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1 Introduction and summary

This document summarizes my summer’s work for prof. Henri Darmon. It is intended primarily as a
guide to any other students interested in doing similar work. The bulk of my project was writing code to
test the Birch and Swinnerton-Dyer conjecture for elliptic curves over cubic number fields. In this report I
document this code and discuss its effectiveness. Pseudo-code will be used throughout the text in an effort
to clarify some ideas. I used Sage (which runs on python) when implementing them, so if a reader thinks
the pseudo-code is incomplete or too brief they can look at my code instead.

The Birch and Swinnerton-Dyer conjecture (BSD) states that if a certain complex valued L function
vanishes at s = 1 then the elliptic curve related to it will have infinitely many points on it. My project is in
two parts. First I was given a series of curves for which the L function vanished and would try to show that
the curve indeed had infinitely many points on it. For the second part of the project I would try to generate
curves which had infinitely many points on them, and then compute their L functions to check if they were
indeed 0 at s = 1. Understanding the details of my work requires a rudimentary knowledge of the theory of
elliptic curves. I plan to write a quick introduction to the topic based on a talk I gave to my peers during
the summer.

I applied three techniques in an attempt to solve the first problem of finding points. The best of these
three was able to verify BSD in about half the cases it was given, though the runtimes involved were long.

The second problem involved first finding curves which had infinitely many points on them. I have
written an program which is able most of the time to succeed at this, but unfortunately I have not had time
to go on to checking that their L functions vanish as appropriate.

2 Point Finding

Prof. Fearnley and prof. Kisilevsky have calculated L(E,χ, 1) for several elliptic curves E and hundreds
of cubic twists given by χ. The Birch and Swinnerton-Dyer conjecture (BSD) states that if L(E,χ, 1) = 1
then the rank of the twisted curve E is positive. I attempt to verify that the rank of the twisted curve
is indeed positive whenever prof. Fearnley and prof. Kisilevsky calculate that L(E,χ, 1) = 0. 1 This is
equivalent to verifying that rankZE(K) > rankZE(Q), where K is the fixed field of χ.

I employ three techniques to calculate rankZE(K):

1. Brute force search: Say that the Weierstrass form of E is given as E : F (x, y) = 0. For a fixed
value of x0 ∈ K, one can determine fairly efficiently whether or not there is a y ∈ K such that F (x0, y) = 0

1In practice |L(E,χ, 1)| < 10−14
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by considering F as a univariate polynomial in y, for which many root finding techniques are available. The
strategy of this approach is to iterate through a list of x0 values to fix, and for each check if F (x0, y) has any
roots. If indeed F (x0, y) = 0 and either x0 ∈ K\Q or y ∈ K\Q then, if (x0, y) as a point on E has infinite
order I suspect that rankZE(K) > rankZE(Q), at least most of the time. However at this time I have no
results of this nature.

This technique is occasionally successful for K of small conductor, but typically it is difficult to find
points otherwise.

2. Descent with Magma: The math software Magma includes functions which perform various descents
on elliptic curves over arbitrary number fields, returning bounds on rankZE(K). In particular it contains a
function “MordellWeilShaInformation” which is described as applying the various descent functions in the
most effective order. I run this function on twists with positive rank.

The effectiveness of this technique seems to depend heavily on the curve E on which it is being run.
Some curves take a very long time to perform descent on, but the rank is often found exactly, while others
run orders of magnitude more quickly, but return only loose bounds on the rank.

3. Sieving with projections: This technique first finds the set XS of values x̄ ∈ OK/I for which
there is a ȳ ∈ OK/(m) such that F (x̄, ȳ) ≡ 0, where OK is the ring of integers of K and I is any ideal of Ok.
It then begins generating the preimage XS of XS in K, and for each x in XS checks if F (x, y), now viewed as
a univariate polynomial in y, has a zero. Since XS is a subset of K fewer values of x need to be checked than
in the brute force search (which checks all of them). This process could easily be made more effective by
computing XS(I1), XS(I2), . . . for various ideals I1, I2 of OK and then taking x from XS(I1)∩XS(I2)∩ . . . .

However I was not able to implement this technique effectively. In my experience generating the preimage
XS from XS was more time consuming than running a brute force search on the same range. It’s conceivable
that this technique may become more effective with more optimization or larger search ranges.

2.1 Results

2.1.1 Brute force search

Presented below are the results of a brute force search on the curves E20A1, E37A1, and E40A1. the
five columns indicate the following information:

Conductor The conductor of K

Character A character which fixes K. Which character is chosen systematically, as will be explained later.
χp is the character that sends the least positive primitive root of (Z/pZ)∗ to ζ3.

Characteristic polynomial The characteristic polynomial of K.

Result Verified if BSD has been checked for this case.

New point A point (x, y) ∈ K2\Q2 of infinite order, demonstrating that rankZE(K) > rankZE(Q).

E20A2

Table 1: Results for a brute force search on E20A2 with depth 200
up to and including conductor 819 and depth 100 thereafter.

Conductor Character Characteristic polynomial Result New point

9 χ9 x3 − 3x+ 1 Verified (4α2 + 4α, 20α2 + 20α− 14)
63 χ9χ7 x3 − 21x− 28 Verified ( 1

7α,
1
7α−

2
7 )

Continued on next page
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E20A2 Brute force search results – continued from previous page
Conductor Character Characteristic polynomial Result New point

73 χ73 x3 + x2 − 24x− 27 No point found −
91 χ2

7χ13 x3 − x2 − 30x− 27 No point found −
117 χ2

9χ13 x3 − 39x+ 26 Verified ( 3
4α

2 − 4α+ 9
4 ,

41
8 α

2 − 143
4 α+ 177

8 )
133 χ2

7χ19 x3 − x2 − 44x− 69 No point found −
171 χ2

9χ19 x3 − 57x+ 152 No point found −
229 χ229 x3 + x2 − 76x− 212 No point found −
259 χ7χ37 x3 − x2 − 86x− 48 No point found −
277 χ277 x3 + x2 − 92x+ 236 No point found −
307 χ307 x3 + x2 − 102x− 216 No point found −
559 χ2

13χ43 x3 − x2 − 186x+ 207 No point found −
613 χ613 x3 + x2 − 204x+ 999 No point found −
703 χ19χ37 x3 − x2 − 234x+ 729 Verified ( 1

4α
2 + 2α+ 4, 23

8 α
2 + 23α− 1217

8 )
711 χ9χ79 x3 − 237x− 1027 No point found −
727 χ727 x3 + x2 − 242x+ 1104 No point found −
763 χ2

7χ109 x3 − x2 − 254x− 1413 No point found −
819 χ9χ7χ13 x3 − 273x+ 91 No point found −
829 χ829 x3 + x2 − 276x− 307 No point found −
871 χ13χ67 x3 − x2 − 290x− 1613 No point found −
889 χ2

7χ127 x3 − x2 − 296x+ 1317 No point found −
919 χ919 x3 + x2 − 306x− 1872 No point found −
973 χ7χ139 x3 − x2 − 324x+ 36 No point found −
1027 χ2

13χ79 x3 − x2 − 342x− 2016 No point found −
1143 χ9χ127 x3 − 381x− 127 No point found −
1333 χ2

31χ43 x3 − x2 − 444x− 1728 No point found −
1339 χ2

13χ103 x3 − x2 − 446x+ 3769 No point found −
1359 χ9χ151 x3 − 453x+ 3473 No point found −
1399 χ1399 x3 + x2 − 466x+ 3368 No point found −
1477 χ2

7χ211 x3 − x2 − 492x+ 3501 No point found −
1729 χ2

7χ13χ19 x3 + x2 − 576x− 64 No point found −
1737 χ9χ193 x3 − 579x− 4825 No point found −
1789 χ1789 x3 + x2 − 596x− 5632 No point found −
1933 χ1933 x3 + x2 − 644x+ 4224 No point found −
1957 χ19χ103 x3 − x2 − 652x− 6016 No point found −
2169 χ2

9χ241 x3 − 723x+ 3374 No point found −
2179 χ2179 x3 + x2 − 726x− 7344 No point found −
2223 χ9χ13χ19 x3 − 741x− 4940 No point found −
2331 χ9χ7χ37 x3 − 777x+ 8029 No point found −
2383 χ2383 x3 + x2 − 794x− 2736 No point found −
2709 χ2

9χ7χ43 x3 − 903x− 3311 No point found −
2817 χ2

9χ313 x3 − 939x− 6886 No point found −
2977 χ2

13χ229 x3 − x2 − 992x+ 441 No point found −
2983 χ19χ157 x3 − x2 − 994x+ 11711 No point found −
3037 χ3037 x3 + x2 − 1012x− 5849 No point found −
3097 χ19χ163 x3 − x2 − 1032x− 11241 No point found −
3133 χ13χ241 x3 − x2 − 1044x+ 3249 No point found −
3229 χ3229 x3 + x2 − 1076x− 5860 No point found −
3241 χ2

7χ463 x3 − x2 − 1080x− 9603 No point found −
3391 χ3391 x3 + x2 − 1130x+ 14192 No point found −
3627 χ2

9χ
2
13χ31 x3 − 1209x− 2015 No point found −

3631 χ3631 x3 + x2 − 1210x− 10624 No point found −
3913 χ7χ13χ43 x3 + x2 − 1304x− 1884 No point found −

Continued on next page
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E20A2 Brute force search results – continued from previous page
Conductor Character Characteristic polynomial Result New point

4093 χ4093 x3 + x2 − 1364x− 19707 No point found −
4221 χ2

9χ7χ67 x3 − 1407x+ 469 No point found −
4237 χ2

19χ223 x3 − x2 − 1412x− 10671 No point found −
4249 χ2

7χ607 x3 − x2 − 1416x− 5508 No point found −

E24A6

Table 2: Results for a brute force search on E24A6 with depth 200.

