
Computation of the p-adic period via 3-isogenies for p = 2 (mod 3)

Hubert Dubé ⇤
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Abstract

In this document, we attempt to replicate Mestre and Henniart’s technique for computing the p-adic
period for elliptic curves over Qp described in [HM89]. While their article did so by considering towers of
2-isogenous curves and the p-adic analogue to the arithmetic-geometric mean, we do so by considering 3-
isogenies on Qp for p = 2 (mod 3) instead. We produce an alternative algorithm and provide an example
to demonstrate its e↵ectiveness.

This document is the result of a Summer research project under the immensely insightful guidance
of professor Henri Darmon and was made possible by the National Science and Engineering Council’s
Undergraduate Student Research Awards (NSERC USRA).

1 Introduction

Let E be an elliptic curve over Qp given by the standard Weierstrass planar equation y

2 = a1xy + a3y =
x

3 + a2x
2 + a4x + a6 where a1, a2, a3, a4, a6 2 Qp. Suppose the j-invariant of E to be non-integral, i.e.

|j| > 1. John Tate has demonstrated in [Tat74] that there exists an Qp(
p�c6)-isomorphism Q⇥

p /q
Z ⇠= E

for some |q| < 1. We call q the p-adic period and we call E(q) = Q⇥
p /q

Z the Tate curve. Let  be such an
isomorphism. Then we also have  ⇤ (!(E)) = u dt/t where u2 2 Q⇥

p and dt/t is E(q)’s canonical di↵erential.
Mestre and Henniart published in 1989 an algorithm for computing the p-adic period of a curve E

which roughly goes as follows. First, one performs a change of variable to obtain a planar equation y

2 =
x(x+A0)(x+A0�B0). By considering a modified arithmetic-geometric sequence (An, Bn)n�0, one produces
a tower of curves

E0  E1  · · · En  En+1  · · · .
where En : y2 = x(x + An)(x + An � Bn) linked together via 2-isogenies. By reversing these isogenies
properly, one is able to start from a point P 2 E0, get to P1 2 E1 and compute the value t for which
 (t) = P . A slight modification of this algorithm permits one to compute the period q.

In this document, we therefore consider chains of 3-isogenies to compute the p-adic period. The core
idea of the algorithm follows closely the model of Mestre and Henniart. However, for simplicity’s sake, we
consider only primes of the form p = 2 (mod 3) in order to have unique cube roots in Qp. This heavily
simplifies the reversing action of isogenies. To see why this restriction implies uniqueness of cube roots, it
is enough to see that the map x 7! x

3 is injective in Fp since x

3 � 1 has a unique root. Furthermore, the
quantity u is computed using Mestre and Henniart’s original algorithm on the arithmetic-geometric mean.

2 The Q
p

-rational subgroup of order 3

Mestre and Henniart’s algorithm is powerful due to its inherent simplicity which follows from a great choice
of Weierstrass form. The planar equation chosen is a fantastic one to study 2-torsion subgroups as all order

⇤This paper was made possible thanks to the NSERC Undergraduate Student Research Award under the supervision of
professor Henri Darmon.
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2 points of E become immediately obvious and easy to work with. With that in mind, we seek to find a
similar form for rational 3-torsion subgroups of E(Qp). This proves to be di�cult as though the subgroup
may be rational, its elements may not be.

Let E(K) be an elliptic curve over K (with characteristic di↵erent from 2 and 3) and let G = {O, P,�P}
be a subgroup of E(L) for some finite extension L � K where we write P = (x0, y0). Under the fair
assumption that E has planar equation

E : y2 = x

3 + a2x
2 + a4x+ a6,

we note that [2]P = �P = (x0,�y0). For any � 2 Gal(L/K), we have P

� = (�(x0),�(y0)) = (x0,±y0), and
therefore x0 2 K. Up to a change of variable

(x, y) 7! (x� x0, y),

we may assume P = (0, t) for some t 2 L. In particular, we have t

2 = a6, and therefore L is, at most, a
quadratic extension of K. Furthermore, a simple computation shows that

0 = x([2]P ) =
a

2
4

4a6
� a2 =) a

2
4 � 4a2a6 = 0,

which means that we may find ↵,�, � 2 K such that

a2x
2 + a4x+ a6 = �(↵x+ �)2.

