve over L of conductor Q and B a rational elliptic curve of conductor
N, both without complex multiplication over Q. We denote by (MA,B)p the Galois repre-
sentation AsVp(A)(−1)⊗Qp Vp(B) of the absolute Galois group of Q. We can use Corollary
2.7.18 to give a criterion for the Bloch-Kato Selmer group H1

f (Q, (MA,B)p) to be of dimension
one in terms of the non-vanishing of a value of one of our twisted triple product p-adic L-
functions. This builds on the recent work of Liu [Liu16], where he computes the dimension
of H1

f (Q, (MA,B)p) assuming the non-vanishing of the étale Abel-Jacobi map of certain cycle
∆A,B.

Let gA ∈ S2tL ,tL(V1(Q); L; Q), fB ∈ S2,1(V1(N); Q) be the newforms attached to A and B
by modularity, πA, σB the automorphic representations they respectively generate. Let p a
rational prime coprime to N ·NL/Q(Q) · dL/F, if gA, fB are p-nearly ordinary we denote by
G , F the Hida families passing through the p-nearly ordinary stabilizations GPA = g

(p)
A and

FQB = f
(p)
B . We recall some of the definitions in [Liu16]. Let X be the minimal resolution

of the Baily-Borel compactification of the Hilbert modular surface over L of Γ0-level N ·
NL/Q(Q), Y the compactified modular curve of Γ0-level N ·NL/Q(Q) and ζ : Y → X the
diagonal morphism. According to Liu, there are idempotents PA ∈ Corr(X, X), PB ∈
Corr(Y, Y) acting as projectors

PA,∗ : H∗dR(X)→ H2
dR(X)[πA], PB,∗ : H∗dR(Y)→ H1

dR(Y)[σB].

The null-homologous cycle ∆A,B ∈ CH2(X×Y)⊗Q is defined as ∆A,B = (PA ×PB)∗∆ for
∆ = graph(ζ). By spreading out we can consider smooth models X , Y over Zp for almost
all p, and P̃A × P̃B ∈ Corr(X ×Y , X ×Y ).

Corollary 2.8.1. Suppose that N and NL/Q(Q) · dL/Q are coprime ideals and that all the primes
dividing N split in L. For all but finitely many primes p that are split in L and such that gA, fB are
p-nearly ordinary we have

r̄L
θ
p (Ğ , F )(PA, QB) 6= 0 =⇒ dimQp H1

f (Q, (MA,B)p) = 1,

where θ = −µ + µ′ ∈ Z[IL], r̄ = −µ.
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Proof. Let ϕ̃ : Y → X × Y be the map (ζ̃, idY ), and set ∆̃A,B = (P̃A × P̃B)∗ ϕ̃∗[Y ]. For
any ω ∈ H2

dR(X)[πA], η ∈ H1
dR(Y)[σB] and lifts ω̃, η̃ to fp-cohomology we can compute

AJp(∆A,B)(π
∗
1 ω ∪ π∗2 η) = 〈clsyn(∆̃A,B), π∗1 ω̃ ∪ π∗2 η̃〉fp

= 〈clsyn(ϕ̃∗[Y ]), (PA ×PB)
∗(π∗1 ω̃ ∪ π∗2 η̃)〉fp

= 〈clsyn(ϕ̃∗[Y ]), π∗1 ω̃ ∪ π∗2 η̃〉fp = trY (ζ̃∗ω̃ ∪ η̃)

as in Section 2.7.3. If α1 : U0 → X , α2 : W0 → Y are the natural finite degeneracy maps, we
know that AJp(∆2tL ,2)(π

