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Abstract

In this paper we examine parametric solutions to the generalized Fermat

ceptiation,

Simple criteria are given for the existence of solutions over an algebraically
closed field and all such solutions are described. Parametric solutions over
non-algebraically closed fields are then considered. along with an investiga-
tion of the number of distinct classes of solutions. up to an appropriate notion

of equivalence.



Résumé

Dans cette thése nous examinons les solutions paramétriques de l'equation

de Fermat généralisée.

eyt =
Nous donnons deux criteres simples d'existence de solutions sur un corps
algébriquement clos. ainsi qu'une description compléte de ensemble de ces

solutions. Nous considérons aussi le cas d’un corps non-algébriquement clos.
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1 Introduction

[ chis paper we examine the generalized Fermat equation. «# - ¢4 = =", for
B | )

exponents p. g, r > 2.
Definition 1 Let F be any field. A triple of polynomuals a(t). b{t). ¢(t) en
Flt] 1s sawd to be o parametric solution to the equation ¥ + y? = ' f:
Loa(t)y? = b(t) = ()
2oa(t). bit) and c(t) are purwise relutively prome: and
3. the degree of each of a(t). b(t) and c(t) s at least 1.

We will consider parametric solutions to this equation over different fields.

The degree of a parametric solution (a(t). b(#).¢(t)) over F is defined to
be max{dep(a(t)?). deg(b(t)!}. deg(c(t)")}.

We define the Euler characteristic \(p.q.r) of the equation associated to

the triple (p.¢.r) by

1 1 1
pgr)=—-+-+--1.
poq r

The study of the generalized Fermat equation can be separated into three

cases:



Lo \(p.¢g.r) < 0. known as the hyperbolic case:

[V

\ (g ) = 0. known as the elliptic case: and

o

\(p-gq.r) > 00 known as the sphercal case.

The main goals of this paper are to describe precisely when paramet-
ric solutions to the pgeneralized Fermat equation exist. and to understand
‘how many’ such solutions there are. The answers to these questions de-
pend strongly on the tield of definition of the solutions and on the Euler
characteristic of the equation.

Chapter 2 gives a necessary and sufficient condition for existence of para-
metrice solutions over algebraically closed felds. Over most algebraically
closed fields. parametric solutions exist onlv to those equations with strictly
positive Euler characteristic (the spherical case). The exceptional fields are
those with characteristic dividing the degree of a minimal parametric solu-
rion. There are only a finite number of triples (p.¢.r) with positive Euler
characteristic. and we are able to give explicit solutions in these cases. These
solutions are obtained by associating a finite group. denoted [y, .. to each

equation. and exploiting the invariant theory of this group.



The main focus of Chapter 3 is to understand the smallest field in which
parametric solutions to the equation o + y7 = 7 exist.  \We examine the

more general equation

AP + Ay = 2",

—
—
~—

and conclude that if there exists some embedding of [, into PGL,(F)
which is fixed globally by the Galois group G := Gul(F,; F). then there is a
parametric solution to an equation of tvpe (1).

We then show that all parametric solutions over an algebraically closed
field are. in some sense. equivalent. This result enables us to relate non-
equivalent parametric solutions to Galois cohomology. More specificaliy. the
non-cquivalent parametric solutions over £ to o — ¢ = = are in natural bi-

jection with a subset of the non-abelian cohomology set HY(G . Aut(F,,0)).



2 Solutions over algebraically closed fields

2.1 Introduction

The main theorem of this chapter is:

Theorem 1 Let F be an algebraically closed field. Then

Lo Ifx(p.g.r) £ 0. then the equation &” + y' = 2" has no non-tranal pare-
metrie solution over F of degree relatively prime to the characteristie

of F.

o0\ (pog.r) >0, and N = N(pog.r) = 2/\(p.q.r) ts relatwely prime
to char(F). then the equetion 1¥ + y¥ = 2" has a paramnetric solution
(a(t). b(t). e(t)) of degree N. Any other parametric solution s of the

form

((z(h(t))h(t) b h) ht) N L hit)

for some polynomials g(t). h(t) € Ft]. of degree at least one.

The proof of the first part of the theorem is elementary. involving only
hasic properties of polvnomials. The proof of the second part is based on
properties of finite subgroups of PGL3(F). and their invariant theory.

The Euler characteristic as defined above arises in a natural wayv in the
classification of subgroups of PGLy(F). More precisely, each triple of expo-

nents satisfving x(p.q.r) > 0 (the ‘spherical case’). corresponds to a finite

10



group [, ,, € PGL(F). as follows: Ty, ~ D,. the dihedral group of order
2t Doy~ Ay Togy = Syiand Togs >~ A,

Given a particular embedding of T, , into PGLa(F). one can construct
arational function f whose numerator is a pth power and whose denominator

is an rth power.

. a(t)?
t) =
f(t) 0
and such that
i bty
=

where a(t). b(t). c(t) are relatively prime polvnomials.

This. then. gives a parametric solution to the generalized Fermat equation
over F. The final step is to show that all primitive parametric solutions of
the generalized Fermat equation arise from solutions obtained as above: this
proof relies on some basic algebraic geometry and results about coverings of

the projective line over F.

2.2 The elliptic and hyperbolic cases

This section establishes part 1 of Theorem L: namely. that with one small
condition. there are no non-trivial primitive parametric solutions to the gen-

eralized Fermat equation z? + y? = =", in the elliptic and hvperbolic cases.
| Y p Yp

11



Theorem 2 Let F be any field. If \(p.q.r} < 0. there do not exist non-
trimal parametric solutions (a(t). b(t). c(t)} over F to the equation 27+t = 27

of degree relatively prime to charF.

Proof: Suppose (al(t).b(t).c(t)) is a parametric solution to the equation
P+t =2 Let N be the maximal degree of a(#)”. b(t)" and cit)'. and
suppose that .V is relatively prime to the characteristic of F. Nore that at
least two of a()?. b(#)" and ¢(t)" must have degree exactly V.

Differentiating the equation

a(t)? +b(t)* = e(t) (-

[
—

gives

p(t)PN (8) + gb(8)7H () = re(t) (1), {3)

Claim: none of a(t). &(t). ¢(¢t) have zero derivative.
Proof of Claim: Suppose at least one of a(t)?. b{t)? and «(t)" becomes

0 upon differentiation. If pa(t)*~'a’(t) = 0. equation (3) hecomes

gh(1)47(8) = re(t)" 1 (t).

Since b(t). c(t) are relatively prime. this implies that b(¢)9~" divides /(t). and
e(#) =" divides b'(t). The degree of each side of this equation is .\ - 1. so

deg(b{t)) = N/q and deg(c(t)) = V/r.

12



IEO(6) =" | ¢!(t). then either deg(b(£)1™") < deg(c/(t)) or /() = 0. In the
latter case. b'(+) = 0. which implies that charF divides V. contradicting the

earlier assumption. So.

1
- i

s iat. Y . . 1 . Y
deg(0(i)"7 )= —y—-1)=.\ (1 - —) <degidit)y = —
(1 (! I

which becomes ¥ < N/q+.V/r—1. and since ¢. r > 2. thisis impossible. The
same argument can be made to show that ¢b($)='0 (1) # Oand rett) L/ () #
(). This proves the claim.

Eliminating a(t)? in equations (2) and (3) gives
h(#)1™ pa' (£)b(t) = qa(t)b'(t)] = () " pa' (B eth) = ra(tic ()],

At least one of b(t)? and ¢(t)" has degree N: assume that deg(c(t)") = V.
Since b(t) and c(t) are relatively prime. c(t)"" divides pa'(t)b(t) — qu(t)V'(t).

Hence either pa’ (0)b(t) — qa(t)b'(t) =0 or
deg(c(t) ') < deg(pd(t)b(t) ~ qa(t)V'(t)).

Since a(t) and b(t) are relatively prime. pa'(¢)0(t) — qua()'(t) = O implies

that a(t) divides a'(t), which is impossible since the degree of a(t) is at least

13



one. So

r-1 '\'
deg(c(t)"™") = —(r-1)
.
< deg(pa'(Hb() — qa (D' (1))
N N
< el
P gl
Rearranging this equation gives
l 1 1 1
—< -+ -+ ~-=1
N"p g r

so that \(p.¢q.r) > 0.

If dege(t)”) < .V then deg(b(t)?) = V. and an analogous argument.
beginning with the fact that b(¢)9~" divides pa’(t)c(t) — rd/(t)a(t). gives the
satne result.

Thus. it \(p.q.r) < 0. the degree of everv parametric solution over F to

the equation # + y¥ = 27 is divisible by the characteristic of F. |

The condition on the characteristic of F is a necessary one: to see this.
consider a field F of characteristic p. Let a(t). b(t) € F[t] be two non-constant

relatively prime polvnomials. Then

a(t)? + b(t)? = (a(t) + b(1)).

14



and the triple (a(t). b(t). a(t)+b(t)) is a parametric solution to the generalized

Fermat equation o + y# = =¥,

2.3 The spherical case

Parametric solutions to the generalized Fermat equation will he obtained by
considering the invariant theory of finite subgroups of PGL2(£). We begin

by exploring some properties of PGLa(F') and of its subgroups.

2.3.1 Some facts about PGL.(F)

Lot £ be a tield. Denote by GL2(F) the set of 2 x 2 wvertible matrices
with entries in F. Let SLa( F) be the subgroup of GLa(F) consisting of all
matrices with determinant L.

The group GLa(F) acts on F U {ac} by the following rule:

a b at + b
e d ct +d
with the convention that
ax+b a r

= and - = x.
ex +d b 0



This action is not faithful. as the eletnents

a b Na AN
and

¢ d N M

give the same fractional linear transformation. To rectify the situation, we
take the quotient of GLo(F) by its center. which consists of all matrices of

the form

A # 0. which we call scalur matrices. This new group is called PGLy(F).

Define also

PSL,(F) = SL.(F)/ = L.

and

PSL;(F) = PSL,(F)“r.

the set of elements of PSL,(F) fixed by the Galois group of F/F.

The following lemmas explore the action of PGLa(F) on PHF).