Conductor Character Characteristic polynomial Result New point

31 χ31 x3 + x2 − 10x− 8 No point found −
67 χ67 x3 + x2 − 22x+ 5 No point found −
133 χ7χ19 x3 − x2 − 44x+ 64 No point found −
151 χ151 x3 + x2 − 50x− 123 No point found −
193 χ193 x3 + x2 − 64x+ 143 No point found −
247 χ2

13χ19 x3 − x2 − 82x+ 64 No point found −
469 χ7χ67 x3 − x2 − 156x− 608 No point found −
547 χ547 x3 + x2 − 182x− 81 No point found −
589 χ2

19χ31 x3 − x2 − 196x+ 349 No point found −
613 χ613 x3 + x2 − 204x+ 999 No point found −
679 χ7χ97 x3 − x2 − 226x+ 176 No point found −
691 χ691 x3 + x2 − 230x+ 128 No point found −
703 χ19χ37 x3 − x2 − 234x+ 729 No point found −
739 χ739 x3 + x2 − 246x− 520 No point found −
817 χ2

19χ43 x3 − x2 − 272x+ 1755 No point found −
853 χ853 x3 + x2 − 284x+ 1011 No point found −
871 χ2

13χ67 x3 − x2 − 290x+ 1000 No point found −
1009 χ1009 x3 + x2 − 336x− 1719 No point found −
1057 χ7χ151 x3 − x2 − 352x− 1840 No point found −
1147 χ31χ37 x3 − x2 − 382x+ 2209 No point found −
1159 χ2

19χ61 x3 − x2 − 386x− 1760 No point found −
1261 χ2

13χ97 x3 − x2 − 420x+ 1728 No point found −
1333 χ31χ43 x3 − x2 − 444x+ 3604 No point found −
1351 χ7χ193 x3 − x2 − 450x+ 2752 No point found −
1423 χ1423 x3 + x2 − 474x+ 896 No point found −
1531 χ1531 x3 + x2 − 510x− 567 No point found −
1621 χ1621 x3 + x2 − 540x− 4923 No point found −
1723 χ1723 x3 + x2 − 574x− 2744 No point found −
1729 χ7χ13χ19 x3 + x2 − 576x+ 1665 No point found −
1783 χ1783 x3 + x2 − 594x+ 5283 No point found −
1789 χ1789 x3 + x2 − 596x− 5632 No point found −
1843 χ2

19χ97 x3 − x2 − 614x− 5256 No point found −
1861 χ1861 x3 + x2 − 620x− 2757 No point found −
1867 χ1867 x3 + x2 − 622x− 6085 No point found −
1879 χ1879 x3 + x2 − 626x− 5289 No point found −
2017 χ2017 x3 + x2 − 672x− 2764 No point found −
2071 χ2

19χ109 x3 − x2 − 690x− 3375 No point found −
Continued on next page
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E24A6 Brute force search results – continued from previous page
Conductor Character Characteristic polynomial Result New point

2641 χ19χ139 x3 − x2 − 880x+ 6847 No point found −
2653 χ7χ379 x3 − x2 − 884x+ 8352 No point found −
2749 χ2749 x3 + x2 − 916x+ 1120 No point found −
2803 χ2803 x3 + x2 − 934x+ 9551 No point found −
2821 χ2

7χ
2
13χ31 x3 + x2 − 940x− 2612 No point found −

2983 χ2
19χ157 x3 − x2 − 994x− 221 No point found −

3199 χ2
7χ457 x3 − x2 − 1066x+ 12559 No point found −

3241 χ7χ463 x3 − x2 − 1080x+ 13084 No point found −
3343 χ3343 x3 + x2 − 1114x+ 8048 No point found −
3439 χ2

19χ181 x3 − x2 − 1146x− 11336 No point found −
3529 χ3529 x3 + x2 − 1176x+ 5751 No point found −
3589 χ37χ97 x3 − x2 − 1196x+ 12495 No point found −
3679 χ2

13χ283 x3 − x2 − 1226x− 6813 No point found −
3823 χ3823 x3 + x2 − 1274x− 14584 No point found −
3937 χ31χ127 x3 − x2 − 1312x+ 14144 No point found −
4039 χ7χ577 x3 − x2 − 1346x− 16904 No point found −
4663 χ4663 x3 + x2 − 1554x+ 2936 No point found −
4867 χ31χ157 x3 − x2 − 1622x− 13880 No point found −
4891 χ2

67χ73 x3 − x2 − 1630x+ 25723 No point found −
5101 χ5101 x3 + x2 − 1700x+ 17948 No point found −
5173 χ2

7χ739 x3 − x2 − 1724x− 26823 No point found −
5197 χ5197 x3 + x2 − 1732x− 25600 No point found −
5227 χ5227 x3 + x2 − 1742x+ 6195 No point found −

E37A1

Table 3: Results for a brute force search on E37A1 with depth 200.

Conductor Character Characteristic polynomial Result New point

43 χ43 x3 + x2 − 14x+ 8 Verified ( 1
2α

2 − 3
2α+ 1, 2α2 − 7α+ 3)

61 χ61 x3 + x2 − 20x− 9 Verified (− 2
9α,

4
81α

2 + 2
81α−

8
9 )

103 χ103 x3 + x2 − 34x− 61 No point found −
127 χ127 x3 + x2 − 42x+ 80 Verified ( 1

2α
2 + 7

2α− 4, 3α2 + 18α− 41)
171 χ9χ19 x3 − 57x− 19 No point found −
247 χ2

13χ19 x3 − x2 − 82x+ 64 Verified ( 1
6α

2 + 3
2α+ 1

3 , α
2 + 8α− 9)

817 χ2
19χ43 x3 − x2 − 272x+ 1755 No point found −

853 χ853 x3 + x2 − 284x+ 1011 No point found −
1093 χ1093 x3 + x2 − 364x− 1012 No point found −
1099 χ2

7χ157 x3 − x2 − 366x− 1791 No point found −
1267 χ7χ181 x3 − x2 − 422x+ 3144 No point found −
1333 χ2

31χ43 x3 − x2 − 444x− 1728 No point found −
1609 χ1609 x3 + x2 − 536x− 1311 No point found −
1627 χ1627 x3 + x2 − 542x+ 4640 No point found −
1953 χ2

9χ
2
7χ31 x3 − 651x− 5642 No point found −

2017 χ2017 x3 + x2 − 672x− 2764 No point found −
2263 χ31χ73 x3 − x2 − 754x− 7711 No point found −
2611 χ7χ373 x3 − x2 − 870x+ 8800 No point found −
2709 χ2

9χ
2
7χ43 x3 − 903x− 602 No point found −

2863 χ7χ409 x3 − x2 − 954x+ 5832 No point found −
Continued on next page
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E37A1 Brute force search results – continued from previous page
Conductor Character Characteristic polynomial Result New point

2869 χ2
19χ151 x3 − x2 − 956x− 2444 No point found −

2983 χ2
19χ157 x3 − x2 − 994x− 221 No point found −

3331 χ3331 x3 + x2 − 1110x− 2344 No point found −
3379 χ2

31χ109 x3 − x2 − 1126x+ 14392 No point found −
3411 χ9χ379 x3 − 1137x− 14023 No point found −
3457 χ3457 x3 + x2 − 1152x+ 13700 No point found −
3787 χ7χ541 x3 − x2 − 1262x− 10800 No point found −
3829 χ7χ547 x3 − x2 − 1276x− 16876 No point found −
4027 χ4027 x3 + x2 − 1342x+ 15064 No point found −
4123 χ7χ19χ31 x3 + x2 − 1374x− 13896 No point found −
4273 χ4273 x3 + x2 − 1424x+ 7913 No point found −
4383 χ2

9χ487 x3 − 1461x+ 21428 No point found −
4417 χ2

7χ631 x3 − x2 − 1472x+ 8016 No point found −
4423 χ4423 x3 + x2 − 1474x+ 10648 No point found −
4687 χ2

43χ109 x3 − x2 − 1562x+ 17880 No point found −
4723 χ4723 x3 + x2 − 1574x+ 21341 No point found −
4891 χ67χ73 x3 − x2 − 1630x− 18296 No point found −
5139 χ9χ571 x3 − 1713x− 9136 No point found −
5323 χ5323 x3 + x2 − 1774x− 22672 No point found −
5383 χ2

7χ769 x3 − x2 − 1794x− 17744 No point found −
5473 χ2

13χ421 x3 − x2 − 1824x+ 29392 No point found −
5517 χ2

9χ613 x3 − 1839x− 6130 No point found −
5719 χ7χ19χ43 x3 + x2 − 1906x− 31984 No point found −
5761 χ7χ823 x3 − x2 − 1920x− 30512 No point found −
5803 χ7χ829 x3 − x2 − 1934x− 32024 No point found −
5917 χ2

61χ97 x3 − x2 − 1972x− 10300 No point found −
6097 χ2

7χ13χ67 x3 + x2 − 2032x− 21904 No point found −
6139 χ7χ877 x3 − x2 − 2046x+ 4320 No point found −
6381 χ2

9χ709 x3 − 2127x− 15598 No point found −
6643 χ7χ

2
13χ73 x3 + x2 − 2214x− 40104 No point found −

6751 χ43χ157 x3 − x2 − 2250x− 40256 No point found −
7039 χ7039 x3 + x2 − 2346x+ 11471 No point found −
7699 χ7699 x3 + x2 − 2566x− 32792 No point found −
8197 χ7χ1171 x3 − x2 − 2732x− 50700 No point found −
8779 χ8779 x3 + x2 − 2926x+ 32840 No point found −
8911 χ7χ19χ67 x3 + x2 − 2970x− 62707 No point found −
9351 χ2

9χ1039 x3 − 3117x− 54028 No point found −
9459 χ2

9χ1051 x3 − 3153x+ 24173 No point found −
9589 χ2

43χ223 x3 − x2 − 3196x+ 21664 No point found −
9891 χ9χ

2
7χ157 x3 − 3297x− 18683 No point found −

9973 χ9973 x3 + x2 − 3324x− 26964 No point found −
10423 χ2

7χ1489 x3 − x2 − 3474x+ 10809 No point found −
10801 χ7χ1543 x3 − x2 − 3600x+ 400 No point found −
10963 χ2

19χ577 x3 − x2 − 3654x+ 66184 No point found −
11263 χ2

7χ1609 x3 − x2 − 3754x− 87184 No point found −
11347 χ7χ1621 x3 − x2 − 3782x− 32360 No point found −
12537 χ9χ