∗
1 (α
∗
1ω) ∪ π∗2 (α

∗
2η)) = trW0(ζ̃

∗(α∗1ω̃) ∪ (α∗2 η̃)). Therefore,

AJp(∆2tL ,2)(π
∗
1 (α
∗
1ω) ∪ π∗2 (α

∗
2η)) = deg(α1)deg(α2) ·AJp(∆A,B)(π

∗
1 ω ∪ π∗2 η)

and the LHS vanishes if and only if the RHS vanishes. It follows that the non-vanishing
of the p-adic L-function implies the non-vanishing of the syntomic Abel-Jacobi image of
both ∆2tL ,2 and ∆A,E by Corollary 2.7.18, which in turn forces the non-vanishing of the p-
adic étale Abel-Jacobi image of the cycle ∆A,E ([BDP13], Section 3.4). Then Liu’s theorem
([Liu16], Theorem 1.5) gives the dimension of the Bloch-Kato Selmer group.
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Chapter 3

Future plans

After the results attained in this thesis, a natural next step is to extend Darmon and Rotger’s
ideas [DR17a] to the twisted triple product setting. Currently, Zhaorong Jin and I are pursu-
ing this project, and I will present, as a preview, the construction of big Hirzebruch-Zagier
classes I carried out following [DR17b].

Our objective is to provide a geometric construction of twisted triple product p-adic L-
functions with applications to the equivariant BSD-conjecture in rank zero. Let L be a real
quadratic field, E/Q a rational elliptic curve of conductor N and $ : ΓL → GL2(C) a to-
tally odd two-dimensional Artin representation of conductor Q factoring through the Galois
group of a finite extension H/Q. For any rational prime p, we consider the p-adic Galois
representation of ΓQ

V$,E = ⊗-IndQ
L ($)⊗Vp(E)(1).

When the tensor induction of det($) is the trivial character, the representation V$,E is self-
dual and its L-function L

(
V$,E, s

)
has meromorphic continuation to C and a functional equa-

tion centered at s = 0, at which the L-function is holomorphic. Indeed, by modularity
([Wil95],[TW95], [PS16]) there is an automorphic representation Π$,E of ResL×Q/QGL2 such
that its twisted triple product L-function L(s, Π$,E, r) equals L

(
V$,E, s − 1

2
)
. The analytic

rank ran(E, $) is defined as the order of vanishing of L
(
V$,E, s

)
at the center. Moreover, if we

let E(H)$ = HomΓQ
($, E(H) ⊗ C) denote the $-isotypical component of the Mordell-Weil

group E(H), we can define the algebraic rank ralg(E, $) of E twisted by $ as the dimension
dimC E(H)$. The equivariant refinement of the BSD-conjecture predicts that the two ranks
are always equal. If (N, NL/Q(Q)) = 1 and all the primes dividing N split in L, then the sign
of the functional equation of L(s, Π$,E) is ε = +1 and we can hope to prove the following
implication:

ran(E, $) = 0 ?
=⇒ ralg(E, $) = 0.

By a judicious choice of the Artin representation $ as in Corollary 1.3.3, we would then
deduce cases of the BSD-conjecture in rank zero over non-solvable quintic fields: when K/Q

is a non-totally real S5-quintic extension of discriminant dK > 0 and N is odd and split in
the real quadratic field Q(

√
dK), then we expect to deduce that

ran(E/K) = ran(E/Q)
?

=⇒ ralg(E/K) = ralg(E/Q).

The winding path we plan take to connect the two sides of the implication is well-known
by now ([DR17a], [KLZ17]). Even though it is not apparent, p-adic deformation should play
a crucial role in our strategy. Our planned route can be divided into two main parts: the
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first consists in producing enough annihilators of the Bloch-Kato Selmer group, and the sec-
ond in using the non-vanishing at the center of the automorphic L-function to show that
the annihilators are non-trivial. In our setting, it is not known how to produce interesting
cohomology classes directly from geometry, so the dévissage is to fit the automorphic repre-
sentation Π$,E into a Hida family. There are certain balanced points in the family for which
geometric classes exist; those classes can be interpolated into big cohomology classes, called
big Hirzebruch-Zagier classes, which can then be specialized to the point corresponding to
Π$,E.