Lemma 1 Let z;. 20 and 23 be three distinct elements of PYF). For any

triple w,. wa. wy of distinct elements of P(F), there is an element ~ €

16



PGL3(F) such that ~(z,) = w,.
Proof: Use the equation

(1= )2 —29) () — )iy — wy)
V= iy — o) U — ey = any

and solve for ~(t). )

Lemma 2 Let F be an algebraically closed field. Let ~ € GLo(F) be u
matriz of finite order. and suppose that charF does not divide the order of

~. Then ~ s diagonalizable.

Proof: Every matrix in GL2(F) is similar to a matrix either of the form

/\ l U /\ l
or

() /\_) U /\

Since similar matrices have the same order. and since ~ has finite order prime
to the characteristic of F. the second case cannot oceur. -

Lemma 2 shows that elements of finite order of PGLa(F) can be diago-
nalized; for. if one representative of v € PGL2(F) is diagonal. then all scalar
multiples are also diagonal. Thus. if v € PGLg(F') has finite order relatively

prime to the characteristic of F. then ~ is diagonalizable.

The following useful lemma gives a characterization of the order of an

clement of PSLa(F) based on its trace.

L7



Lemma 3 Let T € PSLy(F).

1. Let r be an even integer. Then T has order roof and only of Trace(T) =

+(C + 7Y where (s a 2rth root of wnty.

2o Let robe un odd anteger. Then T has order v of and ondy of Trace ) =

=+ 7Y where ¢ s an rth or a 2rth root of unity.

Proof: Suppose T &€ PSL,(F) has order r. where charF ¢ r. Using the
result of Lemna 2. assume that T is diagonal. since it is diagonalizable.

Then

a
T==x
0 o«
so that
a0
T == ==/
0 o’

which implies that " = ¢~ meaning « is either a primitive rth root of unity
(and r is odd). or a primitive 2rth root of unity.

Now. suppose T € PSLa(F) has trace ¢ + (™', ¢ a primitive rth root of
nnity. The product of the eigenvalues of T is 1 and their sum is ¢ + ¢~ and
thus the eigenvalues of T must be £¢ and =(7!. so (byv extending scalars if

necessary) one can diagonalize T. as long as { # (7"

18



S - . R .
Then T = + . Let m be the order of T. This implies (™ = ™",
0 ¢t

Le. ¢ =1,

[f ris odd. 2m =0 (mod r) = m =0 (mod r). so the order of T is r.
It ris even. then 2m = 0 (mod r). and the least such m is r/2. So the

order of T is r/2. -

2.3.2 Finite subgroups of PGL,(F)

This section establishes some properties of finite subgroups of PGLy(F)

which will enable us to give a characterization of all such subgroups.

Lemma 4 Let F be a field. For T € GLo(F). define
NT) :=TrT)? = tdet(T).

IfT # [. then T hes 0 fized points if and only if M(T) is u non-square in F*,
U fized pount of and only if MT) =0, and 2 fized points if and only if N(T) is
w square i F . In particular. every non-identity element of PGLg(F) has

at most two fized pornts in P(F).

a b
Proof: Let T = . If 2 is a fixed point of T. then
¢ d

az+b
¢z +d

il
i

19



so that = satisties the quadratic equation ¢2¢ + (d = a)z = b = 0 (). There
are three cases to consider: i) ¢ # 0, ii) ¢ = 0 and d # «. and iii) ¢ = 0.
o =a# .

First. assume that ¢ # 0. Then the quadratic formula gives the roots of

this equatiot:

a —d=x VAT
¢ ’

P p—

Thus. the equation has:
I. 1 roorin Fif MT) =0,
2. 2 pouts in F it MT) is a non-zero square.
3. 0 roots in Fif X(T) is not a square.

If ¢ # 0 then x is not fixed by T. so the roots listed above are all the fixed
points of T in P'(F).

If ¢ = 0 but d # «. the equation (*) has 1 root. But

acc + b -
y =

so that oc is also a fixed point of T. Thus. in this case. MT) = (¢ — d)? and

T has two fixed points.
If e =0 and d = a # 0. the above equation gives —b = 0. which clearly

has no solutions unless b = 0. However. if b = 0 then T = £/. contrarv to

20



our assumption. Thus, b # 0. and

ax + 0
—— = .
«

so % is the only fixed point of T, and XMT) = (@ —aj? -0 =0,

T is a representative for an element of PGL2(F). Suppose a different
representative is chosen in GLa(F). All such representatives are of the form
AT for N € F*. Then MAT) = N N(T). and so MT) is defined up to a non-
zero square. Thus. the result is independent of the choice of representative.

This proves the result. O
Corollary 1 Let F be a field. The action of PGLa(F) on PY(F) us defined
above is faithful.

Proof: Bv the preceding lemma. every non-identity element of PGLa(F)

has at most two fixed points. C

Corollary 2 Given any two triples (zy. 2. 23). (wy.wa. wy) of distinct ele-

ments of PU(F). there is u unique v € PGLy(F) such that ~(z,) = w,.

Proof: Existence was shown in Lemma L. and uniqueness follows from the

fact that PGLy(F) acts faithfully on PY(F). =

The following two lemmas give important properties of finite subgroups

of PGL3(F') which will be used extensively in the sequel.

21



Lemma 5 Let G be o finite subgroup of PGLa(F) such that charF { |G
and such that every element in G has o common fired point in BP'(F). Then

G s cyelic.

Proof: Bv extending scalars if necessary to include all the square roots
of determinants of elements of G. we can assume that G s contained in
PSL,( F). Indeed. if ¢ € G. let A\ = dety. Then multiplying ¢ by the scalar
matrix A" 2/ gives a matrix equivalent to ¢ whose determinant is L.

By translating if necessary. assume that the common fixed point of all

clements of GG is oc. so that if f € G then f is of the form

H

If « = «™' = =1 then f has either infinite order or order charF. which

contradicts our earlier assumption. So we can assutne that ¢ # ¢~ and f is
diagonalizable.

Fix one element f # [ and conjugate the group ¢ if necessary so that

f=



Recall that if ¢ € G then

Then

‘ 1 be(a® = 1)
faf~'y™t =
0 l
and this matrix is in G. Any matrix of this form is either [ or has order p or
x.s0 fgf 'yt =T torall g € G. Then be(a= = 1) = 0. 50 b = ) (impossible)
or @« = =1 (impossible) or ¢ = 0. Therefore all elements of G are diagonal

matrices of the form

which implies that G is cvelic. =
Lemma 6 Lct F be « field, and T a finite subgroup of PGLo(F). whose
order is relatively prime to charF. There exists a set X' endowed with «
[-action such that every non-wlentity element of T has precisely two fived
potnts in X.

Proof: Cousider ['. a finite subgroup of PGL3(F). where F is a field whose
characteristic does not divide |['|. [ acts on P!'(F) and everv non-identity

23



clement of [ has at most two fixed points.

Let F he the algebraic closure of F. Then
1. T € PSL,(F): and
2. Tel = (TriT))* —4is a square in F.
Thus. all non-identity elements of T have either | or 2 tixed points in P*(F).

Now. suppose ~ € [ has only 1 fixed point. Then

Trio —d=((+() -1=(=-¢ ) =0

which has infinite order if charF = 0 and order p if charF = p. Since [ is a
finite group and charF t |[']. this cannot occur.

Thus. all elements of [ have exactly two fixed points in P!(F). O

One can now make a definition which encapsulates the properties explored

in the preceding lemmas:



Definition 2 Let G be a group acting faithfully on o set X'. The action of
G on X is said to be of PGLa-tvpe (respectively SOg-type) of cvery non-
identity element has at most (resp. eractly) two ficed points und the stabilizer

of every point in XN s cyclic.

Thus, Lemmas 5 and 6 say that if T € PGL2(F) is a finite subgroup
such that [T is relatively prime to the characteristic of F. then there is a set

X on which [T acts with an action of SOg-type.

Lemma 7 Let G be a group unth SOgz-type action on a set N. Let H be u
normal subgroup of G. I[f P is the set of points of X' fized by some non-trvial

element of H. then P s fized by the action of G.

Proof: Suppose & belongs to P. Then z is fixed by an clement of H. say A.

Consider ar. for o € G.

or =cho 'or.
and gha™' is an element of H. sav h*. so gr = h*(ar). proving that or is
also i . C
We will now characterize all finite groups with an SOg-tvpe action on
some set. and in so doing. we will obtain a characterization for all possible
finite subgroups of PGLy(F) of order relatively prime to charF.
Suppose G is a finite group of order .V > 1 endowed with an SQjs-type

action on a set X. Let P be the set of all points of .\ having a non-trivial

o
(S]]
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points of GG. counting multiplicities. Thus

From elementary group theory, # 5, = N/¢,. proving the lemma. The identity

can be rewritten as

AN =2=Y N1 = 1/n).
=1

Dividing through by .V in the above identity gives

2 l
) e - — _ —
-5 ;(1 {)

Since .V > 1. it follows that 1 <2 - 2/NV < 2, which implies that

lsi(l—:{)c_’.

=1

Since e, > 2 Vi 1/e, < 1/2 and (1 - 1/e,) > 1/2. Thus.

and so n =2 or 3.

[E]
=1



One quickly dispenses with the case n = 2. since if # = 2 Lemma 8 savs

that

-~

and since ¢, < N. e, = N, Bur then every element of ¢/ has a common fixed
point, and Lemma 5 implies that G is cvelic.
If n = 3. set (e.ea.64) = (p.q. 7). The ouly possibilities are that (p.gq. r)

is one of the following triples: (2.2.r) for r > 2, (2.3.3). (2.3.4). (2.3.3).

CASE 1. (p.q.r) = (2.2.r). Then [N| = 2r. |P] = (P = r. and
| Py = 2.