2
7χ199 x3 − 4179x− 69650 No point found −

12799 χ12799 x3 + x2 − 4266x+ 76320 No point found −
13333 χ2

67χ199 x3 − x2 − 4444x− 112096 No point found −
13399 χ13399 x3 + x2 − 4466x+ 91808 No point found −
13477 χ13477 x3 + x2 − 4492x+ 90845 No point found −

Continued on next page
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E37A1 Brute force search results – continued from previous page
Conductor Character Characteristic polynomial Result New point

13657 χ7χ1951 x3 − x2 − 4552x− 114820 No point found −
14437 χ14437 x3 + x2 − 4812x+ 37964 No point found −
14677 χ2

13χ1129 x3 − x2 − 4892x+ 85344 No point found −
15007 χ43χ349 x3 − x2 − 5002x+ 98935 No point found −
15067 χ13χ

2
19χ61 x3 + x2 − 5022x+ 135045 No point found −

15673 χ2
7χ2239 x3 − x2 − 5224x+ 14512 No point found −

15723 χ2
9χ1747 x3 − 5241x+ 139760 No point found −

16263 χ9χ13χ139 x3 − 5421x+ 137332 No point found −
16267 χ16267 x3 + x2 − 5422x− 112664 No point found −
17073 χ9χ

2
7χ271 x3 − 5691x− 163142 No point found −

17113 χ2
109χ157 x3 − x2 − 5704x− 143876 No point found −

17233 χ2
19χ907 x3 − x2 − 5744x+ 54252 No point found −

17937 χ9χ1993 x3 − 5979x− 139510 No point found −
18103 χ43χ421 x3 − x2 − 6034x+ 179689 No point found −
18307 χ18307 x3 + x2 − 6102x− 110520 No point found −
18529 χ2

7χ2647 x3 − x2 − 6176x− 164016 No point found −
18781 χ2

7χ2683 x3 − x2 − 6260x− 97383 No point found −
19201 χ7χ13χ211 x3 + x2 − 6400x+ 167831 No point found −
19579 χ7χ2797 x3 − x2 − 6526x− 73240 No point found −
19843 χ19843 x3 + x2 − 6614x− 207984 No point found −
19933 χ2

31χ643 x3 − x2 − 6644x+ 62752 No point found −
20167 χ2

7χ
2
43χ67 x3 + x2 − 6722x− 110545 No point found −

20529 χ9χ2281 x3 − 6843x− 180199 No point found −
21231 χ9χ

2
7χ337 x3 − 7077x− 103796 No point found −

21883 χ79χ277 x3 − x2 − 7294x− 220451 No point found −
22441 χ22441 x3 + x2 − 7480x− 140464 No point found −
22689 χ2

9χ2521 x3 − 7563x+ 65546 No point found −
22867 χ2

13χ1759 x3 − x2 − 7622x+ 239680 No point found −
23121 χ2

9χ7χ367 x3 − 7707x− 259469 No point found −
23293 χ23293 x3 + x2 − 7764x− 125092 No point found −
23389 χ2

19χ1231 x3 − x2 − 7796x− 207036 No point found −
23959 χ13χ

2
19χ97 x3 + x2 − 7986x+ 102935 No point found −

24007 χ24007 x3 + x2 − 8002x− 198280 No point found −
24093 χ2

9χ2677 x3 − 8031x− 187390 No point found −
24349 χ2

13χ1873 x3 − x2 − 8116x− 9920 No point found −
24421 χ24421 x3 + x2 − 8140x− 22612 No point found −
24589 χ2

67χ367 x3 − x2 − 8196x+ 33696 No point found −
24943 χ24943 x3 + x2 − 8314x− 264211 No point found −
25389 χ9χ

2
7χ13χ31 x3 − 8463x+ 208754 No point found −

25909 χ2
13χ1993 x3 − x2 − 8636x− 186161 No point found −

27001 χ2
13χ31χ67 x3 + x2 − 9000x− 217008 No point found −

27333 χ2
9χ3037 x3 − 9111x+ 334070 No point found −

27823 χ27823 x3 + x2 − 9274x− 276169 No point found −
28537 χ28537 x3 + x2 − 9512x+ 328704 No point found −
28807 χ28807 x3 + x2 − 9602x+ 274200 No point found −
29629 χ29629 x3 + x2 − 9876x+ 156924 No point found −
29701 χ2

7χ4243 x3 − x2 − 9900x− 325611 No point found −
29871 χ2

9χ3319 x3 − 9957x− 252244 No point found −
30079 χ2

7χ4297 x3 − x2 − 10026x+ 61272 No point found −
31057 χ2

13χ2389 x3 − x2 − 10352x− 399140 No point found −
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E40A3

Table 4: Results for a brute force search on E40A3 with depth 200.

Conductor Character Characteristic polynomial Result New point

7 χ7 x3 + x2 − 2x− 1 Verified (−α, α)
63 χ9χ7 x3 − 21x− 28 Verified ( 1

2α
2 + 1

2α− 1, 1
2α

2 + 13
2 α+ 10)

91 χ7χ13 x3 − x2 − 30x+ 64 No point found −
223 χ223 x3 + x2 − 74x− 256 No point found −
259 χ7χ37 x3 − x2 − 86x− 48 No point found −
277 χ277 x3 + x2 − 92x+ 236 No point found −
301 χ2

7χ43 x3 − x2 − 100x+ 379 No point found −
427 χ7χ61 x3 − x2 − 142x+ 680 No point found −
499 χ499 x3 + x2 − 166x+ 536 No point found −
547 χ547 x3 + x2 − 182x− 81 No point found −
619 χ619 x3 + x2 − 206x+ 321 No point found −
679 χ2

7χ97 x3 − x2 − 226x− 503 No point found −
757 χ757 x3 + x2 − 252x+ 729 No point found −
853 χ853 x3 + x2 − 284x+ 1011 No point found −
883 χ883 x3 + x2 − 294x+ 1439 No point found −
919 χ919 x3 + x2 − 306x− 1872 No point found −
973 χ7χ139 x3 − x2 − 324x+ 36 No point found −
1009 χ1009 x3 + x2 − 336x− 1719 No point found −
1129 χ1129 x3 + x2 − 376x− 2927 No point found −
1197 χ9χ

2
7χ19 x3 − 399x+ 2926 No point found −

1267 χ7χ181 x3 − x2 − 422x+ 3144 No point found −
1359 χ9χ151 x3 − 453x+ 3473 No point found −
1447 χ1447 x3 + x2 − 482x+ 1715 No point found −
1729 χ2

7χ13χ19 x3 + x2 − 576x− 64 No point found −
1777 χ1777 x3 + x2 − 592x+ 724 No point found −
1789 χ1789 x3 + x2 − 596x− 5632 No point found −
1897 χ2

7χ271 x3 − x2 − 632x+ 4075 No point found −
1899 χ2

9χ211 x3 − 633x− 3376 No point found −
1999 χ1999 x3 + x2 − 666x− 4072 No point found −
2007 χ2

9χ223 x3 − 669x+ 1115 No point found −
2077 χ31χ67 x3 − x2 − 692x+ 7231 No point found −
2131 χ2131 x3 + x2 − 710x− 7419 No point found −
2149 χ2

7χ307 x3 − x2 − 716x+ 6049 No point found −
2169 χ2

9χ241 x3 − 723x+ 3374 No point found −
2191 χ7χ313 x3 − x2 − 730x+ 568 No point found −
2353 χ13χ181 x3 − x2 − 784x+ 7669 No point found −
2383 χ2383 x3 + x2 − 794x− 2736 No point found −
2479 χ2

37χ67 x3 − x2 − 826x− 5968 No point found −
2547 χ2

9χ283 x3 − 849x− 7075 No point found −
2709 χ9χ7χ43 x3 − 903x+ 10234 No point found −
2731 χ2731 x3 + x2 − 910x+ 10216 No point found −
2947 χ7χ421 x3 − x2 − 982x− 11024 No point found −
2971 χ2971 x3 + x2 − 990x+ 5832 No point found −
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2.1.2 Descent with Magma

Below are the results of using Magma to perform a series of descents on the curves E20A2, E24A6, E37A,
and E40A3 over various number fields. The first four columns are the same as in the previous section.

Rank bounds The bounds on rankZE(K) returned by Magma, given as [lower,upper]

A result of “lower bound too loose” indicates that Magma was not able to find enough generators to
verify BSD. In all these cases it so happens that this is exactly when the lower bound on the rank is 0, but
for example if a lower bound of 1 was returned for E37A1/K this description would also be appropriate
since E37A1/Q has rank 1 already.

The generators which were found are given in the appendix.

E20A2

Table 5: Results using Magma to perform descents on E20A2.

Conductor Character Characteristic polynomial Result Rank bounds

9 χ9 x3 − 3x+ 1 Verified [2, 2]
63 χ9χ7 x3 − 21x− 28 Verified [2, 2]
73 χ73 x3 + x2 − 24x− 27 Verified [2, 2]
91 χ2

7χ13 x3 − x2 − 30x− 27 Verified [2, 2]
117 χ2

9χ13 x3 − 39x+ 26 Verified [2, 2]
133 χ2

7χ19 x3 − x2 − 44x− 69 Verified [2, 2]
171 χ2

9χ19 x3 − 57x+ 152 Verified [2, 2]
229 χ229 x3 + x2 − 76x− 212 Verified [2, 2]
259 χ7χ37 x3 − x2 − 86x− 48 Verified [2, 2]
277 χ277 x3 + x2 − 92x+ 236 Verified [2, 2]
307 χ307 x3 + x2 − 102x− 216 Verified [2, 2]
559 χ2

13χ43 x3 − x2 − 186x+ 207 Lower bound too loose [0, 2]
613 χ613 x3 + x2 − 204x+ 999 Lower bound too loose [0, 2]
703 χ19χ37 x3 − x2 − 234x+ 729 Verified [4, 4]
711 χ9χ79 x3 − 237x− 1027 Lower bound too loose [0, 2]
727 χ727 x3 + x2 − 242x+ 1104 Verified [4, 4]
763 χ2

7χ109 x3 − x2 − 254x− 1413 Verified [1, 2]
819 χ9χ7χ13 x3 − 273x+ 91 Lower bound too loose [0, 2]
829 χ829 x3 + x2 − 276x− 307 Verified [2, 2]
871 χ13χ67 x3 − x2 − 290x− 1613 Lower bound too loose [0, 2]
889 χ2