The second part bridges the distance between the analytic and the algebraic worlds, and
it entails the comparison of two rigid-analytic meromorphic functions: the analytic and the
motivic p-adic L-function. On the one hand, the analytic twisted triple product p-adic L-
function, built in Chapter 2, has been constructed interpolating the algebraic part of central
L-values of automorphic L-functions corresponding to Q-dominated points in the Hida fam-
ily. Hence, it is embedded in its definition the information of whether L

( 1
2 , Π$,E, r

)
vanishes

or not. On the other hand, the motivic p-adic L-function is produced out of big Hirzebruch-
Zagier classes and by construction it is well-understood over balanced points. The iden-
tification of the two functions is obtained by comparing their values on a dense subset of
balanced points via a p-adic Gross-Zagier formula.

3.1 Big Hirzebruch-Zagier classes

In this section we present the construction of big Hirzebruch-Zagier classes following the
recent work [DR17b]. An IG -adic Hida family G of Hilbert cuspforms over L and an IF -adic
Hida family F of elliptic cuspforms come equipped with big Galois representation VG and
VF interpolating the representations of their specializations ([Hid89a], Theorem 1).

Let εG : ΓL −→ I×G (resp. εF : ΓQ −→ I×F ) denote the composition of character ε :
ΓL −→ Λ×L (resp. ε : ΓQ −→ Λ×

Q
) with the natural map ΛL → IG (resp. ΛQ → IF ). Then

big Hirzebruch-Zagier classes attached to the pair (G , F ) are Galois cohomology classes
with value in the Kummer self-dual big Galois representation of ΓQ

V†
G ,F = ⊗-IndQ

L

[
VG

(
ε−1/2

G

)]
(−1)⊗VF

(
ε−1/2

F

)
. (3.1)

The explicit realization of that Galois representation in the cohomology of a tower of certain
threefolds with increasing level at p plays an important role in the construction of the classes.

Abelian varieties up to isogeny

In this section F denotes a totally real number field. Given our adelic viewpoint, it is more
convenient to interpret the Shimura varieties for the algebraic group GF = ResF/QGL2 as
moduli problems classifying abelian varieties up to isogeny. We recall here that point of
view following ([Hid04], Section 4.2).

Let A/S be an abelian scheme with real multiplication by OF such that the sheaf of in-
variant differentials ωA/S is isomorphich to d−1

F ⊗Z OS Zariski locally on S. Considering
abelian schemes up to isogeny means that two polarizations λ, λ′ : A → A∨ are equivalent
if λ = λ ◦ a for a totally positive a ∈ F and we denote an equivalence class by λ̄. By choosing
a geometric point s ∈ S, one can consider the Tate module T (A) = Ts(A) = lim

←,N
A[N](k(s))
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and define
Vs(A) = Ts(A)⊗Z A

(∞)
Q

.

If we let V
(
A

(∞)
Q

)
= F⊕2⊗Q A

(∞)
Q

, a full level structure on A is a collection of isomorphisms

ηs : V
(
A

(∞)
Q

) ∼= Vs(A) of A
(∞)
F -modules, indexed by a set of chosen geometric points, one

for each connected component of S. The group GF
(
A

(∞)
Q

)
acts on full level structures on the

right by precomposition.

Definition 3.1.1. Let K be a compact open subgroup of GF
(
A

(∞)
Q

)
. A level K-structure on abelian

scheme A/S with real multiplication byOF is a K-orbit η̄ = ηK of a full level structure η. A K-level
structure η̄ is defined over S if it satisfies σ ◦ η̄s = η̄s for all the chosen geometric points s ∈ S and
σ ∈ πet

1 (S, s).