Let Py = {ri.aa}. Let Gy be the stabilizer of ry. It is evelic of order r
by Lemma 5. and has index 2 in . It is therefore normal. Let o € (. and
suppose that 7 € G does not tix r;. Then 7o, = oy and 1, is fixed by 7or7!.
But since G, is normal. 677! € G,,. and this holds for all 7 € G,,. Since
there are r such clements. and r elements in the stabilizer of r,. we conclude
that &, = G,

Note that any clement in G =G, hasorder 2. Let o € G, . 7€ G =Gy,
Note that 7or; = 71y = ry since 7 does not fix r,. But then 7o is not
a member of G,,. and so 7o has order 2. ie.. ro70 = 1 or Tor™! = o7h.
Thus. G is generated by an element 7 of order 2 and an element ¢ of order r.

| -

satisfving the relation ro7~! = o7, It follows that G is the dihedral group

of order 2r.



CASE 2. (p.q.r) = (2.3.3). Then ¥ = 12, [Pl = 6. [P} = 4. and
lp:il =4

The action of G on Py vields a homomorphismm ¢ — S;. This action
is injective, since every non-identity element has precisely two fixed points.

Hence, G is isomorphic to a subgroup of Sy of cardinality 12, The only such

group is A,.

CASE 3. (p.gq.r) = (2.3.4). Then N =24, || = 12, [Py = 8. and
Py = 6.

Let = € 2. The stabilizer of r has order 3. so if r is fixed by an element
a € G. then ris also fixed by a2, and o* = . Further. if o fixes r. then
any other point fixed by ¢ must be in Ps. since the other stabilizer groups
have orders not divisible by 3. Thus. we can decompose P, into four pairs
of elements (call them py. p,. py.py). with the two elements in a given pair
having the same stabilizer. If r. y have the same stabilizer. then rr. 7y also
have the same stabilizer. for all = € G. since if r. y are both fixed by ¢ € .
then 7r. 7y are both fixed by 7e7~!. Thus. the action of G on the set {p;.
Pa. Py pa} gives a map 2 G — Sy, Suppose 0, and 7, belong to Kergz— {1}
Then o, and o4 must exchange the pair of elements of at least three of the
.. since each element has at most two fixed points. We immediately see that
7,0 must act trivially on P,. but then 0,0, has at least 8 fixed points: so
a7y = e. Hence the kernel of - has order at most two.

But G does not have a normal subgroup of order 2. since the fixed points

of such a subgroup would be a G-orbit of order 2. and the smallest G-orbit
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of G. and K is equipped with an action of SO3-tvpe. so I\ is either cvelie.
dihedral. 4, or 5. If A is evelie. it has order either 2. 3 or 5. Bur the
non-trivial conjugacy classes of elements in G all have size larger than 3. and
we remarked that any normal subgroup of G which contains the stabilizer of
some . € P, must contain the stabilizers of all elements of P,. a contradiction.
So A is not evelic. Then K s either dihedral. Ay or 5y, In particular. &
contains elements of order 2. The number of points fixed by such elements
is r (with r <35). 6 or 12, Lemma 7 implies that G has an orbit of the same
size. which is a contradiction.

Thus. A is trivial. and o is an injection. Hence G is isomorphic to a

sthgroup of S5 of order 60: the only such subgroup is As.

Let [, denote the group associated to the triple (pog.r) as above,
The following lemma provides a nice characterization of these groups using

generators and relations.

Lemma 9 The group [, s described by generators and relations by

Cpgr =(. 3.7) /(o = 3 =~" =i~ =1).

Proof: This is clear for [, since the description above is simply the defini-
tion of a dihedral group. Indeed. let ¢ and T be generators of D,. with g? = 1.
=land oro =77 Let a =o7. 4 =0 and ~ = 7. Then the above con-

ditions on ¢ and 7 are equivalent to the conditions o® = J* = +" = aJ~ = .
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Now consider [',34. Let ¢ = (123). 7 = (234) € ;. These generate
A,. since they generate all 3-cyeles and A, is generated by its 3-cveles (see
[Hun74). [ 6.1). The map Cyz3 — Ay which sends J to a. v to 7 and o to
ar = 78a* is well-defined because a. 7 and o7 satisfv the defining relations
for 3. 5 and a respectively. It is onto because ¢ and 7 generate A,

The Todd-Coxeter algorithm (see [Art91]. 6.9) reveals thar [y 4 has order
12. Since every onto homomorphisim between two finite groups of the same
cardinality is an isomorphism. [y33 =~ A;.

The result for Tuy, and Tag; can be demonstrated in the same fashion:
first find generators of Sy and A; which satisfv the proper relations. rhus
providing an onto map trom [, ,. The Todd-Coxeter algorithmn shows that
the order of T4y is 24 and the order of 45 is 60. 4

All of the results of this section can be combined into the following the-

Orer:

Theorem 3 [f [ is « finite subgroup of PGL2(F') whose order s prime to
the characteristic of F. then T is either cyclic or s isomorphee to Uy, . with
Vp+1/q+1/r>1

2.3.3 Parametric solutions

This section exploits the invariant theory of the finite subgroups of PGL2(F)

to produce parametric solutions to the generalized Fermat equation o#+y¥ =
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z". The groups [, of the previous section satisty the equation

2

!rp.q,ri

\(p.g.r) =

Thus, if we consider only rhe Fermat equarions with y(p g r} > 0 we ean
associate the group [, . to the Fermat equation with the same exponents.
over any algebraically closed field F such that [T, | is relatively prime to
charF.

Throughout the rest of section 2.3, we assume that the ficld F s ulge-
braically closed. and work over the field F(t). the field of fractions of the
polynomial ring F[t]. Elements of PGLy(F) act on rational functions in the

following wav:

-1
u b f(t) = (u.! +1))
d v ('t "1"‘(1 '

Given a group ' € PGL(F). a function f is said to be [-invariant if ~ f = f

for all ~ €T,

There is a notion of degree for rational functions: given a rational function
f(t) = gtt)/h(t) with ¢. h relatively prime polvnomials. define the degree of
f(#) to be max{deg(g(t)).deg(h(t))}. If (a(t).b(t).c(t)) is a solution to the
equation r? + y? = z" then the degree of the solution. as defined in the

introduction. corresponds to the degree of the rational function a(¢)?/c(t)".
Theorem 4 Suppose x(p.q.r) > 0. Fiz an embedding of T, ,, into PGLa(F)
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and let T denote its image. There is a4 unique rational function f € F(t) of

degree N = [, | which s T-mvariant and which satisfies
fz) =00 f(z) = L f(z) = x.
fl)!’ I € P1 g} [)'l. 3 € Pi

Proof: Let ~p.... .~y be the elements of I'. Define the rational function

)-—AH wf _”

where & is a constant chosen so that f(z,) = | and a. J are any finite
clements of the orbits of z; and zj. respectively.

We first prove that f is [-invariant. Let ~ € I'. Then

N e
i = ) = R[]0

=1
v
1 (7 (t) — «)
= k
| ome
= f(t)
as desired.
Setting,
a,
| ¢; d,
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rewrite f as

v a t+b,
, n‘=l (('.:+d. - “)
= }\' - -
N a, trb,
I—[L:l (p,:...sl - f)
St + b~ atet +d,)
\=l(u,t + b, — 3t + (l,]).

The above expression implies that the degree of f is ut most N, In fact,
deg ([T, (et + b, = alet +d,))) is .V if and only if < ¢ Py and is N - p
otherwise. Similarly. the degree of the numerator of f is either .V or NV = r,
depending on whether xc € Py. Since Py and Py are disjoint orbits. there is
no cancellation from among the zeros and poles of f. and we conclude that
the degree of fis V. This proves the existence of a function f satistving the
desired conditions.

The proof of uniqueness requires

Theorem 5 (Liiroth’s Theorem) Let F be u field and F(t) an ertension

of F of transcendence degree 1. Suppose E s o field extension of F such that

FCECEF(t)

Then E s purely transcendental of degree 1 over F, v.e., E = F(s) for some

s € F(t).



For a proof of Liroth's theorem, see [Ched1]. VI. 2.

Consider F(t). the field of rational functions in ¢. This is an extension
of degree .V over F(t)'. the set of rational functions fixed by the action of
[. By Liiroth’s theorem, since F C F(t)' C F(t). F(t)" is a rranscendental
extension of F of transcendence degree 1, so F(t)" =~ F(s) for some s tran-
scendental over F. Since f is a rational function of degree .V which is fixed
by the action of T, then F(f(t)) C F(s) and F(¢) is an extension of degree .V
over F(f(t)). So F(f(t)) = F(s). Then suppose. without loss of generality.
that f(t) = s.

Suppose there exists a rational function g € F(t) satisfving the same

conditions as f. Then g € F(s) so

as + b

s+ d

9=

and g(z) = 0. g(z3) = 1. g(23) = <. Thus.

as(z))+0 _ ) ~0
es(z)+d  d

and so b = 0. Also.

as(z) o«

= =1
es(z)+d  c+d
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implyving ¢ = ¢ + d. And lastly.

s (3y) u
= —-=x
.

cs(zy) +d

and so ¢ = 0. Therefore ¢ = d. and we deduce that g = f Thus, f is the

unique rational function of degree .V satisfving the conditions stated above,

—
st

Let = € Fand f € F(t). Define the order of = at f. denoted ord.(f). to

be the integer m such that
(t—z)7"f()

is holomorphic and non-zero in a neighborhood of z. Define

orda () = ~ordg (f (-})) |

For all but a finite number of z € PY{F). ord.f = 0. The dinisor of f(1) is

defined as the formal sum

div(f) = Y ord:(f)-[2].

T€PYF)

The divisor of a rational function f gives a list of its zeros and its poles

and their orders: hence. a divisor completely determines a function up to a

constant.
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Proposition 1 Let f be the function desceribed in Theorem 4. Then there

Is alt). bit). o) € Flt] such that

cxist polynomnua

o at)? L by
=" fin=t=—mr

so (a(t). bet) e(t) is ¢ solution to the equation £ + gl ="

proot of Theorem 4 gives all the information required to deter-

f. Indeed. f has N/

Proof: The
mine the divisor of the funcrion p zeros with multipliciey
p. which are precisely the elements of P Similarly. the poles of f all have
multiplicity 7 and are the N/r elements of Py. Hence. the divisor of f is

'

pY iz - ry

= by el

Thus. the function fis completely determined up to a constant factor. which
is computed using the fact that f(z) = . If x is not in P, or Py f(t) can

he written as

znm;ﬁw ~ uvr
—lHumN,:. - nwn

#

where k is a constant chosen (different from the constant used in Theorem 4)

so that f(z2) =1 However. if 5c is in P, or Py. it is necessary to adopt the
1. It is easily checked that with this convention.

convention that t =X =
priate order. In any case. we may

~ will be a zero or pole of f of the appro
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write

with w(?). o{#) relatively prime polynomials.
The divisor of f(¢) — | may also be computed. Since f(t) — | has a zero
at each of the elements of P, with multiplicity ¢. and the same poles as f(#).