7χ127 x3 − x2 − 296x+ 1317 Lower bound too loose [0, 2]
919 χ919 x3 + x2 − 306x− 1872 Lower bound too loose [0, 2]
973 χ7χ139 x3 − x2 − 324x+ 36 Lower bound too loose [0, 2]
1027 χ2

13χ79 x3 − x2 − 342x− 2016 Verified [2, 2]
1143 χ9χ127 x3 − 381x− 127 Lower bound too loose [0, 2]
1333 χ2

31χ43 x3 − x2 − 444x− 1728 Verified [2, 2]
1339 χ2

13χ103 x3 − x2 − 446x+ 3769 Lower bound too loose [0, 2]
1359 χ9χ151 x3 − 453x+ 3473 Verified [1, 2]
1399 χ1399 x3 + x2 − 466x+ 3368 Lower bound too loose [0, 2]
1477 χ2

7χ211 x3 − x2 − 492x+ 3501 Verified [2, 2]
1729 χ2

7χ13χ19 x3 + x2 − 576x− 64 Lower bound too loose [0, 2]
1737 χ9χ193 x3 − 579x− 4825 Lower bound too loose [0, 4]
1789 χ1789 x3 + x2 − 596x− 5632 Lower bound too loose [0, 2]
1933 χ1933 x3 + x2 − 644x+ 4224 Lower bound too loose [0, 2]

Continued on next page
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E20A2 Descent with Magma results – continued from previous page
Conductor Character Characteristic polynomial Result Rank bounds

1957 χ19χ103 x3 − x2 − 652x− 6016 Lower bound too loose [0, 2]
2169 χ2

9χ241 x3 − 723x+ 3374 Lower bound too loose [0, 2]
2179 χ2179 x3 + x2 − 726x− 7344 Lower bound too loose [0, 2]
2223 χ9χ13χ19 x3 − 741x− 4940 Lower bound too loose [0, 2]
2331 χ9χ7χ37 x3 − 777x+ 8029 Verified [1, 2]
2383 χ2383 x3 + x2 − 794x− 2736 Lower bound too loose [0, 2]
2709 χ2

9χ7χ43 x3 − 903x− 3311 Verified [1, 2]
2817 χ2

9χ313 x3 − 939x− 6886 Verified [1, 2]

E24A6

Table 6: Results using Magma to perform descents on E24A6.

Conductor Character Characteristic polynomial Result Rank bounds

31 χ31 x3 + x2 − 10x− 8 Verified [2, 4]
67 χ67 x3 + x2 − 22x+ 5 Verified [2, 2]
133 χ7χ19 x3 − x2 − 44x+ 64 Verified [1, 4]
151 χ151 x3 + x2 − 50x− 123 Lower bound too loose [0, 2]
193 χ193 x3 + x2 − 64x+ 143 Lower bound too loose [0, 2]
247 χ2

13χ19 x3 − x2 − 82x+ 64 Lower bound too loose [0, 2]
469 χ7χ67 x3 − x2 − 156x− 608 Lower bound too loose [0, 4]
547 χ547 x3 + x2 − 182x− 81 Lower bound too loose [0, 4]
589 χ2

19χ31 x3 − x2 − 196x+ 349 Lower bound too loose [0, 4]
613 χ613 x3 + x2 − 204x+ 999 Lower bound too loose [0, 2]
679 χ7χ97 x3 − x2 − 226x+ 176 Lower bound too loose [0, 2]
691 χ691 x3 + x2 − 230x+ 128 Lower bound too loose [0, 4]
703 χ19χ37 x3 − x2 − 234x+ 729 Lower bound too loose [0, 4]
739 χ739 x3 + x2 − 246x− 520 Lower bound too loose [0, 4]
817 χ2

19χ43 x3 − x2 − 272x+ 1755 Lower bound too loose [0, 4]
853 χ853 x3 + x2 − 284x+ 1011 Lower bound too loose [0, 2]
871 χ2

13χ67 x3 − x2 − 290x+ 1000 Lower bound too loose [0, 2]
1009 χ1009 x3 + x2 − 336x− 1719 Lower bound too loose [0, 4]

E37A

Table 7: Results using Magma to perform descents on E37A.

Conductor Character Characteristic polynomial Result Rank bounds

43 χ43 x3 + x2 − 14x+ 8 Verified [3, 3]
61 χ61 x3 + x2 − 20x− 9 Verified [3, 3]
103 χ103 x3 + x2 − 34x− 61 Verified [3, 3]
127 χ127 x3 + x2 − 42x+ 80 Verified [3, 3]
171 χ9χ19 x3 − 57x− 19 Verified [3, 3]
247 χ2

13χ19 x3 − x2 − 82x+ 64 Verified [3, 3]
817 χ2

19χ43 x3 − x2 − 272x+ 1755 Verified [3, 3]
853 χ853 x3 + x2 − 284x+ 1011 Verified [3, 3]
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E40A3

Table 8: Results using Magma to perform descents on E40A3.

Conductor Character Characteristic polynomial Result Rank bounds

7 χ7 x3 + x2 − 2x− 1 Verified [2, 2]
63 χ9χ7 x3 − 21x− 28 Verified [2, 2]
91 χ7χ13 x3 − x2 − 30x+ 64 Verified [2, 2]
223 χ223 x3 + x2 − 74x− 256 Verified [2, 2]
259 χ7χ37 x3 − x2 − 86x− 48 Verified [2, 2]
277 χ277 x3 + x2 − 92x+ 236 Lower bound too loose [0, 2]
301 χ2

7χ43 x3 − x2 − 100x+ 379 Lower bound too loose [0, 2]
427 χ7χ61 x3 − x2 − 142x+ 680 Lower bound too loose [0, 2]
499 χ499 x3 + x2 − 166x+ 536 Verified [2, 2]
547 χ547 x3 + x2 − 182x− 81 Verified [1, 2]
619 χ619 x3 + x2 − 206x+ 321 Lower bound too loose [0, 2]
679 χ2

7χ97 x3 − x2 − 226x− 503 Lower bound too loose [0, 2]
757 χ757 x3 + x2 − 252x+ 729 Lower bound too loose [0, 2]
853 χ853 x3 + x2 − 284x+ 1011 Verified∗ [2, 4]
883 χ883 x3 + x2 − 294x+ 1439 Lower bound too loose [0, 2]
919 χ919 x3 + x2 − 306x− 1872 Lower bound too loose [0, 2]
973 χ7χ139 x3 − x2 − 324x+ 36 Lower bound too loose [0, 2]
1009 χ1009 x3 + x2 − 336x− 1719 Verified∗ [1, 4]
1129 χ1129 x3 + x2 − 376x− 2927 Lower bound too loose [0, 2]
1197 χ9χ

2
7χ19 x3 − 399x+ 2926 Lower bound too loose [0, 2]

1267 χ7χ181 x3 − x2 − 422x+ 3144 Lower bound too loose [0, 2]
1359 χ9χ151 x3 − 453x+ 3473 Lower bound too loose [0, 2]
1447 χ1447 x3 + x2 − 482x+ 1715 Lower bound too loose [0, 2]
1729 χ2

7χ13χ19 x3 + x2 − 576x− 64 Lower bound too loose [0, 2]
∗: Unfortunately I forgot to record what the generators actually were for these cases!

2.2 Finding characteristic polynomials

This section discusses how to find the characteristic polynomial of the fixed field of χ given the infor-
mation contained in the tables of L(E, 1, χ) values. This is necessary because while the data in its original
form is unwieldy for for the techniques being discussed.

For a fixed E the tables of values of L(E, 1, χ) are given as a triplet (k, r, L(E, 1, χ)), where k is the
conductor of χ and r is a positive integer which is used to further distinguish the characters when their
conductor does not specify them uniquely.

The program findpolys.py works in two steps, first using (k, r) to construct a character χk,r : Z/kZ →
Q(ζ3) explicitly, then finding the fixed field of that character.

2.2.1 (k, r) to χk,r

It is first necessary to explain how r distinguishes between characters of the same conductor. An im-
portant convention is that k will always chosen to be minimal. A consequence of this is that k factors as
k = 9ap1p2 . . . pl with pi ≡ 1 (mod 3) for every i.
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For conductor 9a or p prime there are only three characters χp : Z/pZ → Q(ζ3). One is the trivial
character and the other two are conjugates of one another. Because we assume k is minimal the trivial
character is never the one a pair (k, r) will denote if k > 1. The pair of conjugate characters fix the same
field so distinguishing between them is unnecessary. We construct the character χp by finding the least
positive generator g of (Z/pZ)∗ and set χp(g) = ζ3, from which the rest of the character can be determined
as the characters are multiplicative.

For composite k = 9ap1p2 . . . pl (with pi < pi+1 for every i) any character χk of conductor k factors
as χk = χε0+1

9a χε1+1
p1 · · ·χεl+1

pl
where εi is either 0 or 1 for every i. Consequently the characters of conduc-

tor k can be identified with an ordered set (ε0, ε1, . . . , εl). The conjugate of the character associated to
(ε0, ε1, . . . , εl) is the character associated to (1− ε0, 1− ε1, . . . , 1− εl) (switching 0s and 1s). Since these fix
the same field we don’t need to distinguish between them, so by convention we impose that εl = 0. The
quantity r which appears in the L-function tables is 1 + ε020 + ε121 + · · · + εl−12l−1, i.e. it is the string
ε0ε1 . . . εl−1 interpreted as a binary number written backwards, plus 1.

Example: χ1953,2 = χ2
9χ7χ13

First we factor 1953 as 9 · 7 · 13, writing χ9a first if it appears and otherwise arranging the primes in
increasing order. r = 4, so r − 1 = 112 (pad with zeros until r − 1 has l − 1 digits if necessary). This gives
the ordered set of ε’s as (1, 1, 0) (remembering that by convention the last ε is always 0). We can then write
χ1953,4 = χε0+1

9 χε1+1
7 χ13 = χ2

9χ
2
7χ13.