If K is sufficiently small, the functor from Sch/Q to Sets, defined as

EK(S) = [(A, λ̄, η̄)/S | η̄ is a level K-structure]

is representable by a Q-scheme ShK(GF) whose complex points are canonically isomorphic
to GF(Q)\

(
H±
)IF × GF

(
A(∞)

)
/K. When K = U(NOF) for some integer N it is possible

to describe the Galois action of G(Q(ζN)/Q)) on EK as follows. Let c ∈ Ẑ× and σc ∈
G(Q(ζN)/Q)) the corresponding Galois automorphism, then for

[
A, λ̄, η̄

]
∈ EU(N)(S) one

finds ([Hid04], Section 4.2.1)

[
A, λ̄, η̄

]σc =
[
A, λ̄, (η ◦ γc)

]
for γc =

(
c 0
0 1

)
. (3.2)

Hecke operators

Let’s consider the Shimura varieties Shα = ShK(pα)(GF) and Shα(p) = ShK(pα)g∩K(pα)(GF),
where K(pα)g = g−1K(pα)g for g the diagonal matrix with non-zero entries g11 = p and
g22 = 1. There are two natural projections v1 : Shα+1 −→ Shα, v2 : Shα+1 −→ Shα given by
[x, h] 7→ [x, h] and [x, hg−1] on the complex uniformizations. These maps can be factored as

Shα+1

µ

��

v1

##

Shα+1

µ

��

v2

##
Shα(p)

π1
// Shα, Shα(p)

π2
// Shα,

where µ : Shα+1 → Shα(p) is the natural Galois cover with Galois group

[
K(pα)g ∩ K(pα)

]
/K(pα+1)O×F,α =

[
K(pα) ∩ K0(pα+1)

]
/K(pα+1)O×F,α

for O×F,α the group of global units congruent to 1 (mod pα). Then the Hecke correspon-
dences at p can be defined as U∗(p) = π1∗π

∗
2 , U(p) = π2∗π∗1 ([Hid04], Section 4.2.5). There is

also a group of diamond operators naturally acting on level structures of the tower {Shα}α≥1,
thery are given by

Gα
F(K) = K0(pα)O×F /K(pα)O×F , GF(K) = lim

←,α
Gα

F(K).
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If we set Zα
F(K) = KFO×F /KF(pα)O×F , for KF = K ∩A

(∞),×
F , then there is an isomorphism

Gα
F(K)

∼→ Zα
F(K)× (OF/pα)×,

(
a b
c d

)
7→ (a, a−1

p dp). (3.3)

Lemma 3.1.2. Set Iα+1
α,F (K) = ker

(
Gα+1

F (K)→ Gα
F(K)

)
, then the natural inclusion

[
K(pα) ∩ K0(pα+1)

]
/K(pα+1)O×F,α ↪→ Iα+1

F (K)

is an isomorphism.

Proof. It follows applying the snake lemma and using the canonical isomorphisms

K(pα+1)O×F /K(pα+1)O×F,α
∼= O×F /O×F,α

∼=
[
K(pα) ∩ K0(pα+1)

]
O×F /

[
K(pα) ∩ K0(pα+1)

]
.

3.1.1 Hirzebruch-Zagier cycles

Let L/Q be a real quadratic field, K ≤ GL
(
A

(∞)
Q

)
a sufficiently small compact open subgroup

and K′ = K ∩ GQ(AQ). For every α ≥ 1 we choose inductively a smooth toroidal compacti-
fication Sα of ShK(pα)(GL) by requiring that the degeneracy maps of Section 3.1 extend. Since
any rational map from a smooth projective curve to a projective variety extends uniquely to
a morphism of schemes, we can choose Xα the smooth compactification of ShK′(pα)(GQ) for
every α ≥ 1, and define the codimension 2 cycle ∆0 ⊂ S0 × X0 by

X0 −→ ∆0 ⊂ S0 × X0

[A, λ̄, η̄] 7→
([

A⊗OL, λ⊗ 1, η ⊗ 1
]
,
[
A, λ̄, η̄

])
.