Thus

divifin -1 =q 3 (:-rY i

€P € Py
This allows us to deduce that
cepr ezt = 2)1
f-1 = Mool .
:um;.uﬂun: - ,...V‘
_ b(t)d
- c{t)

where a(t). b(t). ¢(t) are relatively prime polvnomials.

Now. since f — (f — 1) = L. we have

a(t)? N b(t)? —1
a.:vn ﬁ:vv

ar

a(t)? +b(t)Y = (1)
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and (a(t). b{t).c(t)) is a parametric solution over F to the generalized Fermat
equation o# + y* = z7. —

Two embeddings of Ty, into PGLa(F) are said to be equivalent if they
have the same image in PGLo(F). Equivalent embeddings produce the
satne paratnetric solution. so we need only concern ourselves with equiva-

lence classes of embeddings.

Theorem 6 Let F be an algebraicully closed field. Let pog.r be such that
\pagor) > 0 and let N = N(p.g.r) =2/\(p.q.r). Suppose that charF does
not divide N. There is a bijection between the set of equivalence classes of
embeddings of Tpyr mto PGLa(F) and the set of parametric solutions of

degree N to the generalized Fermat equation 1P + y% = <7,

Proof: The [-invariant function f obtained from an equivalence class of
cmbeddings of [, gives a parametric solution to the generalized Fermat
equation. of the proper degree. It remains only to prove the converse.

Let a(t).b(t).c(t) € Ft] be such that a(t)? + b(t)? = ¢(t)". This relation
inplies that at least two of a(t)?, b(t)? and c(¢)" have degree N - sav. a(t)?

and (). Let

Let I be the set of all ¥ € PGL2(F) such that 4vf = f. This set is. in fact.
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a group. Indeed. if ~y.v € T, then

so~"terl.

Any element of [ permutes the roots of a(t). b(t). and c(t). Indeed.
suppose 7, is a root of att). Then f(z) = 0 = f(~(z)) (since f is [-
invariant). so ~ (2} is also a root of a(t). Since PGL4(F) is triply transitive.
any = € [ is uniquely determined by its action on the roots of a(t). b(t). and
c(t). Hence [ is a finite group.

[u general. an element of P'(F) has an orbit of order V. since for all but
finitelv manv a € P'(F). the equation f{t) = f{a) has .V distinct roots.
Thus. || > .V. Since each of the roots of a(t). b(t) and ¢(¢) has an orbit of
less than .V elements. thev must have a non-trivial stabilizer. Then ' has
precisely three orbits of fixed points. of orders .N/p. N/¢ and .N/r respectively.
Thus. I' =~ T',,-. and each set of parametric solutions to r# + y* = =" gives
rise to an embedding of [, , .

The class of embeddings of ['p, - obtained from a given parametric solu-

tion (a(t).b(t).c(t)) is precisely the class of embeddings which gives rise to
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{(a(t).b(t).c(t)). and so the map defined above is in fact a bijection. @

2.3.4 Some algebraic geometry

As the final step in the proof of Theorem L. it remains only to prove that every
parametric solution of the generalized Fermat equation with \(p.q.r) > 0
can be obtained from one of the solutions described in the preceding section.
In preparation for the proof. we begin with some facts about function fields
and coverings of P!

A covering of a topological space Y is a pair (X, 7). with .\ a topological
space and 7 X' = 1" a map between them. such that for anv y € Y. there
exists a neighborhood N of y such that the inverse image 77'(.V) consists
of disjoint open sets. {,. such that ', is homeomorphic to .V for all .. e
are concerned primarily with algebraic covering maps. in which the inverse
image of any point is a finite set.

Now suppose that .} are varieties over some algebraically closed field
F. To each variety V" over F is associated a field of functions. denoted F(17).
Let f be any rational function f: X — Y. The map f induces an inclusion of
function fields. so F(Y) € F(X). Let P € X. Then the field F(X)p (F(.X)
localized at P) is an extension of the field F(}) ). Let 7 he a generator
of the ideal corresponding to f(P). Define a valuation vr : F(Y)ppy — Z
by ¢r(7) = n if and only if 7 = #"7" where 7 does not divide 7'. The value
group of this valuation is the image of v.: in this case. the value group is Z.

Now. choose a generator 7 of the ideal associated to P in F(.\X'): Define
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a valuation vz 1 F(\X)p — Q such that ¢z restricted to F(Y )ppy is 0. The
image of ¢z in Q is fZ for some ¢ € N. This number ¢ depends on P: it is
called the ramification ider of P. A point () € Y is said to be rumified if
there is some P € f~!((Q) with ramification index greater than L.

A nonsmgular complete curve X/ F is a pair (X, F(.\')/F) consisting in a
ficld F(.X')/F of transcendence degree 1 over F and a set .\ identified with the
variety V{F(X)}/F) through a given bijection between N and V(F(.X)/F).
We will want to apply this theorem to coverings of P'. which are nonsingular
complete curves by this definition. associated to the field of functions F(t)/F.

The last definition we will need is that of the genus of a curve. If X is a
curve defined by a homogeneous equation of degree d. then the genus of .\’
is the integer

(d -~ 1)(d~-2)
—

These ideas are all combined in the following theorem.

Theorem 7 (Riemann-Hurwitz Formula) Suppose that F s an ulge-
brawcally closed field and let f : X — Y be a morphusm of nonsigular
complete curves over F. Assume that the degree N of [ is prime o the

characteristic of F. Then

29(\) = 2= N(2g(Y) = 2)+ ) _(ep - 1.

PeX

43



where g(X) is the genus of the curve X and ep s the ramification mnder of

P.
A proof can be found in [Har77]. I\ 2.4,

2.3.5 Solutions of higher degree

The final step in the proof of the main theorem for this chapter will be
accomplished in two parts. First. we use the Riemann-Hurwitz Formula
to prove the following lemma. which will be vital to the proot of the main

theorem.
Lemma 10 There are no non-trivial unramufied coverings of P

Proof: Let {.\\. f) be a covering of P'(F) of degree d > 1. The Riemann-

Hurwitz formula in this case sayvs that

2(N)=2==2+ Y (ep—1).

PE.

-

If (.X. f) is unramified. we have 2g(.\\') — 2 = —2d. The left-hand side is at

least —2. and the right-hand side is at most —2. so we must have 2¢(.\') -2 =

([

-2d = =2, and so d = 1. which implies that f is an isomorphismn.

This lemma provides the strategy for the second part of the proof. The
idea is to take two parametric solutions. one of degree NV and one of arbi-

trary degree. and look at the corresponding function fields. If we can prove
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that a certain covering of P!(F) is trivial. this will provide a map from one

parametric solution to the other,

Theorem 8 Let F be an wlgebraically closed field. and let \{p.q.r) > 0.
Every prinutive parametric solution to the equation ¥ + y9 = =" s of the

form

M deg(a) (M) deg(d) (M) dvmr))
(a(/(”)h(t) b ) hit) N ) I(t) .

where the degree of a(t)?/c(t)” s N(poyg.r) = 2/\(p.q.r). and g(t). h(t) €

Flt].

Proof:

Suppuose (r(t). y(t). z(¢)) is a primitive parametric solution to the gener-
alized Fermat equation. and let (a(t). b(t).c(t)) be a parametric solution of
degree N(p.q.r).

Let 4. X ~PYF). Let a: A = P'(F) be defined as a(u) = a(u)?/c(u)".
and let £: X" = PYF) be the map £(s) = £(s)?/=(s)". Finally. let 11" be the
variety corresponding to the compositum of the function fields of 4 and .\

Then the commutative diagram

W — 4

acuk
1 ln(uj: TG

N ——— PY(F)
E(s)= L2k

45



gives rise to the following diagram of function fields:

Flu. )
VRN
F(X) = F(5) F(Ad) = F(u)
N/
F(t)
where t = '—::—,"- and t = "‘;:;p

The strategy is to prove that 117 is an unramified covering of .\ Lemma 10
then implies that 117 >~ Y. so that & factors through . Let w € 117, If
is ramified over .X'. then the image of w in 4 must be ramified over PH(F).
Since the only ramified points of 4 over PH{F) lie above 0. 1 and x. it is
necessary only to examine these points.

The ramified points of a(u)?/c(u)” are precisely those points of P'(F)
which have a non-trivial stabilizer in the group ' € PGL2(F) that fixes
a(u)?/e(u)". The points corresponding to 0 are the points in the orbit P,.
the points corresponding to 1 the points of P,. and the points corresponding
tao x are the points of P3. The ramification indices of these points are p. y
and r. respectively.

Consider the points of .\ lving over 0. ! and >. If the ramification indices
of these points are multiples of p. ¢. and r respectively. then W™ will be an

unramified covering of .\X.
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Since t = x(s)?/z(s)". the ideals lying over t are those corresponding to
linear factors of £(s). Let (s —.1) be one such factor. with exponent ¢. Then
(s = . 3)7 divides t. so the ramification index of (s —.9) is ep. for some integer
¢ > 1. Thus. if w is any point in W whose image in .\ lies above O, then w is
unramified over X'. An analogous proof. considering points Iving above 1 and
x. shows that all points of 11" lving over | and o in P'(F) are unramified
over .X'. Thus. 11" is an unramified covering of X', and so 11" =~ \'. Hence
F(4) is contained in F(.X'). The inclusion provides a map from .\ to 4. thus

proving the result. )

[n particular. we have the following corollary.