Therefore, not only is the order 3 group G K-rational, but the above formula permits one to display it in an
obvious manner. We have the following equation for E:

E : y2 = x

3 + �(↵x+ �)2,

where the obvious order 3 group is given by {O, (0,�
p
�), (0,��p�)}. In general, however, there is no

unique way to define ↵, � and � unless we require more conditions and thus we will usually simply have
equations of the form y

2 = x

3 + ax

2 + bx+ c with the extra assumption that b2 � 4ac = 0.

3 The 3-descent on Q
p

for p ⌘ 2 (mod 3)

Let E0 be an elliptic curve defined over Qp for p ⌘ 2 (mod 3) of the form E : y2 = x

3 + a0x
2 + b0x + c0

where b

2
0 � 4a0c0 = 0 as above. Assume further that j(E) is non-integral such that there exists q 2 Qp such

that E(Qp) ⇠= E(q) = Q⇥
p /q

Z, and that the group {O, (0,
p
c0), (0,�pc0)} is generated by a primitive cubic

root of unity ⇣3 in E(q).
Define then for n � 0

ãn = �an

3
,

b̃n =
1

243

�
8a2n � 27bn

�
,

c̃n = � 1

19683

�
16a3n � 108anbn + 729cn

�

as well as the following quantity:

rn =
1

9


n � 54bn � 16a2n

n
� 4an

�
, where n = (432anbn � 2916cn � 64a3n)

1/3
.

The advantage of working in a p-adic field with p = 2 (mod 3) is that we have a guarantee on the uniqueness
of n as there exists at most only two rational 3-torsion groups on elliptic curves. Finally, we define

an+1 = ãn + 3rn,

bn+1 = b̃n + 2rnãn + 3r2n,

cn+1 = c̃n + rnb̃n + r

2
nãn + r

3
n
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and
En+1 : y2 = x

3 + an+1x
2 + bn+1x+ cn+1,

where again we have the property that b2n+1 � 4an+1cn+1 = 0.
This sequence of elliptic curves is used to define the chain of isogenies

E0
'1 � E1

'2 � · · · 'n �� En
'n+1 ��� · · ·

which are isogenies 'n : En �! En�1 given by the equations

xn�1 =
3(xn + rn�1)

3 + 4an(xn + rn�1)
2 + 6bn(xn + rn�1) + 12cn

3(xn + rn�1)2
,

yn�1 = yn

✓
1� 2(bn(xn + rn�1) + 4cn)

(xn + rn�1)3

◆
.

(3.1)

For every n � 0, we have that En is isomorphic to E

�
q

3n
�
via a uniquely defined map  n for which

 

⇤
n(!n) = u dt/t.
As n goes to infinity, the equation for En tends to the curve E1 whose equation is given by y

2 =
x

3 � 3
4u2x

2 + 1
6u4x� 1

108u6 . We denote by  1 the isomorphism from Q⇥
p to E1 \ �1/(3u2), 0

�
given by

X(t) =

✓
t

u

2(1� t)2
+

1

3u2

◆
, Y (t) =

t(1 + t)

2u3(1� t)3
.

The algorithm for computing the p-adic period then relies on inverting the 'n in such a way that
the parameter t from two consecutive Tate curves is preserved, i.e. we have tn 2 E

�
q

3n
�
for which

'n+1( n+1(tn+1)) =  n(tn) such that t1 = tn (mod q

3n). Because we only want to compute q and not an
arbitrary parameter for any given point on the curve E0, we only need to invert the abscissa coordinate of
the isogeny.

The three possible inverses to the first equation in (3.1) are the three roots to the polynomial

3(X + rn�1)
3 + (4an � 3xn�1)(X + rn�1)

2 + 6bn(X + rn�1) + 12cn (3.2)

and the one preserving the parameter in E

�
q

3n
�
will be the root xn whose p-adic distance from xn�1 is

smallest.

For any curve E with |j| > 1, the algorithm is thus as follows:

1. Using Mestre and Henniart’s algorithm [HM89], compute the quantity u associated with E. Then,
transform the equation of E to the form discussed above using Hensel’s lemma. We denote this
isomorphic curve E0.

2. Using the formulas above, compute E1 and let x1 = r0. By repeatedly solving equation (3.2), compute
x1 to the desired degree of precision.

3. Finally, with u and x1 known, compute the p-adic period via

q = 1 +
3 +

p�3(1� 12u2
x1)

6u2
x1 � 2

.