We denote by ∆α the pull-back of ∆0 under v2
1 : Sα × Xα → S0 × X0. If X(pα) denotes

the smooth compactification of a geometrically connected component of the modular curve
ShK′(pα)(GQ) defined over Q(ζpα), then for each (d1, d2) ∈ Gα

0,L(K)×Gα
0,Q(K

′) the morphism

ϕ(d1,d2)
: X(pα) −→ ∆α ⊂ Sα × Xα

(A, λ̄, η̄) 7→
((

A⊗OL, λ⊗ 1, (η ⊗ 1) ◦ d1
)
,
(

A, λ̄, (η ◦ d2)
))

.

defines a codimension two cycle ∆α[d1, d2] := ϕ(d1,d2)
(Xα) ∈ CH2(Sα × Xα). The diago-

nal embedding of the subgroup Gα
0,Q(K

′)det of matrices with determinant congruent to 1
(mod pα) acts trivially on the cycle ∆α[d1, d2], because such matrices preserve X(pα). Hence,
the cycle ∆α[d1, d2] depends only on the image [d1, d2] of (d1, d2) in

Iα = ∆
(
Gα

0,Q(K
′)det)\[Gα

0,L(K)×Gα
0,Q(K

′)
]
.

Recall that Gα
0,L(K)×Gα

0,Q(K
′) ∼= Zα

0,L(K)× (OL/pα)× × Zα
0,Q(K

′)× (Z/pα)× with the iso-
morphism explicitly given by[(

a◦ b◦

c◦ d◦

)
,

(
a b
c d

)]
7→
(
(a◦, a◦−1

p d◦p), (a, a−1
p dp)

)
.



Chapter 3. Future plans 64

From now on, we will denote elements of Gα
0,L(K) × Gα

0,Q(K
′) both as pairs of matrices

〈a1, a2〉 and pairs of 2-tuples 〈(z◦, a◦), (z, a)〉 according to what is most convient. Note that
it is possible to describe Gα

0,Q(K
′)det as the kernel of the group homomorphism Zα

0,Q(K
′)×

(Z/pα)× −→ (Z/pα)×, (z, a) 7→ z2
pa. Now, we present two lemmas describing the behavior

of Hirzebruch-Zagier cycles under Hecke operators and Galois automorphisms.

Lemma 3.1.3. For all diamond operators 〈a1, a2〉 ∈ Gα
0,L(K)×Gα

0,Q(K
′)

∆α[d1, d2]〈a1, a2〉 = ∆α[d1 · a1, d2 · a2].

Moreover, for all c ∈ Ẑ× corresponding to the Galois automorphism σc ∈ G(Q(ζpα)/Q),

∆α[d1, d2]
σc = ∆α[d1 · γc, d2 · γc].

If σc ∈ G(Q(ζpα)/Q(ζp)) then

∆α[d1, d2]
σc = ∆α[d1, d2]〈(c, 1), (c, 1)〉1/2.

Proof. The first claim follows directly from the definitions. For the second claim, we recall
that the Galois action is explicitly given by ∆α[d1, d2]

σc = ∆α[d1, d2]〈γc, γc〉, see (3.2). Fur-
thermore, if σc ∈ G(Q(ζpα)/Q(ζp)), we have

〈γc, γc〉 = 〈(c1/2, c−1
p ), (c1/2, c−1

p )〉〈(c, 1), (c, 1)〉1/2

for (c1/2, c−1
p ) ∈ Gα

0,Q(K
′)det and the Lemma follows.

Lemma 3.1.4. For all α ≥ 1 and all [d′1, d′2] ∈ Iα+1 whose image in Iα is [d1, d2],

(v2
1)∗∆α+1[d′1, d′2] = p3 · ∆α[d1, d2], (v2

2)∗∆α+1[d′1, d′2] = (U(p)×U(p)) · ∆α[d1, d2].

The cycles ∆α[d1, d2] satisfy the distribution relations

∑
〈a1,a2〉

∆α+1[d′1 · a1, d′2 · a2] = (v2
1)
∗∆α[d1, d2],

the sum over Iα+1
α,L (K)× Iα+1

α,Q (K′), the kernel of Gα+1
0,L (K)×Gα+1

0,Q (K′)→ Gα
0,L(K)×Gα

0,Q(K
′).