Corollary 3 Let \(p.¢.r) > 0 and suppose F s an algebrawcally closed field.
Let (a(t).b(t).c(t)) be a parametric solution over F of degree N = N(p.q.r)

r

to the equation r* + y? = 7. Then all other parametric solutions of degree

N can be obtained by taking (a(~vt). b(~t). c(~t)) und clearing denovmunators.

for ~ € PGLy(F).

Combining Theorem 2 with Proposition 1 and Theorem 8 gives a complete
8

proof of Theorem 1.

2.4 Examples

Lemmas 3 and 9 suggest a method for writing down explicit embeddings of

the groups Iy, as subgroups of PGL,(Q). noting that if F is algebraically
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closed. then PGLo(F) = PSLy(F). We will demonstrate this method for
the group [yo .

The strategy is to begin with

where r is the least positive integer such that »" = o7". so that » has order

r. Then let

and trv to ind a.b.c.d such that Tr.d = 0 (since we want .f to have order

2). det.d = | and Tr.d~ =0 to ensure that o = J~ has order 2.

The trace condition on .3 allows us to deduce that d = —a. Then

1

and the trace condition on 3~ implies that aw — aw™' = 0. and heuce a =0

since w # »~!. Substituting back into :J gives

18



Now choose b. ¢ so that det 3 = 1. For simplicity. we choose b = 1. ¢ = —1.

but we can choose any b € Q. choosing ¢ = —1/b. Thus, the matrices

o ()
b oo
0 1
3= .
-1 0
give one embedding of Ta.., into PGLo(Q).

[t is worth emphasizing that this is just one choice of embedding. and

that any other choice for b would give a different one.

To And an embedding of [, 43 let

where w is a primitive cube root of unity. We must find .7 such that TrJd =

—l=u+ % detd =1 and Trdvy =0. One choice for J is

This embedding enables us to write down a parametric solution to the equa-
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tion 12 + y* = 2% over Q. using the rational function f of Theorem 4.
The fixed points of this particular embedding of ugy fall into the three

orbits P, = {1 £ V3.1 = V3.1 =V} Po= {L.o.o? x} and

This gives the polvnomials

alt) = le(t—:)

=P
= k(1% =20t = 8).

bty = hy H (t =2
e Py reEc
= ko(t® = 1).
i) = A';;H(t—:)
3Py

= li':;(t'l + St).

where k). &y and Ay are chosen so that

a(t)® + 0(t)* = eft)’.

Since

a(t)? = ki(t" - 40" + 3841° + 320t" + 64).
bty = kY =3t + 310 - 1),

ety = K3(t' 4 24% + 192t% + 512¢%).



we choose k) = 1. Ay, =4 and &y = 1.

Thus. for exponents (2. 3. 3). (£% =20t —8. 4t* —4. 1 +8¢) gives a parametric
solution to the generalized Fermat equation. These polvnomials have integer
coefficients: we could have predicted this by looking at the orbits P,. . and
Py. Each of the orbits is closed under the action of Gp. implving that the
coefficients of ¢. b and ¢ are in @ since all the finite points in P, Py and P,
are algebraic integers. the coefficents must in fact be rational integers.

For ["3_;,,,1 let

where & is a primitive eighth root of unity. Then find a matrix J such that

det 3=1.Trd=~1and Tr.J~ =10. One possible choice is

Using Maple. we can compute the fixed points of [ and calculate their
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orbits to find the polynomials a. b and ¢. We find
33,3 33,.1 L
1 16 64/

bty = k. (r’“’ -+ -1-> i
: 2 16

ks (t"’ + l() .
2

Expanding. we can choose ky = 1. ks = =1 and Ay =274

alt) = Kk (twﬂ-

cft)

Finally. for Iy 45. we let

where w is a primitive fifth root of unity. We then try to find 3 such that

detd=1.Trd = -1 and TrJ~ = 0. We obtain

Again using Maple. we compute the ftixed points of [ and calculate their

[ ]
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orbits. Let ¢ = 32 — L/5. We find that

a(t) = k(%0 + (—46458 — 287T10¢)t* + (— 109514730 — 6T683825( )t
— (1656629310705 — 1023833220773¢)¢'Y
+(10630535780628 + 6570032431050¢)¢°

+2504730781961 + 15480087535920¢).
h(t) = kao(t? + (20292 + 125340001 + (5402324 + 3341910017
— 1653380141 + 102334155¢).
and
c(t) = ky(tt! + (=979 = GO + (= 10946 ~ GTGI)t).

We can choose k) = 1. by = =1, k3 = (1533792 + 95040¢) /2.



3 Solutions over general fields

3.1 Introduction

This chapter addresses rwo basic questions: given a field F which is not
necessarily algebraically closed. do there exist parametric solutions to the
generalized Fermat equation over £7 And. supposing at least one parametric
solution exists. how many distinct classes of solutions are there over F. up
to a suitable notion of equivalence?

Theoremn L gives conditions for precisely when parametric solutions to
the generalized Fermat equation exist over an algebraically closed field. [n
practice. we will often be working over fields which are not algebraicaltly
closed. and so we need a refinement of this theorem. The first step will be
to look at the solutions described in Theorem 6 to determine the smallest
field containing their coefficients. We discover that parametric solutions over
F to the generalized Fermat equation come from F-rational embeddings of
[yt that is. embeddings that are fixed globally by the Galois group G g

We then turn to the second question. Two parametric solutions over F
are said to be F-equivalent if one can be obtained from the other by replacing
the parameter t by a fractional linear transformation of t. with coefficients in
F. We prove that over an algebraically closed field. all parametric solutions
of degree N(p.q.r) to the equation r? + y¥ = 2" are equivalent.

The situation over non-algebraically clused fields is more complex. An

investigation of the number of F-equivalence classes of parametric solutions
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leads us to consider the set of F-equivalence classes of F-rational embed-
dings of T, .. We define a map between this set and the first cohomology
set of G in Aut([p,,) and prove that it is injective: it is not. in general.
surjective. To obtain a surjective map we must enlarge the set of embeddings
we consider to include embeddings of [y, into the Q-automorphism groups
of conics defined over Q. We prove that the map between this new set and
HY G Auy(l,,,)) is indeed surjective when (p.q¢.r) = (2.3.3) or (2.3. 1),
We prove a similar theorem for [y 5. and give criteria for which elements of

HY (G Aut([a45)) correspond to parametric solutions over Q.

3.2 The equation Az? + ByY = ="

The Galois group G acts on PGLo(F) by its action on F. and this extends
to an action on the set of embeddings of [, in a natural way. Let Ay,

denote the automorphism group of 'y, ..

Definition 3 An embedding p : [y, = PGL2(F) is sad to be F-rational
if for each o € G there exists o, € Ay, such that °p = p-aq. That s, the

image of p s preserved by the action of Gr.

Proposition 2 Let y(p.q.7) > 0. and suppose that N = N(p.q.r) is relu-
tively prime to the characteristic of F. Let T be the image of an F-rational
embedding of the group Ty, ,.. and let f be the function associated to I as

in. Theorem 4. Then there are constants \j. Ay € F und relutively prune

[&1]
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polynomials a(t). b(t). c(t) € F[t] such that

TGN
f(f) - /\1 (-(t)r. f(t) 1 - ’\2(-(2‘}’.

D). el iy a peremnetric selubion of degree N fo the generalized

>~
-
—_—
-~

[

Fermat equation

AP+ Myt
! 2

Proof:
Let

=P

bt) = H(z-:)
e P

oty = [Jee-2
P

with the convention that (t — o) = 1.

Since [ is F-rational. the set of fixed points of T is preserved under the

action of Gg. as are P,. P, and Py. Thus. if 0 € Gf. then

alatt)) = [[t-atz)) = [t - 2) = at).

z€P, :EP,



su the coefficients of a(t) are fixed under the action of Gr. Hence. a(t) is a

polynomial with coefficients in F. Similarly. b(t). ¢(t) belong to F[tl.

Let

\, = H::."_,(:’_3)r elza)"

- H:ep,(:;’ =) a(z)?

\ - _l_[:éf’l(':l -z _((:l)r

SO s Y E TR TN

Then
(7(\ ) _ H:EPM,(G(:'.’)—”(:))‘”
T H:em(a(:'.’) - 0o(z))?
_ eeptotz = 2
l_[:eiqka(:'.') - )

_ c(aza)”
T a(oz)P

but a{z,) € P, since [ is an F-rational embedding. so a(\;) = A, for every
a € G, Thus. A\, € F.and similarly, A, € F. =

Note that if A is a pth power and A, is a ¢th power in F. they can be
absorbed into the polvnomials a(t) and b(t) respectively. giving a solution to

the equation

£yt =2

a7



Unfortunately. this isn’t always the case. as the examples of Section 1.4
demonstrate. However. for exponents (2.3.3). multiplyving equation (4) by

AP gives the equation

(MTAQ())™ + (ATAD(E))S = (N Adet))™.

providing a parametric solution to the equation * + y* = 2°. A similar
method for exponents (2.3.3) will only work if A, is a cube. and for (2.3.4)

if A} is a square.

3.3 F-equivalent solutions

Definition 4 Two parametric solutions (a(£).b{t). cit)) and [&(!).(‘;(!).f-{f}}
are satd to he F-equivalent of there ensts some ~ € PGLa(F) such that

a(t) = a(~t). bit) = b(vt) and &(t) = c(41).

These solutions are equivalent in the sense that the set of solutions in F?
to the generalized Fermat equation obtained by specializing ¢t to values in F

are the same for both parametric solutions.

Definition 5 Let p and py be two embeddings of [y, into PGLa(F). They
are said to be F-equivalent. denoted p; ~ py. if there ersts an element

M € PGLy(F) and v € A, such that py = M(py - a)M~".

Lemma 11 Let p. py be F-equivalent embeddings of T),,. nto PGLy(F).

The parametric solutions corresponding to py and to p, are F-equivalent.

38



Proof: Let T be the image of p;, in PGLa(F). Suppose that the image of

pais MO MY where
M= € PGL2(F).