As mentioned above, characters of prime conductor are produced by sending the least positive primitive
root g of (Z/pZ)∗ to ζ3 = e2πi/3, and generating the rest of the character multiplicatively. Algorithmically,

def makechar(p): #generates \chi_p as an array of length p

g = primitive_root(p); #gp function which returns least positive primitive root of Z/pZ^*

zeta = exp(2*pi*i/3);

char = [0]*p; #length p array of zeros

for k in [1,p):

char[g^k] = zeta^k;

return char;

Having generated all the necessary χp’s they are multiplied together to produce χk,r. This is done as
follows:

def muliplychars(list_of_characters, r): #list_of_characters are elements of the form (p, char_p)

list_of_epsilons = makeepsilonlist(r); #use r as described above

k = 1;

for (p, char) in list_of_characters: #this loop reconstructs the conductor

k = k*p;

char = [1]*k; #list of ones of length k. This will be the \chi_{k,r}

for i in [0,k):

index = 0; #to index the primes with

for (p, char_p) in list_of_characters:

char[i] = char[i]*char_p[i%p]^list_of_epsilons(index); #i%p is i mod p

index = index + 1;

return char;

These two snippets of code are the essence of how findpolys.py generates χk,r from (k, r). There is of
course a substantial amount of data management involved, but discussion of such is not within the scope
of this document. Readers can reference findpolys sage.py for this (and not findpolys.py, which uses gp for
computations and is perhaps harder to follow because it loads other files). I have also not given any pseudo-
code for turning r into (ε0, . . . ). This is because languages will tend to have different ways to transform
integers to binary. Users are best off referencing standard documentation for this. In python, the command
bin(n) returns the string ‘0b<n in binary>’ (for example bin(5) == ‘0b101’).
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2.2.2 Finding the fixed field of χk,r

The key tool in producing the polynomial of the fixed field Kk,r of χk,r is gp’s function galoissubcyclo,
which takes a subgroup H of Gal(Q(ζn)/Q) ∼= (Z/nZ)∗ and returns the corresponding fixed subfield of
Q(ζn). galoissubcyclo can take many kinds of arguments, but the most convenient to pass in this context
are n and a set of generators of H.

Producing all the elements in H can be done efficiently (in gp; sage is slow) with the naive approach of
checking the elements of (Z/nZ)∗ one at a time to see if they are fixed by χk,r.

def find_fixed_elements(k, char):

elements_of_H = [];

for i in [0,k):

if char[i] == 1:

elements_of_H.append(i);

return elements_of_H;

H will have k−1
3 elements, and k can be on the order of 105, so the array returned by the above snippet

of code will typically be very large. Sage can pass this to gp as is without running into trouble and galois-
subcyclo works as intended (since all the elements of H certainly form a set of generators of H), but for
other applications it may be useful to find a smaller set of generators. Typically the values of k provided
in the data have only a few prime factors, and hence sets of generators with only a few elements. Using a
disjoint-set data structure and a union-find algorithm it is possible to reduce the size of the set of generators
to only a few elements (roughly the number of prime factors of k), providing a portable representation of H.

Disjoint-set data structures are partitions of a given set of elements into disjoint subsets and union-
find allows the following two operations to be performed:

Find Determine which subset a given element is in. In practice this is usually done by assigning a repre-
sentative to each subset.

Union Perform the union of two subsets. In practice this might be implemented by setting the representative
of every element of one set to the representative of the other.

Initially place every element of H into a singleton set containing only that element. The algorithm works
in two steps. First, find an element g which is not in the same subset as 1. This will be a generator. Then,
for every subset S union S with gS. This is equivalent to quotienting by g. Continue doing this until only
one subset remains. The following pseudo-code is similar to the algorithm I’ve implemented.

def step1(set_system, k): #set system is the set of subsets

for g in range [0,k):

if set_system.representative[g] != set_system.representative[1]:

#set_system.representateive[g] returns the representative of the set containing g

return g;

def step2(set_system, g):

set_of_representatives_copy = set_system.representative.values();

#make a copy because usually looping over a changing set which is modified

# in the loop is either problematic or explicitly disallowed

for a in set_of_representatives_copy:

set_system.union(a, g*a); #union the sets containing a and g*a

def make_small_set_of_generators(H, k):

set_system = {} #a dictionary in python

generators = [];

for h in H:
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set_system.union(h,h); #initialize to every element in a singleton set

while len(set_system.representative.values()) > 1: #while there is more than one subset

g = step1(set_system, k);

generators.append(g);

step2(set_system, g);

return generators;

Unfortunately this process is not guaranteed to produce a minimal set of generators, or even a superset
of a minimal set of generators. For example, {2, 6} is such a set in (Z/7Z)∗, though it so happens that,
because the program tries elements of H in order, if it were run on all of (Z/7Z)∗ it would produce {2, 3},
which is a superset of a minimal set of generators, since 3 is a primitive root.

At this point k and a set of generators of H are passed to gp’s galoissubcyclo, which returns a character-
istic polynomial of the fixed field. About two thirds of the program’s runtime is taken up by constructing
the characters and finding its fixed values, and one third by galoissubcyclo. For k ≈ 3 · 105, findpolys takes
about 6 minutes to run. Finding the polynomials of all the fields described in the data for a single curve
takes a couple days.

2.3 Brute Force Search

The affine part of an elliptic curve E/K can be described by the locus satisfying the curve’s Weierstrass
equation, E : F (x, y) = 0 with x, y ∈ K, a polynomial equation in two variables. If x is fixed, the equation
becomes a quadratic polynomial in only one variable, for which finding roots is straightforward. Brute Force
Search (BFS) generates a set X0 of values x0 ∈ K and then checks if the one variable polynomial F (x0, y)
has any solutions for y ∈ K. For the purposes of determining whether or not rankZE(K) > rankZE(Q) it
is enough to find a single point of infinite order, but for other applications it may be useful to find as many
points as possible. Code for both uses is included.

For a given cyclic cubic extension K of Q define α to be the generator of K. Any x0 ∈ K can be
described by a triplet of rational numbers (p0, p1, p2) by writing x0 as p0 + p1α+ p2α

2, so to produce values
x0 it is enough to produce rationals. Any algorithm which produces rationals will likely manifest itself as a
map f : N→ Q. Ideally this map should have the following properties for this purpose:

1. The map should be bijective. Injectivity is important because it avoids wasting time repeating the
same computations, and surjectivity is important because it makes results easier to understand and
reproduce, and is more likely to provide partial results.

2. The map should map small n to rationals of small height because, in accordance with the law of small
numbers, rationals of small height are in some sense more likely to satisfy E than rationals of large
height. It also helps the algorithm be easier to understand.

3. It should be possible to generate the image of f recursively. This is useful because it avoids having
to store the entire image of f in memory. For use with BFS this criterion is unimportant, however,
as any usually only hundreds, or at most thousands of rationals can be tested before runtimes become
impractically long (weeks). This sequence is used for other purposes however, where this might be a
concern.

The usual Calkin-Wilf sequence has the second and third properties, and is bijective with Q+, which
can easily be extended to all of Q. It is given by the recursion

qi+1 =
1

2bqic − qi + 1

with q0 = 1. It begins 1
1 ,

1
2 ,

2
1 ,

1
3 ,

3
2 ,

2
3 ,

3
1 ,

1
4 ,

4
3 ,

3
5 ,

5
2 ,

2
5 ,

5
3 ,

3
4 , . . . . Setting f(2n + 1) = qn, f(0) = 0, and

f(2n) = −f(2n − 1) for n > 0 (i.e. adding 0 to the beginning of the image and adding negatives of all the
elements) gives a map which satisfies the three criteria above. Here is some code which generates this map:
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def calkinwilf(depth): #generates depth elements

cwseq = [0,0]; #include twice to not break the recursion

for i in [0,depth/2):

cwseq.append(1/(2*floor(cwseq[-2]) - cwseq[-2] + 1));

#cwseq[-2] is the second from last element of the sequence

cwseq.append(-cwseq[-1]);

del cwseq[0]; #remove the first 0.

return cwseq;

Instead of appending the elements to a list to be returned one could just as easily perform computations
with them.

The bare bones of BFS is as described above: pick values x0 ∈ K and see if F (x0, y), as a polyno-
mial in y, has any roots. In code:

for p_0 in cwseq: #cwseq is a sequence of rationals

for p_1 in cwseq:

for p_2 in cwseq:

x_0 = p_0 + p_1*a + p_2*a^2; #a is the generator of K

F = y^2 + a_1*x_0*y + a_3*y^2 - (x_0^3 + a_2*x_0^2 + a_4*x_0 + a_6); #F(x_0,y)

roots_of_F = F.roots();

if length(roots_of_F) > 0: #if F(x_0,y) has roots in K

for y_0 in roots_of_F:

if (x_0, y_0) not in Q^2:

return (x_0, y_0);

There are various improvements that can be made to this algorithm but the above is the essence of it.

One modification that can be made is to make use of the group law on E to find additional points
and to attempt to determine a minimal generating set of points. I implement a method to do this which
works in practice but will fail in general.

During the search, whenever a point P is found I check to see if it has already been found or gener-
ated by the procedure described below. If not. nP and −mP are included in the set of all points discovered,
with certain stopping conditions on n and m. The sets {nP} and {−mP} are treated completely separately.
n begins at 1 and is incremented until either nP = O or the denominator of x(nP ) exceeds some fixed H0

which can be safely set to about 1010. m is treated in the same way. The reasoning is that in the first
case P has finite order, so all of P ’s multiples are easily included. In the second case Nagell-Lutz and the
generalization to arbitrary number fields allows us to deduce that P has infinite order. The maximum size
of the denominator of the x coordinate will depend on the number field, but for the cases we are interested
in it will be less than 1010. Setting H0 to be large does not cause problems with runtime or memory because
the (logarithmic) height of 2P is roughly 4 times the height of P , so even for moderate n the height of nP
will greatly exceed any reasonable bounds we could place.