Proof. By the commutativity of the diagram

X(pα+1)

v1

��

ϕ(d′1,d′2) // Sα+1 × Xα+1

v2
1
��

X(pα)
ϕ(d1,d2) // Sα × Xα

it is enough to compute the degree of v1 : X(pα+1)→ X(pα) which is p3.
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The map µ2 ◦ ϕ(d′1,d′2)
: X(pα+1) ↪→ Sα(p) × Xα(p) is a closed embedding, hence the

diagram

X(pα+1)

v1

��

µ2◦ϕ(d′1,d′2) // Sα(p)× Xα(p)

π2
1
��

X(pα)
ϕ(d1,d2) // Sα × Xα

is cartesian because the horizontal maps are closed embeddings and the vertical maps have
the same degree. The push-pull formula gives

(µ2)∗∆α+1[d′1, d′2] = (π2
1)
∗∆α[d1, d2], (3.4)

and by pushing forward the equality with π2
2 we get

(v2
2)∗∆α+1[d′1, d′2] = (U(p)×U(p)) · ∆α[d1, d2].

The distribution relation follows by noting that

∑
〈a1,a2〉

∆α+1[d′1 · a1, d′2 · a2] = (µ2)∗(µ2)∗∆α+1[d′1, d′2] = (v2
1)
∗∆α[d1, d2],

where the second equality comes from (3.4) and the first equality follows from the fact that
(µ2) is a Galois cover with Galois group Iα+1

L (K)× Iα+1
Q

(K′), (Lemma 3.1.2).

For any number field D, the p-adic etale Abel-Jacobi map

AJet
p : CH2(Sα × Xα)0(D) −→ H1(D, H3

et
(
(Sα × Xα)Q

, O(2)
))

sends null-homologous cycles to Galois cohomology classes. In order to make Hirzebruch-
Zagier cycles null-homologous, we introduce an auxiliary Hecke operator θq.

Lemma 3.1.5. Let q be a rational prime not dividing the level of K′, then the operator θq = 1⊗
(Tq − (q + 1)) annihilates the cohomology group H4

et
(
(Sα × Xα)Q

, O(2)
)
.

Proof. The correspondence Tq acts as multiplication by (q+ 1) on Hi
et(Xα,Q, O(1)) for i = 0, 2

and H3
et(Sα,Q, O(1)) = 0 because the connected components of Sα are simply connected

([Gee88], Theorem 6.1, page 81).

Thus, the modified Hirzebruch-Zagier cycles ∆◦α[d1, d2] = θq∆α[d1, d2] are homologically
trivial and give rise cohomology classes in the appropriate Kunneth component

kα[d1, d2] = AJet
p (∆

◦
α[d1, d2]) ∈ H1(Q(ζpα), H2

et(Sα,Q, O(1))⊗H1
et(Xα,Q, O(1))

)
.

We would like to patch all these classes together, but they are defined over the increas-
ingly larger fields Q(ζpα) as α grows. We recall that Lemma 3.1.3 expressed the Galois action
of G(Q(ζpα)/Q(ζp)) on Hirzebruch-Zagier cycles in terms of diamond operators, therefore,
in order to descend the field of definition, we replace the O[Iα][ΓQ]-module

H2,1(Sα × Xα)(2) := H2
et(Sα,Q, O(1))⊗H1

et(Xα,Q, O(1))

by a twist over Q(ζpα), where Iα = ker
(
Gα

0,L(K)×Gα
0,Q(K

′)→ G1
0,L(K)×G1

0,Q(K
′)
)
.
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Definition 3.1.6. We denote by O[Iα]† the free O[Iα]-module of rank one on which the Galois group
ΓQ(ζp) acts via its quotient G(Q(ζpα)/Q(ζp)), the element σc acting as multiplication by the group-
like element 〈(c, 1), (c, 1)〉−1/2.