The orbits of the fixed points of this new group are MP,. MP, and MPy
where . £, and Py are the fixed points of the original embedding . The

function f obtained from MTM ! is

H:eﬂ,(t - i‘-.f—Iﬁ)’ H:ei‘l % - %)"

[Lep ez +d)t = (a2 +0)? [Lep (ud = be) (22 = 2)7
[Tcp, ez = d)t = (a2 + D))" []cp (ud = be)p{zy — 2)P
[licp ((dt = b) = z(a = ct))? [].cp, (ad = be)" (:3 -z)
I-[:E,,]L(dt —-b) - z(a —ct))r n:efﬁ(“d = be)P(zy — 2P
1-[.-5;’1 (-d(t‘l—-fa - ‘)p l_[:el);,(:'-’ - z)"

Mcp, (255 = =) Tlep (22 = 21

ftoy =

and hence the parametric solution corresponding to MM ! is obtained from

the solution corresponding to [ by a fractional linear transtormation. O
Theorem 6 directly implies the following theorem.

Theorem 9 Let \(p.q.r) > 0. and let F be « field whose characteristic does

not divide N = N(p.q.r). The ussignment p— (a(t). b(t).c(t)) described in

Proposition 2 induces a bijection between the set of F-equivalence classes of

F-rational embeddings of Up g, into PGLy(F). and the set of F-equivalence

o9



clusses of parametric solutions of degree N to the generalized Fermat equa-

fions A r? + Aoyt = 27 where A| and Ay vary.
1 2l 1 2 L

3.4 How many parametric solutions are there?

In this section we use Theorem 9 to investigate the number of F-equivalent
parametric solutions over any field F. In some cases. this number can be

explicitly calculated.

3.4.1 Algebraically closed fields
We have already proved the following result:

Proposition 3 Ouver an algebravcally closed field F. all paramnetrie solutions

of degree N ure F-equivalent.

Proof: Combine Theorem 9 with Corollary 3. a

[n [Beu98). it is proved that all solutions of the generalized Fermat equa-
tion can be obtained from parametric solutions by specializing the parameters
to values in F. This result. together with Proposition 3. imnplies that all so-
lutions in F* ro the equation ¥ + y* = =" can be obtained by taking values

of a single parametric solution to the equation.

3.4.2 Non-abelian cohomology

Our investigation into the number of F-equivalence classes of parametric so-

lutions will lead us to consider non-abelian cohomology. so we begin with
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some basic definitions and results. Throughout this section. let (& be a profi-
nate group. that is. a topological group which is the projective limit of finite
groups. each given the discrete topology.

Let A be a group. endowed with the discrete topology. un which G acts
continuouslty. Fur g € G and ¢ € A. we denote the action of g on @ by Ya. We
call such groups G-groups if the structure of A is invariant under the action
of G. e ab) = (Ya)(¥h) for all a. b in A, Commutative G-groups are also
called G-modules.

Let A be a G-group. A cocycle of G i A is a continuous map g — «,

fromm G to 4 which satisfies the cocvcle relation

- y
Ugh = dy - Juy

for all ¢. 1 € G. The set of such cocyeles is denoted ZHG. A).
Two coeveles « and o are said to be cohomologous if there exists b € A

such that

a, =b"a, b

for all ¢ € G. One writes a ~ ' if ¢ and &' are cohomologous.
Proposition 4 The binary relation ~ is an equivalence relation on ZH(G. A).

Proof: \We first prove reflexivity: that is. a ~ « for all « € A. Taking b = 1.

the identity of 4. « is cohomologous to itself.
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The relation ~ is svmmetric: that is. if ¢ ~ «' then «' ~ a. Suppose
w ~ «a'. Then there is some b € A such that ¢ = b~'a, ¥h. Thus. ba ("0)~" =
b, 9(b7") = a,. and s0 @' ~ u.

The relation ~ is transitive: that is. if ¢ ~ o’ and ¢’ ~ " then o ~ o”.
Suppose ¢ ~ a' and o' ~ «". Then there exist b, ¢ € A such that a), = b7'e, b
and @ = ¢l e, But then ) = ¢ 107 a0 = (be) ", /the). and sv @ ~ o

—

This completes the proof. '

—

Definition 6 The quotient of Z'(G. A) by the equivalence relation ~ is de-

noted H'(G. A). and is called the first cohomology set of G in A.

Note that in general. HY(G. 4) is not a group. but a pointed set. i.c.. a set
with a distinguished element. corresponding to the class of the trivial cocvele.
We will use two basic results of non-abelian cohomology. hoth proved in

[Ser97).

Proposition 5 Letl - 4 = B — C — 1 be an exact sequence of G-groups.

Then there exists o map o such that the sequence
L= A = BY - % 5 HYG. 4) » HY(G.B) — H'(G.C)

ts exact (in the category of pointed sets).
For a proof. see {Ser97]. I. 3.5.

Theorem 10 (Hilbert’s Theorem 90) For every Galuws extension N/Q.
HYGul(K/Q). K*) = 0.



See [Ser97]. [I. 1.2.
Proposition 6 GL2(F)/F* ~ PGLy(F)%*.
Proof: The sequence
| = F" 5 GLy(F) = PGLs(F) = 1
is exact. Hence the sequence
1l = F* = GLa(F) = PGLy(F)“* - HY(Gr.F")
is exact. But by Hilbert's Theorem 90. H'(Gg. F ") is trivial. and so

GL,(F)/F* ~ PGLy(F)"'*.

3.4.3 Arbitrary fields

[n this section we relate the distinct classes of parametric solutions over an
arbitrary field F to non-abelian cohomology. The group G- actson [, . with
a trivial action. In this case. HY(Gr. A, ,.r) is simply the set Hom(Gg. Ap,.r)-
modulo conjugation by Ay,

Let p:Tpyr — PGL;(F) be an F-rational embedding. Then for every
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Proof: Let p; and p, be two F-rational embeddings. From Proposition 3.
there exists M/ € PGLy(F) such that p, = " p,. Suppose that p, and p, map
to the same cohomology class. By replacing gy by po - b for some b€ 4,,,.

assurne that p; and ps give rise to the same cocvele. Then

“mo= pedo)
= "Mp) = M)
= "Ypy-cila))
and so py = "My = Mpy. Hence the matrix M ~1(7)) commutes with all
elements of the image of ', so that M~Y7V) = |. Therefore M = 7\

for all ¢ € Gp. but PGLy(F)%* = PGL2(F) by Hilbert's Theorem 90.
Hence. M belongs to PGL2{F'), and p; and p, are F-equivalent. Thus. ¢ is

olle-to-one. O

—

The map , is not. in general, surjective. To see this, consider the trivial
cocvele in HHGg. A, 4.0). If there exists some p: [ — PGL.(F) such that
"= p-cla) = p. then pis an embedding of ['p, . into PGL2(F). Such
an embedding need not exist: for example. consider [,35. The clements in
.45 of order 5 have traces in Q(v/5). and so there is no embedding of 4 ;
into PGL2(Q). In fact. we will see that for (p.g¢.r) = (2.3.3). (2.3.4) and
(2.3.3). the group [, 4 does not embed in PGL2(Q). Thus. over Q. the

trivial cocycle is never the image of an embedding of I, in PGL,(Q).



3.5 Forms and cohomology

Theorem 11 provides information on the number of equivalence classes of
cmbeddings of T. But it does not address the question: when can [, ,, be
embedded into the group PGL2(F)? Tlus is closely related to the failure of
surjectivity of . This failure of surjectivity is accounted for by the existence
of non-trivial forms of PGL2(F) over Q. Forms of PGLy(F) are isomorphic
to B /F’. where B* is the multiplicative group of a quaternion algebra
over F. or equivalently, to Autp(.V). where X is a conic over F. Note that
PGL,(F) is in fact Autp(P!). and everv conic with at least one F-rational
puint is isomorphic ro PY{F). Thus. it is natural to replace PGLa(F') by
Autp(X) and ask: when does there exist a conic X such that T, can be
cimmbedded in Autg(X)? v turns out that this poine of view leads to more

satisfving answers.

3.5.1 Conics and quaternion algebras

A conze X defined over a field F (of characteristic not 2) is the set of points in
F= satisfving a degree 2 polynomial equation f(r.y) = 0. with the condition
that .\ is non-singular. Sometimes it is preferable w homogenize the defining
cquation for .\ and to consider it as a projective curve. That is. .\ can be
thought of as the set of points [z : y : z| in Po(F) satisfving the equation
FINX.Y.Z)= f(%'-. %}Zz = 0. The nonsingularitv condition is equivalent to

asking that the first partial derivatives of F never vanish simultaneously tor
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some point in Py(F). Otherwise, the curve X is said to be degenerate.

Proposition 7 Every projective conuc is equivalent to some diagonal form
') ‘) 4
ar +by” +cz” =0.

For a proof. see [Lam73]. [ 2.4. In fact, every conic is equivalent to a quadratic
form azr? + by? + ¢z* = 0 with abe # 0. since the quadratic forms % = 0 and
ar?® + by* = () are both degenerate.

Conics and quaternion algebras are intimatelv related: we now provide
some basic definitions and results about quaternion algebras. and explain the

connection between the two.

Definition 7 Let F be a fleld. charF # 2, und let a.b € F*. Define the

quaternwon algebra B = ('-‘71:'3) to be the F-ulgebra generated by o j wuth the

relations 2 = a, j* =b. 1j = —i.

Let & = ij: then k* = (ij)1y) = —1j%i = =i*)° = —ab. B is a tour-
dimensional algebra over F with basis 1.i. . k. The following proposition
gives some basic results about quaternion algebras which will be useful in

what follows.
Proposition 8 1. (-_—Fl.i) ~ M.(F). the ming of 2 x 2 matrices over F.
2. (%) ~ (%L) where a.b.x.y € F*.

4. The center of (%) is F.



0 1 [ ) )
Pl'OOf: (].) Let lU = (ln(l Jo = . Th(:“ ’(-; — _[. /J = [.
-1 0 10

and ¢ jo = —joig. Further. I iy, jo and iy are linearly independent and span
Mo(F): they form a basis for M, (F) as a vector space over F. This proves
the result.