If P is found to have infinite order in this way P is added to a set of “potential generators” and any
multiples of P which are in this set are removed. After having checked all the x values that are to be checked,
as above, the program ends up with a set of points found and a set of potential generators. The program
then computes the span of all subsets of the potential generators from smallest to largest, and returns the
first subset for which the span contains all the potential generators. In my experience this has never failed,
but it will not work in general. First, it assumes that there are no generators with denominator larger than
H0. This objection is moot in practice because any reasonable search will not find any points with denomi-
nator larger than H0. Second, it is impossible to generate the entire span of subsets of potential generators
because these spans are infinite. Instead the program only generates linear combinations with coefficients
less than a certain fixed bound, which I’ve set in the past to be roughly 20. If there’s a “complicated” linear
dependency the program will not find it. Third, it may be that, as mentioned towards the end of section
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2.2.2, the potential generators may not contain a minimal set of generators at all. Also note that if a point is
found, it’s galois conjugates will also be points. The program as is does not take advantage of this fact though.

Though for this application it is unnecessary to find as many points as possible, it’s conceivable that
for other applications it would be desirable. Code using the technique implemented above can be found in
bruteforcesearch manypoints.py.

Another improvement that can be made is to iterate over triples (p0, p1, p2) in a more natural way.
The algorithm described above fixes p0 and p1 before iterating over all possible values of p2, and so (0, 0, 8

7 )
is tested before (1, 0, 0). By finding a bijection g1,3 : N→ N3 which maps small naturals to triplets of small
naturals one can improve the efficiency of the search. One such map is given in ntoncubed.py.

It may seem as though this consideration is superfluous given that the majority of searches find no
points at all, making it unnecessary to optimize the order in which the points are checked in all but a few
cases. The value of modifying the search order to examine “small” triplets before large ones is that small
ones are more likely to satisfy equations in some sense, and with this procedure the search as a whole is
run more efficiently because it is examining the x0 values most likely to satisfy E. For example, with the
bijection given in ntoncubed.py, {g(k)}219

k=0 is the set of all triplets with entries that sum to 9 or less (and this
is optimal), whereas proceeding by cubes as above requires 0 ≤ k < 1000. In the limit this ratio approaches 1

6 .

However I have not made use of this improved order to examine triplets in the computations I’ve run
because it is less economical in terms of memory, which is a serious concern given that I am sharing the
Université de Montréal server with several others. It would likely not be difficult to modify the construction
of the image of g in a way that only a small amount of memory is used at any one time.

Given how ineffective this technique is, however, as evidenced by the results above, time is probably
better spent elsewhere.

2.4 Descent with Magma

Magma is a Computer Algebra System developed at the University of Sydney. It has many powerful high
level computational tools, and in particular it can perform descent using a function called MordellWeilShaIn-
formation. The documentation, found at http://magma.maths.usyd.edu.au/magma/handbook/text/1353#14971,
reads as follows:

This is a special function which uses all relevant Magma machinery to obtain as much infor-
mation as possible about the Mordell-Weil group and the Tate-Shafarevich group of the elliptic
curve E. The tools used include 2-descent and the Cassels-Tate pairing on the 2-Selmer group;
analytic routines may also be used when the conductor has small norm.

In light of this the second technique consists of simply running MordellWeilShaInformation on all the
curves of interest. The code I use to do this can be found in the files findrank¡curvename¿.magma. I don’t
have very much to say about this method because Magma does not offer any options to customize how the
descent is performed as far as I can tell. Moreover I’ve only been able to use this technique on four curves
because of the limitations on l’Université de Montréal computational resources, so it is difficult for me to
make more general statements about how this technique performs in practice.

This approach has been the most effective of the three I’ve tried. Its effectiveness seems to depend
on whether or not the curve in question has two torsion. E37A1 does not, and descent there takes a very
long time: E/K853 took the better part of a week to return, and the runtime seems to grow much faster than
linearly in the conductor. However it seems, based on only 8 results, to be successful more often than descent
for the other three curves, which all have two torsion. The descent with the other three curves tended to run
quickly, often taking only minutes per result, though sometimes Magma would print a warning that a large

16



number (≈ 150 digits) was being factored, and such instances made up the largest portion of the runtime.

2.5 Sieving with projections

This technique is essentially a refinement of brute force search where, instead of setting (using the same
notation as above) X0 = K, i.e. checking for every x0 ∈ K whether or not F (x0, y) = 0 has a solution, local
information is used to produce a much smaller set XS ⊂ X0 while still containing all x0 values for which
F (x0, y) = 0 has a solution. This is done by reducing the equation modulo an ideal I ⊂ OK , the ring of
integers of K, finding the set of all solutions XS to the reduced equation, and then taking XS to be the
preimage of XS in K. However I was not able to find an efficient way of determining the preimage; my
implementation of this idea was roughly on par with brute force search.

2.5.1 Finding XS

The current implementation of this algorithm is naive. Given an ideal I ⊂ OK , the program checks for
each x̄, ȳ ∈ OK/I whether or not F (x̄, ȳ) = 0.

def solutions_mod_I(E, K, I):

O_KmodI = K.ring_of_integers().quotient_ring(I);

Xbar_S = [];

for x in O_KmodI:

for y in O_KmodI:

Fxy = y^2 + a1*x*y + a3*y - (x^3 + a2*x^2 + a4*x + a6);

if Fxy = 0:

Xbar_S.append(x);

return Xbar_S;

This algorithm could be improved by first finding the prime ideals of OK and taking I to be one of them.
The quotient OK/I would then be a finite field and more root finding techniques would become available. If
the preimage of XS could be determined efficiently, this modification, combined with a suggestion below to
use the Chinese Remainder Theorem (CRT) to turn several small sieves into one larger one, could potentially
improve the algorithm substantially. Of course I have no evidence to support this claim, but I give a heuristic
justification below.

2.5.2 Computing the preimage of XS

Given some x = p0
q0

+ p1
q1
α + p2

q2
α2 ∈ K and some ideal I ⊂ OK , if q0, q1, and q2 have inverses in OK/I

then there is a projection π : K → OK/I with π(x) = p̄0q̄0
−1 + p̄1q̄1

−1ᾱ+ p̄2q̄2
−1ᾱ2, where ·̄ : OK → OK/I

is reduction modulo I. The step above computes the set XS ⊆ OK/I of all the residues which solved the
reduced equation F (x̄, ȳ) = 0, and now we seek to determine XS = π−1

(
XS

)
. This is done in two steps.

Pick representatives in OK for every coset in OK/I. It will be useful to formalize this idea with the
use of a map ψ : OK/I → OK which maps a coset to its representative. For each x̄S ∈ XS , the set

P (x̄S) =

ψ
(
ψ(x̄S)ψ(g)

)
ψ(g)


g∈(OK/I)∗

is the first ingredient in the construction of XS . The notation above is maybe a bit verbose. The nested
maps are to ensure that the computations are being performed in the right ring, but they are all either lifts
or projections. The key point is that the product in the numerator is done in OK and then the corresponding
representative is chosen for the numerator of the field element.
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P (x̄S) is the (complete) preimage of XS if restricted to only to the representatives ψ(OK/I). For
example, if K = Q, I = 5Z, and our set of representatives is {0, 1, 2, 3, 4} we have P (2) = {2, 1

3 ,
3
4}, which

is the complete preimage of 2 mod 5 in the subset of Q with numerators and denominators in the set of
representatives, as expected.

One way to compute P (x̄S) for a given x̄S is shown below.

def P(K, I, x):

O_K = K.ring_of_integers();

O_KmodI = O_K.quotient_ring(I);

Px = [];

for g in O_MmodI.unit_group():

p = lift((lift(g)*lift(x)).mod(I))/lift(g);

Px.append(p);

return Px;

To generate the rest of the preimage XS we first produce P (XS) =
⋃
P (x̄S). From there all that will

be left to do to obtain all of XS is to shift both the numerators and denominators of P (XS) by elements of I.

The motivation behind the shifting is that whenever ψ is applied to an element of OK/I a certain
generality is lost through our choice of representatives. To recover the entire preimage of XS we must shift
these outputs by every element of I. It’s unnecessary to do this for the argument of the outermost calling
of ψ in the numerators of the elements of P (x̄S) however, as immediately afterwards the product will be
reduced once again and any shifts will vanish. In light of this we can deduce that the entire preimage is
given by

XS =

{
p+ n

q +m

∣∣∣∣ pq ∈ P (XS), n,m ∈ I
}

where p
q is taken to be of the form given in the definition of P (x̄S). Given that we want to preserve the

specific form of the elements of P (XS) it is safest to modify the algorithm for P above so that it instead
returns an ordered pair.

Of course in practice it will not be possible to do this for every n,m ∈ I. One way to approximate
this is to find maps f : N → Nd (where d is the number of generators of I) and g : N → OK , apply g to
every coordinate of the output of f , and take n ∈ I to be (g(f1), g(f2), . . . , g(fd)) · (β1, β2, . . . , βd), where
f(n) = (f1, f2, . . . , fd), {βi} are a set of generators for I, and · is the dot product. As usual it’s best if these
maps map “simple” elements to simple elements.

One final consideration is that there will be elements which will cannot be projected onto OK/I, so
XS as is will not contain them. This is easily accounted for: one must include in P all elements of the form
r
s with r ∈ ψ(OK/I) and s ∈ ψ(OK/I − (OK/I)∗). A complete algorithm to compute the preimage might
look like

def find_preimage(K, I, Xbar_S, depth): #depth is the number of pairs (n,m)

O_K = K.ring_of_integers();

Pvals = []; #going to be pairs (x, P(x)) = (x, (p,q))

for x in Xbar_S:

Px = P(K, I, x);

Pvals.append((x, Px));

Igens = I.generators();

d = length(Igens);

fimage = f(d, depth); #generates the first depth elements of N -> N^d

gimage = g(O_K, depth)

#really only about sqrt(depth) are needed

NtoN2 = ntonsquared(depth);
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X_S = [];

for (x, (p,q)) in Pvals:

for i in [0,depth):

(j,k) = NtoN2[i];

nindices = fimage[j]; #numbers to feed to g

mindices = fimage[k];

ncoeffs = [];

for nindex in nindices:

ncoeffs.append(gimage[nindex]);

for mindex in mindices:

mcoeffs.append(gimage[mindex]);

n = dot(ncoeffs, Igens); #dot product

m = dot(mcoeffs, Igens);

x = (p + n)/(q + m);

X_S.append(x);

return X_S;

The algorithm then proceeds to run brute force search as described above on XS . In practice it is best
if x ∈ XS is tested as it is created instead of first generating a list and then running the search on it since
otherwise millions of number field elements would have to be kept in memory. Instead of appending x to XS

above simply test immediately. In practice it will also likely be necessary to catch division by zero errors.