There is a canonical Galois-equivariant O[Iα]-hermitian bilinear pairing

〈〈 , 〉〉α : H2,1(Sα × Xα)(2)† ×H2,1(Sα × Xα)(1)† −→ O[Iα] (3.5)

given by the formula

〈〈z, ν〉〉α = ∑
〈a1,a2〉∈Iα

〈
z · 〈a1, a2〉, ν

〉
α
· [〈a1, a2〉]

where 〈 , 〉α is the Poincaré pairing. The pairing (3.5) identifies H2,1(Sα × Xα)(2)† with
HomO[Iα ]

(
H2,1(Sα × Xα)(1)†, O[Iα]

)
, hence we can define κα[d1, d2] by declaring that for all

σ ∈ ΓQ(ζpα ) and all ξα ∈H2,1(Sα × Xα)(1)†,

κα[d1, d2](σ)(ξα) = 〈〈kα[d1, d2](σ), ξα〉〉α.

Lemma 3.1.7. The class κα[d1, d2] is the restriction to GQ(ζpα ) of a class

κα[d1, d2] ∈ H1(Q(ζp), H2,1(Sα × Xα)(2)†).
Furthermore, for all σ ∈ G(Q(ζp)/Q), κα[d1, d2]

σc = κα[d1 · γc, d2 · γc].

Proof. Let ∆◦α[[d1, d2]] ∈ CH2(Sα × Xα)(Q(ζp)) be the inverse image of ∆◦1 [d1, d2] in Sα × Xα

and consider the extension of O[Iα][ΓQ(ζp)]-modules

0 // H2,1(Sα × Xα)(2)† // Eα
// O[Iα] // 0 (3.6)

obtained from the excision sequence

H3
et
(
(Sα × Xα)Q

, O(2)
) � � // H3

et
(
(Sα × Xα)Q

\ ∆◦α[[d1, d2]], O(2)
)

// // H0
et(∆

◦
α[[d1, d2]], O)0,

by pull back along
j : O[Iα]−† ↪→ H0

et(∆
◦
α[[d1, d2]], O)0,

push out along H3
et
(
(Sα × Xα)Q

, O(2)
)
→H2,1(Sα × Xα)(2) and twist by †. The map j is the

ΓQ(ζp)-equivariant inclusion defined on group-like elements by

j(〈a1, a2〉) = clet(∆◦α[d1 · a1, d2 · a2]).

The cohomology class c ∈ H1(Q(ζp), H2,1(Sα × Xα)(2)†) corresponding to (3.6) satisfy

c|ΓQ(ζpα )
= κα[d1, d2].
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3.1.2 Big cohomology classes

For any [d1, d2] ∈ I∞ = lim←,α Iα we managed to obtain a collection of classes {κα[d1, d2]}α

defined over the same field Q(ζp). However, they are not compatible under the natural trace
maps (v2

1)∗ in cohomology (Lemma 3.1.4) and the naive approach to fix the problem intro-
duces unwanted denominators. Fortunately, Darmon and Rotger found a way to elegantly
solve the problem. Consider the map pα+1 : O[Iα+1] → O[Iα] induced by the natural map
between groups.

Lemma 3.1.8. For all α ≥ 1 let ξα+1 ∈ H2,1(Sα+1 × Xα+1)(1)† and ξα ∈ H2,1(Sα × Xα)(1)† be
compatible elements, (v2

1)∗(ξα+1) = ξα. Then for all [d1, d2] ∈ I∞ and every σ ∈ ΓQ(ζp),

pα+1
(
κα+1[d1, d2](σ)(ξα+1)

)
= κα[d1, d2](σ)(ξα).

Proof. Firstly, we note that κα+1[d1, d2], κα[d1, d2] naturally give rise to cohomology classes
in

H1(Q(ζp), HomO[Iα+1]

(
H2,1(Sα+1 × Xα+1)(1)†, O[Iα]

)
).