(2.) Let By = (“,—l' and B, = (9-’,—‘“’—) The linear map from B, to B,

which sends f € F to itself. ¢ = reand ) — gy is an isomorplism.
(3.) If b= N+ r1 + yj + =k is in the center of (“Tf’) then in parricular, it

must commute with . But

(A+ri+yj+ k= A+ ra — yk + =J.
and

N+ zi+y)+ k) =N+ e+ gk — =3,

so y = 0 and = = 0. Since h is in the center. it must also commute with j.

but

(A+uri)) = Nj + k.
and

JIN+ o) = Aj - k.
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sox =0. Thus. h € F.
C

Let B = ('—}—"') For h = A+ri+yj+:k € B. define the congugate of h to be
Il = N=ri—yj—zk. This allows us to define the trace function. T(h) = h+h =
2\ € F. and the norm function. N(h) =h-h=\N—ar® —hy* +ubz* € F. A
direct calculation shows that the norm is multiplicative: that is. if ¢. h € B.
then NV{gh) = N(g)N(h).

[t is the norm function which provides a connection between quaternion
algebras and conics. If T(h) = 0, then N(h) = —ar?® = by* + ubz? is the
detining equation for a conic. Conversely. given any non-degenerate conic, it
is possible to construct a corresponding quaternion algebra.

Let X be a non-degenerate comnic over the field £ . Assume that X is

defined by an equation of the form X : r? +ay” + bz® = 0. Let By be the

-b;’u.—b)'

quaternion algebra (—¢

Suppose h € By and T(h) = V(h) =4. Then A =0 and

b, . 0
N = -~ — = 2 =0,
a

(¢4

which implies that r* + ay® + 0z* = 0. That is. [r : y : z] € X. Using
projective coordinates for X', i and fh (f € F™) map to the same point on

.X. 50 .X can be identified with the curve
{h€ By | T(h) = N(h) = 0}/F™.
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In order to explore the connection between H'(Gr. Aut([)) and embed-

dings of I’ into Autz(.Y). it is necessary to understand the group Autg(.\).
Lemma 12 Let he€ B = (%) Then h is a unat of and only of N(h) # 0.

Proof: Suppose that i1 is a unit. Then 4 * exists. and N Nh ) =
N(hh™) = N(1) = 1. s0o N(h) # 0.

Now. suppose that N(h) # 0. Then the equation hh = N (/) shows that
the inverse of h is b/ N (h).

Thus. the set of units in Bis B* = {h € B|.N(I) # 0}. O

Proposition 9 Let B = (';—b) he the quaternion algebre associated to the
conte X defined over the field F. Then the action of B* on X by conyugation

yeelds an ingection B™/F* — Autp(\X).

Proof: We first prove that B* acts on .\ by conjugation. Since the norm is
multiplicative. conjugation preserves the norm.
Let hy = N+ i+ +nhk and by = A+ 1ot + 4y + 20A be two elements

of B. Then

TI'(/“ILQ) = 2(/\]/\2 + I rya + .l/ly-_yb - :[Zgllb)

= Tr(hyhy).

which implies that Tr(hgh~!) = Tr(g). Thus. B> acts by conjugation on .\
This action is not faithful. since conjugation by any element of £ acts

as the identity. Elements of F'* are the only elements of B* which commute
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with every element of X', and so the action of B*/F™* on X is faithful. This

provides a one-to-one map from B*/F to Autg(.\Y). d

3.5.2 Forms

[n this section we make use of some formal properties of cohomology to prove
some very useful results.

Let 1217 bhe algebraic varieties. defined over a field F. The variety V' is
said to be an F-form of Vif 1" and V" are isomorphic over F. Two F-forms
of 17 are said to be equivalent if they are isomorphic over F.

Let E(17) be the set of equivalence classes of F-formsof 1", Let 17 be an
F-formof V7. and 2 : V" = V7 an isomorphism between them. The group G
acts on 2 by "2 = a0t Detine a map 8 : E(V) = ZYGr. Aut)’) by the

rule 17— eyo. where o (0) = 271 720 The map ¢+ is a coevele, since

ey(aT) = o oTeT O

The map ¢ depends on the choice of isomorphism .

Let 6 be the map from E(V7) to HY(Gr. Autl’) induced by 4.

Lemma 13 The map ¢ : E(V) — H'(Gr.Autl") is independent of the

choice of tsomorphism 2 : V7 = 17,



Proof: Let ¢ be an F-automorphism of 1. Then ¢ : 17 — 17 is an

isomorphism over F. and

-1 . ap—l A=l et
= (¢l el e ope T (o ewe ™)

where ' € Aut(17). Su ¢ is cohomologous to ¢y« Thus, the map
V' — ¢ is a well-defined function from equivalence classes ot F-forms of 1

to HY(Gp. Aut(17)). O

Theorem 12 The map 8 : E(\7) = HY(Gp. Aut))) s an womorphism of

pointed sets.

Proof: The map V7 — - is injective. Indeed. let 1”7 and 17 be two F-forms
of V7 and ¢ : V" = U be an isomorphism defined over F'. Suppose ¢y is
cohomologous to ¢y By modifving 1™ by some automorphism. assume that

Cyr = Gy, Then

;'logg'l = ;—lw—la'w&po'—l Vo € G
= v = ¢ Yo e Gp

and thus ¢ is an isomorphisin defined over F.
Further. the distinguished element V" of E(17) is mapped to the distin-

guished element of H'(Gr.Aut(1")), the trivial cocycle. The map defined
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Now. suppose that ¢ and ¢ map to the same class of F-forms. By altering
¢ by an automorphism. we can assume that thev map to the same variety.

I". Theu

(L) = {(PeV(Q)|cto)"P=F voeGa(Q/L)}

(PeV(Q)|d(0)°P=P Yo<GuQ/L)}

= V(L)

for all Galois extensions L/Q. Then forall P € V,(L). ¢(a)* P = ()7 P. and
so ¢{a) = /(¢) on V{L). Since every P is in 1,.(L) for some lield extension
L. the action of ¢ and the action of ¢ is the same on every P € 1", Thus.
¢(a) = /(o) and this map is one-to-one.

Finally. we prove that composing the two maps gives the identiry. Given

V' an F-formof Vi.and 2: V= 17,

1., = {(PeV(@Q) |a(o)°P=P VYoeGa(Q/L))
= {(PeV(@) |y lope™""P=P Vo€ Ga(Q/L)}

= {(PeV(Q)|owP=y¢P YoeGa(Q/L)}
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Consider first 4, and S,. The usual quaternion algebra (:-1—-'—‘) carre-

sponds to the conic X' : 2 + y? + 22 = 0. The group S, acts on this conic in

a natural wayv. The automorphism ~ defined by

has order 3. and the automorphism J defined by
[ty z]—=[r: =2y

has order 4. The composition J~ is of the form
[c:y:z]m—=ly:z: -2

which has order 2. The group generated by .J and ~ is isomorphic to [ .
This gives an embedding of Sy (and cherefore also 4,) into Autg(.Y).

[t is more difficult to come up with an embedding of 45 into the auto-
morphism group of some conic. We follow [Ser80] in the following example.

Consider the quadric surface Y in P* defined by the two equations

_\’[ + .\"_1 -+ .\’;g +\,+\X =0 (.-J)



and

NES NP R NTHND NP2 v

Permutation of the coordinates gives a natural action of S on this surface.
and this action is defined over Q. Let ¢ be a primitive fifth root of unity.

and let

(, = 1+ \Na+\+X,+ X

Uy o= N1+ +EN+ N + N
Uy = N +¢EN+0N +00 + 0.
T e S S R L e
s o= N+ +0N + 83N =Y

[n this new system of coordinates. equations (5) and (6) are equivalent to
the two equations U} = 0 and 000, = =030,

The lines on Y are divided naturally into two sets. The equations (/) =
AUy, AL, = =Uy. describe the line a(AUy + Uy) + 6(ACy + U5). Let X be
the set of lines of this form. If I’y = AU, and AU, = =, we have the line
a(ACy + Uy) + 6(AU5 — U5). Let X, be the set of lines of this form. Since
both X} and X', are parametrized by \. each is isomorphic over Q to P'. Let
X=\XUu\X,

Every automorphism of Y acts on X. so the action of S5 on } induces



an action of S; on \'; this action is defined over Q. Elements of A; send X,
to X[ and .\, to Xy, while clements of S5\ A5 interchange them. The Galois
group Gal{(Q(v/3)/Q) acts on X by interchanging .\, and \,.

More abstractly, let F be the fraction field of Q(v/3)[r. y]/ (2 +4* = =1).

[t has transcendence degree | over Q. and so corresponds to a curve over Q.

ft can be described by the equations x* + y* = L.u® = 3.

Lemma 14 Let X be an rreducible variety over k with function field k(\\').
Let &' be the marimal separable algebraic extension of k o (N). Let K" be
the Galows closure of k'. Suppose that k' is finite over k. Then over K", X

splits mto [k k] irreducible components.

This is Corollary 4.5.10 of [GD63].

[n this case Lemma 14 says that as an extension of Q(v/3). F is purely
transcendental of transcendence degree 1 over Q(v/3). The action of the
Galois group Gal(Q(v/3)/Q). interchanges the two irreducible components
T, and 15 of 1 over Q(v/3).

S+ can be embedded into Autg(17). Consider the set

[ = {%(22.(). 0.0)*, é(':l. +1.+1.£1). é(o. +1. (1 - V3). £(1 + ﬁ))"}

where (a.b.c.d) represents ¢ + i + ¢y +dk € B = (é{—:—,‘%). and where the
superscript A means that all even permutations are included in /. This is a
group of order 120 in B: it maps to a group of order 60 in B*/Q(v3)*. [u

fact. I/{#1} is isomorphic to 45;. For a discussion, see [CS88]. 8.2. Consider
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I as a group over ; that is. consider [ as a subgroup of the eight-dimensional
algebra with basis 1. 4. ;. k. VA, I\/:)_}\/S V5. Itis fixed by the Galois group
G. Let I be the set obtained by taking all the odd permutations of the
clements of 1. Consider the set § = fUlr. where 7 is an element of order two
that permutes 1] and V5. Define a muitiplication on § by r7* -y = oyt
where 7 denotes the action of Gal(Q(v/3)/Q) on the coordinates of y. The
set S with multiplication as defined above is a group. and is isomorphic to

S-.