2.5.3 Improving and the Chinese Remainder Theorem

The motivation for using XS as notation is that S can designate an ideal, or a set of ideals. Using CRT
it is possible to combine the sets XS1 and XS2 into XS1∪S2 . This is interesting because combining the two
sets like this will be substantially faster than running the algorithm on XS1∪S2 directly, since, very roughly,
the run time for the former’s runtime will grow with the sum of the sizes of the ideals in S1 ∪ S2, since it
amounts essentially to determining XS for each of them, while the latter’s will grow with the product of the
sizes, since the algorithm above will check every residue in OK/I1I2 . . . . Moreover it’s advantageous to look
at situations where I1I2 . . . is large, since if the acceptable residues of OK/I1 and OK/I2 are independently
distributed the number of acceptable residues will drop exponentially with the number of ideals in the prod-
uct.

However I had difficulty computing XS efficiently to begin with and never attempted to go beyond
that hurdle to implement the CRT technique mentioned above. However, unbeknown to me at the time I
worked on this program Michael Stoll has written a program called ratpoints2 which finds rational solutions
to equations of the form y2 = p(x) using essentially this technique. It is effective, which makes me hopeful
that with a proper treatment this too could be a viable technique for finding points on these curves.

3 Curve Finding

Another approach to be taken for verifying BSD is to construct curves with positive rank and check to
see if L(E, 1) = 0. Here we focus again on curves over cubic number fields, and are interested in finding,
for a given E, cubic number fields K such that rankZE(K) > rankZE(Q). A cubic extension of Q is Galois
(“cyclic”) if and only if the discriminant of its characteristic polynomial is square.3 We can think of (the
affine part of) an elliptic curve as the locus in which solves E : x3 +a2x

2 + (a4−a1y)x+ (a6−a3y− y2) = 0.

2Which can be found at http://www.faculty.jacobs-university.de/mstoll/programs/index.html.
3This is a well known result as far as I can tell, since no one seems to give a reference for it, but see Harvey Cohn’s The

density of abelian cubic fields, Proc. Amer. Math. Soc. 5 (1954), 476-477, for example.
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Fixing y allows E = Ey(x) to be considered as a univariate polynomial, and if Q[x]/(Ey(x)) ∼= Q[α]
def
= K is

a cyclic cubic extension of Q with Ey(x) as a characteristic polynomial then clearly (α, y) ∈ E(K)\E(Q),
so either rankZE(K) > rankZE(Q) or |E(K)| > |E(Q)|. Often the former will be the case, giving us what
we’re looking for. We can then compute L(E,χ, 1) to check if it is 0. The difficulty lies in picking y such
that the discriminant ∆(Ey) is a perfect square in Q. The code in findcyclicextensions.py can find cyclic
extensions with a good success rate using the procedure described below. I feel that any pseudo-code will
be too complex to be useful, but readers can always consult the python file if they like.

The discriminant ∆(Ey) is a quartic polynomial αy4 + βy3 + γy2 + δy + ε with
α = −27
β = 4a3

1 − 54a3 + 18a1a2

γ = a2
1a

2
2 − 12a2

1a4 + 4a2
2 − 27a2

3 + 54a6 − 18a2a4 + 18a1a2a3

δ = −2a1a
2
2a4 + 12a1a4 + 4a3

2a3 + 54a3a6 − 18a2a3a4 − 18a1a2a6

ε = a2
2a

2
4 − 4a3

4 − 4a3
2a6 − 27a2

6 + 18a2a4a6

Consider the curve C∆ : v2 = αu4 + βu3 + γu2 + δu + ε. Points (u, v) on this curve correspond to
pairs (y,∆(Ey)) which yield square discriminants and hence cyclic cubic extensions of Q over which either
rankZE(K) > rankZE(Q) or |E(K)| > |E(Q)|. This curve, the quartic discriminant curve, can be turned
into an elliptic curve if a single rational point (p, q) can be found on it. Michael Stoll’s ratpoints program,
mentioned in section 2.5.3, often does this effectively. It is possible that no points can be found like this. A
partial solution to this problem is discussed below.

Once a point (p, q) on C∆ is found it is then possible to transform the curve into Weierstrass form.
There are two cases to consider when transforming.

Case 1: q = 0

In this case we can write C∆ : v2 = (u− p)(au3 + bu2 + cu+ d). The transformation from variables (u, v)
to (X,Y ) given by

u = A
X + p

v = Y
A (u− p)2

with A = ap3 + bp2 + cp+ d turns C∆ to an elliptic curve in Weierstrass form with coefficients
a1 = 0
a2 = 3ap2 + 2bp+ c
a3 = 0
a4 = A(3ap+ b)
a6 = A2a

Case 2: q 6= 0

First set ū = u− p. This change of coordinates turns C∆ into CD : v2 = aū4 + bū3 + cū2 +dū+ q2, where
a = α
b = 4αp+ β
c = 10αp2 + 3βp+ γ
d = 4αp3 + 3βp2 + 2γp+ δ

Setting

ū =
2q(X+c)− d2

2q

Y

v = ū(ūX−d)
2q − q
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transforms CD into the equation for an elliptic curve in Weierstrass form with
a1 = d

q

a2 = c− d2

4q2

a3 = 2qb
a4 = −4q2a
a6 = a2a4 = ad2 − 4q2ac

It is important to distinguish between the quartic discriminant curve and this curve even if from a
more theoretical perspective they coincide. The Weierstrass form of the quartic discriminant curve I will
call the cubic discriminant curve with distinguished point (p, q) and denote it E∆(p, q) or simply E∆ when
the choice of distinguished point can be omitted. All the cubic discriminant curves related to a quartic
discriminant curve are isomorphic, i.e. in some sense the choice of base point doesn’t matter, but once again
for computational applications it is often important to distinguish between them.

Obtaining the cubic discriminant curve is useful because there are many powerful computational tools
available to determine the generators of E∆(Q). If E∆ has positive rank and a generator can be found then
infinitely many cyclic cubic extensions K for which rankZE(K) > rankZE(Q) or |E(K)| > |E(Q)| can be
found: for each (X,Y ) ∈ E∆(Q) there is a corresponding (u, v) on the quartic discriminant curve which gives
a y such that ∆(Ey) is a square.

Given the generators g1, g2, . . . , gk of E∆ I construct a set of points G by combining generators in more
and more “complicated” ways, and then shift G by every torsion point successively. G is constructed by
first including g1,−g1, g2,−g2, . . . , gk,−gk, then 2g1,−2g1, g1 + g2, g1 − g2, . . . , i.e all two term sums of the
generators and their negatives, and then all three term combinations and so on. Some of these will overlap,
e.g. g1 + g2 − g1 and g1, but weeding after every iteration is quick enough. Call T the set of torsion points.
Once G is constructed, the program then computes T + G = {t + g | t ∈ T, g ∈ G}, and returns this set of
points when it is large enough to satisfy the user.

This approach is quick in many cases but could fail in two places. The algorithm may not be able
to find any points on the quartic discriminant curve, or it might take an unreasonable amount of time to
find the generators of E∆. Both of these problems can be circumvented to some extent by applying the
procedure above not just for E as is, but also for E under the transformation y → y + rx + s. This is the
most general transform that will preserve the Weierstrass form while changing the discriminant. It affects
the coefficients of E in the following way:
a′1 = a1 + 2r
a′2 = a2 − r2 − a1r
a′3 = a3 + 2s
a′4 = a4 − 2rs− a1s− a3r
a′6 = a6 − s2 − a3r

I call the resulting curves shears of E. From a more abstract perspective E and its shears coincide,
but for these more computational purposes the distinction is important, since there are many cases where
a point cannot be found on the quartic discriminant curve of E but where one can be found on the quartic
discriminant curve of a shear E′ of E. Similarly maybe finding the generators of the cubic discriminant
curve of E will take too long, but the generators of the cubic discriminant curve of E′ can be found quickly.
My implementation of this idea does the former but not the latter since right now the code serves as a proof
of concept more than anything else.

The biggest problem with this technique is that the fields which are generated tend to have very large
conductor, making finding L(E,χ, 1) essentially impossible. This is because adding points tends to increase
their height substantially, so the coefficients of the characteristic polynomial can easily be hundreds of digits
long. A way to mitigate this somewhat is to simply search for points on the quartic discriminant curves
many shears of E using ratpoints.
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To use this technique one also needs a way to find the character χ which fixes any fields produced
by this technique. Presumably calculating the field’s conductor shouldn’t be hard, but I have not had time
to think about how to distinguish between the characters of a given conductor. Depending on the conductor’s
size and the number of factors it has it may be feasible to put the characteristic polynomials produced into
some canonical form and compare them with the canonical forms of the fixed fields of the characters of the
right conductor.

Once χ has been identified the algorithm from prof. Kisilevsky and prof. Fearnley can be used to
compute L(E,χ, 1). I expect that this approach will be more successful than trying to find points explicitly,
but it may not be as useful because it restricts itself to fields of a certain form it seems.

4 Concluding Remarks

I employed three techniques to find points on specific elliptic curves. The naive search was unsuccessful
in all but the simplest cases. Using Magma to perform descent worked a substantial fraction of the time,
but the computations were lengthy. A third technique which was a refinement of the naive search was un-
successful because I was not able to perform certain steps efficiently, but the technique may be viable with
a better implementation.

I also outline a technique to find cyclic extensions of Q over which a given elliptic curve will have
either more points or a higher rank. If one can find the character which fixes the resulting number fields one
could compute the relevant L-functions as prof. Kisilevsky and prof. Fearnley do, and verify the Birch and
Swinnerton-Dyer conjecture that way.

Finally I’d like to thank prof. Henri Darmon with utmost sincerity for guiding me through my research.
His insight and expertise were invaluable to me.
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Appendix: Generators found with Magma

This section consists of tables of the generators found with Magma using its descent algorithm. They are
listed here and not above because of typesetting concerns. Only the cases where the algorithm was successful
in finding generators are given here. For a complete summary of the results see the results section.