For σ ∈ ΓQ(ζpα+1 )
we compute

pα+1
(
κα+1[d1, d2](σ)(ξα+1)

)
= ∑
〈a1,a2〉∈Iα

〈
(v2

1)
∗kα[d1 · a1, d2 · a2](σ), ξα+1

〉
α
· [〈a1, a2〉]

= ∑
〈a1,a2〉∈Iα

〈
kα[d1 · a1, d2 · a2](σ), (v2

1)∗ξα+1
〉

α
· [〈a1, a2〉]

= 〈〈kα[d1, d2](σ), ξα〉〉α = κα[d1, d2](σ)(ξα),

where the first equality follows from the distribution relations of Lemma 3.1.4. Therefore, the
lemma follows form the inflation-restriction exact sequence and the fact that the ΓQ(ζpα+1 )

-
invariants of

HomO[Iα+1]

(
H2,1(Sα+1 × Xα+1)(1)†, O[Iα]

) ∼= H2,1(Sα+1 × Xα+1)(2)† ⊗O[Iα+1] O[Iα]

∼= H2,1(Sα × Xα)(2)†

are trivial.

Therefore, if we denote by

H2,1(S∞ ×Y∞)(1)† = lim
←,α

H2,1(Sα × Xα)(1)†

the projective limit obtained from the traces (v2
1)∗, there is a class

κ∞[a, b] ∈ H1(Q(ζp), HomOJIK(H
2,1(S∞ × X∞)(1)†, OJIK)

)
for every element [a, b] ∈ I∞. By taking nearly-ordinary parts, a generalization of Ohta’s
pairing ([Oht95], Theorem 4.2.5) gives an isomorphism

e∗n.o.H
2,1(S∞ ×Y∞)(2)† ∼= HomOJIK(e

∗
n.o.H

2,1(S∞ × X∞)(1)†, OJIK)

giving classes κn.o.
∞ [a, b] ∈ H1(Q(ζp), e∗n.o.H

2,1(S∞ × X∞)(2)†) for all [a, b] ∈ I∞.
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Remark 3.1.9. The key point is that the pairing used to define the classes κα[d1, d2] at finite level is
not compatible with push-forwards along v1, while the generalization of Ohta’s pairing is.

Lemma 3.1.10. Let [a, b] ∈ I∞ and χ : GL(K)tor → Q
×
p , ψ : GQ(K′)tor → Q

×
p be characters

such that χ|Q · ψ ≡ 1, then

κn.o.
∞ [a, b]χ,ψ = ∑

(a1,a2)∈GL(K)tor×GQ(K′)tor

χ(a1)
−1ψ(a2)

−1κn.o.
∞ [a · a1, b · a2]

belongs to H1(Q, e∗n.o.H
2,1(S∞ × X∞)(2)†).

Proof. The order of G(Q(ζp)/Q) is invertible in O, thus

H1(Q, e∗n.o.H
2,1(S∞ × X∞)(2)†) = H1(Q(ζp), e∗n.o.H

2,1(S∞ × X∞)(2)†)G(Q(ζp)/Q).

The claim follows by computing that for σc ∈ G(Q(ζp)/Q)

(
κn.o.

∞ [a, b]χ,ψ
)σc = ∑

(a1,a2)

χ(a1)
−1ψ(a2)

−1κn.o.
∞ [a · a1γc, b · a2γc]

= ∑
(a1,a2)

χ(a1γc)
−1ψ(a2γc)

−1κn.o.
∞ [a · a1γc, b · a2γc]

= κn.o.
∞ [a, b]χ,ψ.

Finally, let G be an IG -adic Hida family of Hilbert cuspforms over L and F an IF -
adic Hida family of elliptic cuspforms of respective characters χ : GL(K)tor → Q

×
p , ψ :

GQ(K′)tor → Q
×
p satisfying χ|Q · ψ ≡ 1.

Definition 3.1.11. For every [a, b] ∈ I∞ we define the big Hirzebruch-Zagier class

κG ,F [a, b] ∈ H1(Q, V†
G ,F

)
attached to the pair (G , F ) of Hida families as the projection of κn.o.

∞ [a, b]χ,ψ under the natural map
e∗n.o.H

2,1(S∞ × X∞)(2)† → V†
G ,F .
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