3.7 Solutions over Q
3.7.1 Embeddings of rg‘;g‘;; and rg,g'.;

Let \(p.q.r) >0and let T =T,,,. with (p.q.r) = (2.3.3) or (2.3.4). In
cither case. Aut([) = §,. Fix a feld F. Cousider the set of pairs (/. .X).
where X' is conic and 7 is an F-rational embedding » : [ — Autp( X)), Two
such pairs. (¢..X) and (/. \") are said to be F-isomorphic if there exists an

isomorphism 2 : X — X' defined over F such that the diagram

commutes. Here (o) = £-a-p7"

Let Qf be the set of pairs (i..\') modulo F-isomorphism. Note that a

9
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to the same ¢ € HY(Gyg. Ay r). then i =i (o) and 7 = {' - ¢(g). Thus.

But "' =/ - elo) = Ji-e{a). Hence. "2 = 2. and so ¢ is defined over Q.

For T' = Ay and T = S;, Aut([) = §;. Section 3.6 provides an ex-
plicit embedding of Sy into Autg(.Y). where X is the conic corresponding
to the usual quaternion algebra. Let e denote this embedding. The pair
(e..X)) (where for [ = 4,. ¢ is meant as the restriction of ¢ to 4,;) maps
to the trivial cocvele ¢ in HY(G7. Sy). The embedding e also provides a
map 1o H‘(GQ..-\utg(.\'l)). and. as proved in Theoremn 12, elements of this
cohomology set correspond to the @forms of X,. Thus. given a cocvele
¢ € HYG¢.Sy). there is a corresponding cocyele oy € H'Y(Gy. Aut(X))).
which in turn corresponds to a conic ..

To prove that the map described above is surjective. we will find an
embedding ¢ 1 T' = Aut=(.X,) such that ¢, = ¢, - (o).

An isomorphism between X, and X, is equivalent to an isomorphism
between the function fields Q(X,) and Q(.X.). Construct an isomorphism
- QX)) = Q(X,) such that cy(o) 77! = o7 Note that (7' =
I

exlo) 7 and O = pexlo).

The map ¢ provides an isomorphism. also denoted by ¢. from X'y to X,.
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Then i := £ -c- 27! provides an embedding of T into Aut={.\,). Now.

stinee ¢ is the trivial coevele and since conjugation by ey (7) is the automor-
phism of X" induced by (). Hence. "1, =+, - e(er). which proves that the
map defined above is surjective. a

To clarify some of the ideas in this proof. we examine a simple example.
Instead of a conic. consider the cubic equation X @+ y* = 1. Let T be the
sroup Z/3Z.

Let (y = '—'—’_,—"——j a cube root of one. T acts on X by the following rule:
~(r) = G ~(y) = ¢y, Then { L. ~71} provides a @rational embedding

of I into Aut(.\'). This embedding corresponds to the cocycle
1 if o(v=3)=V-3.
-1 if al/=3)=-y/-=-3.

Aut(I') is isomorphic to Z/2Z. This can also be embedded into Aut{.X'):
the non-identity element of Aut(I') acts by interchanging x and y.

Given a cocycle ¢ € HY(Gg. Z/2Z)), we will demonstrate how to tind the
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pair (i...X,) € Qg which corresponds to it. First. note that H'(G¢.Z/2Z)) ~
Q* /(Q*)?. Each cocvele corresponds to v for some squarefree o € Q. If ¢

corresponds to d. then

I if o(vd) = vi.

—1 if a(Vd) = -Vd

clo) =

The embedding Z/2Z — Aut(.Y) provides a map
HYNG: . Z)2Z) —» HN(Gy. Aut( V).

where each cocvele ¢y on the right corresponds to some Q-form of .\

Fix a coevele ¢ corresponding to vd. The function field of X is the
fraction field of the ring Qz. y}/(+* + y* = 1). Let X, be a form of X: then
the function field of X, is the fraction field of Qu.v]/I for some ideal [.
To find an isomorphism from X, to .\ we will first find a pair of clements
in .\ which are invariant under cy(0)?. Two such elements are r + y and

Vid(r — y). for

ex(o) e +y) =cex(@le +y) =r+y.
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and

exla) (Ve = y))

f

——

Vid(r = y)
—Vd(x = y)

{
Vd(r = y)

L—JMH—JJ

Vo = y).

e

—

This provides an isomorphism from Q(X,) to Q(Y). Let v = r + y.

¢ = Vd(r—y). Then r =%+ 7:,_2 and y = 8% — f’.’z Rewriting the equation

Y+ 8 = 1 in terms of u and ¢ gives the equation du? + 3ur? = 4d. Thus.

Q(\.) is the fraction field of the ring Qu. ¢}/{du? + 3ur? = 4d).

The action of T on X, can be written explicitly using the tsomorphism

described above. We find that T = {1.7.37'}. where

and

()

~(v)

- V=3
jT”rQVQ

i,

—w VT
7 T 0d
V=3Vd
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Call this embedding . A quick calculation reveals that

T -

i =1t-c1(g)c(a).

and so (20X ) Is the pair corresponding ro the cocvele ¢

3.7.2 Embeddings of [, ;-

All chat is needed in the proof of Theorem 13 is an embedding of T, - into
Auntz (LX) for some conic X. Since [y45 has elements of order 5. with traces
in Q(vV3). such an embedding does not exist. It is possible. however. to

embed [ into Auty,5,(.X). Hence we can prove that
; o~ Kl

The proof'is omitted. as it is virtually identical to the proof of Theorem [3.
Ler 17 be the variety described at the end of Section 3.6. Although it
is irreducible over Q. over @ it is isomorphic to the union of two curves
of genus 0. Consider the set of all pairs (6..X) where X is a form of V
(that is. X{Q) is isomorphic to two copies of P') and 1 : S5 — Aut=(.\) a
Q-rational embedding. Let Qg consist of the set of all such pairs. modulo

Q-isomorphism.

b ]

Theorem 15 Let Qg be defined as above. Then Qg ~ HY(Gy. Ss).

Proof: The example at the end of Section 3.6 provides an element of Qg

which corresponds to the trivial cocycle in H'(Gg. Ss). The proof is virtually
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identical to the proof of Theorem 13. O

The question remains: which of the pairs (z...\,) correspond to paramet-
ric solutious over @ to the generalized Fermat equation r° 4y = :*? The-
orem 9 savs that there is a one-to-one correspondence between Qrequivalent
parametric solutions to this equation (not necessarily defined over Q) and
Q-rational cmbeddings of A5 into Autz(P'). A pair (&.X) € Qg gives an
embedding of A5 into Aut-(.X): if this embedding produces a parametric so-
lution over @ to the generalized Fermart equation then X must be isomorphic
over Q ro PHQ) ¢ PHQ).

Thus. we are interested in varieties .\, which have rational points: these
varieties must be reducible to two conics defined over Q. at least one of which
is isomorphic to PH@Q). Let .\, be a form of V7. with corresponding function
tield L,. Let L' = L, N Q. The Galois group of L' over @ acts on the two
components of X by interchanging them. Hence. L/ is at most a quadratic

extension of Q. and X, is reducible over Q if and onlv it L! = Q.

Proposition 11 Ifc € H'(Gg. Ss) then ¢ corresponds to a variety X, which
ws redueible to two components over Q if and only if the map Gz — S, —

{21} corresponds to the action of Gg on Q(V3).

Proof: The variety X, reduces to two components over Q if and only if
the action of G on X, fixes globally each of its components. Recall that
there is an automorphism of 17 corresponding to c. denoted ¢y, given by

¢-¢= ¢ logo~!. Consider this map.
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Let 0 € Gy, It o(V3) = V3. then o fixes globally the two components

of 1. Thus. ¢y(0) = £ 'opo™!t fixes the two components of 17 and so
('((T) € .’lf,.
If o(V5) = =5, then o permutes the two components of 17, Thus.

(v-{o) = 2~ lo 20! permutes the two components of 1 and so ¢(o) € 55\ 4s.
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4 Conclusion

The main theorem of Chapter 1 is
Theorem 16 Let F be un algebratcally closed field. Then

Lo If x(p.g.r) <O then the equation ¥ + y¥ = =7 has no non-tromael parae-
metric solution over F of degree relatively prime to the characteristic

of F.

2oAf\(pqg.or) > 00 and N = N(p.og.r) = 2/\p.qy.r) s relatively prone
to char(F). then the equation 1¥ + y? = 2" has a parametric solution
(a(t). b(t). c(t)) such that the degree of the rational function a(t) /e(t)”

18 equal to N. Any other purametric solution s of the form

({ M degia) M deg(b) (M) deg L_)
('(hm)h“) h "’(/zu))““) ) M

for some polynomaals g(t). h(t) € Fit!.

The remainder of the paper focuses on the equations with exponents
(2.3.3). (2.3.4) and (2.3.3). Explicit parametric solutions to these equa-
tious are given. using the relationship between parametric solutions and finite
groups of SO3-type. This relationship was constantly exploited and virtually
every statement in this paper about parametric solutions has an analog as a
statement about embeddings of groups.

Thus. most results of the paper describe properties of embeddings of A;.

S, and A; into automorphism groups of conics. We prove that non-equivalent
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embeddings of the above groups into PGLa(F) correspond bijectively to
elements in a certain cohomology set. We go on to prove that a bijection

exists between the set

{te. X)XV aconic. ¢: "> Aut(.\) a Qratonal emubedding }

and HYG . Au(T)). when [ = 4 or S;. A similar result holds for A-:
consider the set of pairs (¢..\') where X (Q) is isomorphic to the union of two
conies. and ¢ is a Qrational embedding of S; into Aut(.Y). There is a bijec-
tion between this set and H'(Gg. S5), and we give an explicit description of
those cocveles which correspond to embeddings giving a parametric solution

over Q.
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