E20A2

Table 9: Results using Magma to perform descents on E20A2.

Conductor Character Generators

9 χ9
(−α2 + 2, α2 − 3),
(−α+ 1,−α2 + α)

63 χ9χ7
( 1

7α,
1
7 (−α+ 2)),

( 1
12 (α2 − 4α− 9), 1

24 (−3α2 + 12α+ 31))

73 χ73
( 1

7803 (−134α2 + 766α+ 6573), 1
397953 (14260α2 + 24232α− 145239)),

( 1
1323 (−101α2 − 65α+ 2028), 1

27783 (−2929α2 − 1885α+ 57489))

91 χ2
7χ13

( 1
2187 (298α2 − 2308α− 873), 1

59049 (−29696α2 + 161948α+ 155673)),
( 1

2541 (−160α2 + 598α+ 2319), 1
27951 (−640α2 + 2392α− 525))

117 χ2
9χ13

( 1
484 (53α2 − 329α+ 94), 1

5324 (1855α2 − 11515α+ 4258)),
( 1

484 (−α2 − 211α+ 530), 1
5324 (−449α2 + 3029α− 4998))

133 χ2
7χ19

(18α2 + 140α+ 249, 1
3 (2896α2 + 20068α+ 27723)),

( 1
513 (−716α2 + 1978α+ 28011), 1

1539 (−14320α2 + 39560α+ 560193))

171 χ2
9χ19

( 1
12482 (−137α2 − 1771α+ 6326), 1

986078 (12193α2 + 157619α− 363302)),
( 1

256 (−9α2 − 280α+ 1473), 1
4096 (−553α2 + 12008α− 44319))

229 χ229
( 1

23762 (507α2 − 3847α− 38068), 1
2590058 (−40673α2 − 140939α+ 2518600)),

( 1
11881 (164α2 + 850α− 13545), 1

1295029 (43038α2 − 124384α− 1990771))

259 χ7χ37
( 1

24 (−41α2 + 67α+ 3504), 1
48 (−991α2 + 1541α+ 84312)),

( 1
63 (−2α2 + 5α+ 151), 1

189 (10α2 − 25α− 773))

277 χ277

( 1
2768896 (−3451α2 − 93640α + 4134204), 1

4607442944 (100471719α2 − 576955672α −
7383525164)),
( 1

87616 (−28309α2− 111727α+ 2349378), 1
12967168 (−20236113α2− 79467595α+ 1620176362))

307 χ307
( 1

32 (α2 − 11α− 34), 1
384 (31α2 − 245α− 510)),

( 1
16 (−α2 + 2α+ 88), 1

192 (−23α2 + 22α+ 2424))

703 χ19χ37

( 1
4 (α2 + 8α+ 16), 1

8 (23α2 + 184α− 1217)),
( 1

77841 (−542α2 − 4032α+ 66663), 1
21717639 (75880α2 + 564480α− 2404971)),

( 1
38475 (494α2 − 8846α+ 23247), 1

577125 (21736α2 − 389224α+ 1000593)),
( 1

4 (−α2 + α+ 331), 1
8 (23α2 − 23α− 6028))

727 χ727

( 1
1000 (−29α2 + 63α+ 6012), 1

10000 (−667α2 + 1449α+ 155276)),
( 1

34680 (−211α2 + 1617α+ 24028), 1
235824 (633α2 − 4851α+ 1900)),

( 1
15870 (−113α2 − 19α+ 23454), 1

365010 (3729α2 + 627α− 721082)),
( 1

4369210 (−23139α2 + 47463α+ 2818762), 1
2888047810 (−9972909α2 + 20456553α−139568678))

763 χ2
7χ109 ( 1

1338248 (8999α2 + 91031α− 1420222), 1
1094686864 (7608739α2 + 41326507α− 1308282062))

829 χ829

( 1
4044121 (12582α2 + 26568α− 98361), 1

8132727331 (1887024α2 + 314114892α+ 1108142463)),
( 1

44485331 (−89478α2 + 985554α + 40392189), 1
89460000641 (−323550012α2 − 1712970168α +

74853491325))

Continued on next page
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E20A2 Descent with Magma results – continued from previous page

Conductor Character Generators

1027 χ2
13χ79

( 1
1757007 (2684α2 − 67138α− 2163), 1

97806723 (203984α2 − 5102488α− 20328135)),
( 1

251001 (4697α2 + 8009α− 443037), 1
13972389 (−440621α2 − 66608α+ 23555133))

1333 χ2
31χ43

( 1
27 (α2 + 11α− 3), 1

81 (10α2 + 218α− 3)),
( 1

18 (−α2 + 3α+ 360), 1
27 (8α2 − 2475))

1359 χ9χ151
( 1

142129 (296α2 + 5132α− 225320), 1
53582633 (23622α2 − 467154α+ 14413916)),

( 1
1847677 (3356α2 − 73516α− 2804192), 1

696574229 (−608886α2 + 270084α+ 420037796))

1477 χ2
7χ211

( 1
4 (α+ 16), 1

24 (−α2 − 14α+ 96)),
( 1

192 (−α2 + 4α+ 384), 1
1536 (11α2 − 92α− 4800))

2331 χ9χ7χ37 ( 1
470448 (773α2 − 8267α− 522852), 1

93148704 (−354307α2 − 3860291α+ 137179020))

2709 χ2
9χ7χ43 ( 1

1978032 (2285α2 − 126093α− 1325114), 1
401540496 (377025α2 − 20805345α+ 492129022))

2817 χ2
9χ313 ( 1

215168 (−1651α2 + 24709α+ 736090), 1
211725312 (−105445α2 + 6447203α+ 15509622))

E24A6

Table 10: Results using Magma to perform descents on E24A6.

Conductor Character Generators

31 χ31
( 1

8 (3α2 + 17α+ 68), 1
16 (−33α2 − 187α− 372)),

( 1
32 (243α2 + 567α+ 646), 1

128 (11097α2 + 32157α+ 22842))

67 χ67 ( 1
225 (36α2 − 17α+ 1181), 1

10125 (3025α2 − 48558α− 34552))

133 χ7χ19 ( 1
2800 (−269α2 − 1635α+ 35676), 1

28000 (−14257α2 − 86655α+ 1228828))

E37A1

Table 11: Results using Magma to perform descents on E37A1.

Conductor Character Generators

43 χ43

(0, 0),
( 1

2 (−3α2 − 5α+ 40), 1
2 (13α2 + 21α− 170)),

(3α2 − 10α+ 4, 1
2 (−61α2 + 213α− 108))

61 χ61

( 1
12 (−5α2 − 4α+ 96), 1

8 (9α2 + 6α− 185)),
( 1

12 (−α2 − 2α+ 27), 1
24 (−4α2 + α+ 66)),

(0, 0)

Continued on next page

24



E37A1 Descent with Magma results – continued from previous page

Conductor Character Generators

103 χ103

(0, 0),
( 1

4 (−31α2 + 27α+ 1004), 1
8 (903α2 − 802α− 29194)),

( 1
27239980563 (1356588440α2−3330300474α−3775160249), 1

2595670507867707 (136700768167916α2−
741678083944068α− 3156319688992064))

127 χ127

(0,−1),
( 1

2 (α2 − 7α+ 10), 4α2 − 27α+ 40),
( 1

100 (−3α2 − 16α+ 140), 1
1000 (−23α2 − 106α+ 40))

171 χ9χ19

( 1
8975107815 (85515852α2 − 621376936α + 2124337399), 1

219540112262715 (−1735331969032α2 +
15407530457696α− 122636065963739)),
( 1

8975107815 (72965876α2 + 573511012α + 2601236487), 1
43908022452543 (−408061382024α2 −

2551454733080α− 22209403640479)),
(0,−1)

247 χ2
13χ19

(0, 0),
( 1

32 (−α2 + α+ 82), 1
384 (17α2 + 15α− 1682)),

( 1
3188646 (99221α2 +470661α−3632858), 1

2324522934 (76412311α2 +618961863α−2827016662))

817 χ2
19χ43

(0,−1),
( 1

228 (−14α2 − 101α+ 2748), 1
152 (−14α2 − 101α+ 2973)),

( 1
1292769 (20068α2 + 218318α − 3854684), 1

1469878353 (−18483440α2 − 189696370α +
3278706427))

853 χ853

(0,−1),
( 1

48 (−α2 − 5α+ 309), 1
192 (11α2 + 55α− 3066)),

( 1
144 (2α2 + 31α− 6), 1

576 (22α2 + 341α− 1641))

E40A3

Table 12: Results using Magma to perform descents on E40A6.

Conductor Character Generators

7 χ7
( 1

344569 (30689α2 − 167080α+ 119999), 1
202262003 (−118104208α2 − 59945097α+ 33698073)),

(−2α2 − 2α+ 4, 4α2 + 2α− 9)

63 χ9χ7
( 1

18 (−α2 + 5α+ 20), 1
18 (−α2 + 5α+ 6)),

( 1
316969 (22509α2 − 112014α− 21467), 1

178453547 (27371154α2 − 73569213α− 165786054))

91 χ7χ13
( 1

1058 (−163α2 − 277α+ 2922), 1
24334 (−2007α2 − 1061α+ 30156)),

( 1
64 (7α2 + 54α), 1

512 (−233α2 − 970α+ 1728))

223 χ223
(−α2 + 4α+ 65, 6α2 − 17α− 344),
( 1

2 (α2 − 7α− 24), 1
2 (−13α2 + 63α+ 586))

259 χ7χ37
( 1

108 (−α2 + 26α+ 123), 1
648 (−10α2 − 133α− 63)),

( 1
10368 (−163α2 − 101α+ 17162), 1

746496 (9847α2 − 60559α− 1151522))

499 χ499
( 1

12168 (−163α2 − 1391α+ 33350), 1
949104 (13451α2 + 77935α− 2917342)),

( 1
18252 (19α2 + 1524α+ 21980), 1

1423656 (10781α2 + 153402α+ 1029832))

547 χ547
( 1

6561 (20α2 − 404α+ 9153), 1
177147 (2878α2 − 28684α− 193590)),

( 1
36 (α2 − 8α+ 52), 1

216 (23α2 − 184α− 361))

25