The square root is chosen in such a way that |q| < 1.

We note that if one makes an erronous choice of square root, one ends up with q

�1 rather than the desired
period. Therefore inverting the result will give rise to q.

Finally, given an arbitrary point P0 2 E0, it is equally easy to compute t 2 E(q) such that  0(t) = P0

by letting x0 = x(P0) and starting in E0 instead.
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4 Application to a curve

Let E be the modular curve X1(11) whose equation is y2+y = x

3�x

2 with j(E) = �4096/11. This example
was worked out in Mestre and Henniart’s original paper and as we will see here, the new algorithm still yields
the same answer. The parameter u2 is computed using the algorithm provided in [HM89], while x1 and q

are both computed using this new algorithm. We also compute the abscissa x0 of the 3-torsion point using
Hensel’s lemma. The quantities a1, b1 and c1 are then a byproduct of this computation.

These computations yield the follwing results, here computed to an accuracy of O(1164), similar to what
was done in Mestre and Henniart’s paper:

x0 = 3.26656418aaaa704a5a515700977876a07284a9177536594573272639152074989 . . .

a1 = 8.67858242aaaa12196964402051141992a723975a06a75635007a77a55470a264 . . .

b1 = a.012119641261096372525970a667831561680286725384034541061161398a689 . . .

c1 = a.7a78a553340462649017115a3109651a15397751953a44348561099932807500 . . .

u

2 = 3.663a634a335532801657591193788a102180979768205383647a372a83514524 . . .

x1 = 5.288a825517860a5a59549a94016a023095227941563107437539829a272a9919 . . .

q = 0.835809210a029a177264090910424a748459925423983736577593548a31a068 . . .

Computations where performed in the number theoretic programming language PARI/GP Calculator, ver-
sion 2.7.2. Here we wrote

P
ajp

j as the string a�n . . . a�1 a0 . a1 a2 . . . with the letter a denoting the decimal
value 10 as is usual in hexadecimal notation.

5 Closing remarks and further research

Clearly this algorithm does not provide the level of simplicity that [HM89] did and therefore does not
immediately provide a useful alternative to the computation of the p-adic period. It is also limiting due
to the restriction that p = 2 (mod 3), though extending the result to all primes p 6= 2, 3 depends solely
on properly defining the cube root function in Qp. Furthermore, by restricting our study to the classical
Weierstrass form of the elliptic curve, we were unable to provide a powerful way to study 3-torsion subgroups
and their associated 3-isogenies. The sequences that resulted from this study were complicated and did not
appear to have any sort of meaningful interpretation. In particular, this prevents (or renders very di�cult)
the analysis of convergence of the various sequences involved in the algorithm.

It seems like before tackling higher order rational torsion subgroups, we should study the rational 3-
torsion subgroups in more depth. Perhaps we could find simplified formulas by considering alternative forms
to elliptic curves, such as the Hessian form of elliptic curves, namely curves of the form

x

3 + y

3 + z

3 = 3dxyz,

or the Jacobi quartic of the form
y

2 = ex

4 + 2ax2
z

2 + z

4
.

In any case, the goal is to obtain a planar equation involving a polynomial equation whose roots are the
coordinates of all 3-torsion points of any given curve.

Note that any attempt at repeating the result for 5-isogenies, or, for that matter, for n-isogenies with
n > 4, can prove itself to be extremely di�cult as it involves solving an n-th order polynomial equation.

As a closing note, I, the author, would like to thank professor Henri Darmon for the patient guidance,
encouragement and insightful advice he has provided over the course of the Summer. This document would
not have been possible without his help and I am extremely grateful for it.
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Sci. Paris Sér. I, 308:391–395, 1989.

4



Hubert Dubé Computation of the p-adic period

[Ser71] Jean-Pierre Serre. Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Inventiones
mathematicae, 15(4):259–331, 1971.

[Sil99] Joseph H. Silverman. Advanced topics in the arithmetic of elliptic Curves. Springer-Verlag, New
York, 1999. Graduate Texts in Mathematics.

[Sil09] Joseph H. Silverman. The arithmetic of elliptic curves. Springer-Verlag, New York, second edition,
2009. Graduate Texts in Mathematics.

[Tat74] John T Tate. The arithmetic of elliptic curves. Inventiones mathematicae, 23(3-4):179–206, 1974.
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