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Preliminaries

Rankin L-series are attached to a pair

f € Si(T1(Nf), xr), g € Se(T1(Ng); xg)

of cusp forms,

f=> anf)a", &=) anlg)d"
n=1

n=1

Hecke polynomials (p { N := lem(N¢, Ng))

X2 = ap(F)x + x¢(p)P* ™ = (x — ap(F))(x = Bp(f)).

%2 = ap(g)x + xg(P)P ™ = (x — ap(8))(x — Fp(e)



Rankin L-series, definition

Incomplete Rankin L-series:

Ly(feg, 5)_1 = H(l - ap(f)ap(g)l?_s)(l - Oép(f)ﬁp(g)P_s)
pIN

x(1 = Bp(f)ap(g)p™)(1 — Bp(f)Br(g)p™)

This definition, completed by a description of Euler factors at the
“bad primes”, yields the Rankin L-series

L(f®g,s)=L(Vs® V,,s),

where V¢, V, are the Deligne representations attached to f and g.



Rankin L-series, integral representation

Assume for simplicity that k = ¢ = 2.

Non-holomorphic Eisenstein series of weight 0:

/

E(zs)= 3 x N n)yilmztal
(m,n)eENZXZ

Theorem (Shimura)

Let x := (xfxg) . Then

L(f ®g,s) = (;*2)5 (F(2), Ex(z.s ~ Dg(@))rym) -

This is proved using the Rankin-Selberg method.



Rankin L-series, properties

The non-holomorphic Eisenstein series have analytic continuation
to s € C and satisfy a functional equation under s <> 1 — s.

Shimura's integral representation for L(f ® g, s) leads to its
analytic continuation, with a functional equation

L(fog,s)+< L(f®g3—s).

Goal of Beilinson’s formula: Give a geometric interpretation for
L(f ® g,s) at the “near central point” s = 2.

This geometric interpretation involves the higher Chow groups of
Xo(/\/) X Xo(/\/)



Higher Chow groups

Let S=smooth proper surface over a field K.
Definition
The Higher Chow group CH?(S,1) is the first homology of the

Gersten complex

Ko(K(S)) —% @2c5K(2)* L dpes.

So an element of CH?(S,1) is described by a formal linear
combination of pairs (Zj, uj) where the Z; are curves in S, and u;
is a rational function on Z;.



Beilinson-Flach elements

These are distinguished elements in CH?(S, 1) arising when

Q@ S = Xi(N) x X1(N) is a product of modular curves;
@ Z = A~ Xy(N) is the diagonal,
@ uc C(A)* is a modular unit.

Lemma

For all modular units u € C(A)*, there is an element of the form

U—Au—i-Z)\ i X X (N U:+Z771X1 ) X Qs v})

which belongs to CH?(S,1) ® Q. It is called the Beilinson-Flach
element associated to the pair (A, u).




Modular units

Manin-Drinfeld: the group (’)Y(N)/(CX has “maximal possible
rank”, namely #(X1(N) — Y1(N)) — 1.

The logarithmic derivative gives a surjective map

dlog : OF, () ® Q — Eisz(M1(N), Q)
to the space of weight two Eisenstein series with coefficients in Q.
Let u, € O\Xﬁ(,\,) ® Qy be the modular unit characterised by

dlog uy = E> ,,

Eox(z) =27 lL ,—1) +ZUX ) Ux(”):ZX(d)d
d|n



Complex regulators

The complex regulator is the map
regc : CH?(S,1) — (Fil' Hir(S/C))Y
defined by
rege(Z.0)w) = 5 [ wloglul,

where

@ w is a smooth two-form on S whose associated class in
H2:(S/C) belongs to Fil';

e Z'=locus in Z where u is regular.



For cusp forms f and g of weight 2 and characters x¢ and xg,

L(f ® g,2) = C X rege(Au, )(@f A wg),

where
T = 167T3N_27'(X_1),

X = (xrxe)




A p-adic Beilinson formula?

Such a formula should relate:

© The value at s = 2 of certain p-adic L-series attached to f
and g;

@ The images of Beilinson-Flach elements under certain p-adic
syntomic regulators, in the spirit of Coleman-de Shalit, Besser.



Hida's p-adic Rankin L-series

To define Ly(f ® g,s), the obvious approach is to interpolate the
values

L(f ® g,X,J), x a Dirichlet character, j € Z.
Difficulty: none of these (y,j) are critical in the sense of Deligne.

Hida’s solution: “enlarge” the domain of definition of L,(f, g, s)
by allowing f and g to vary in p-adic families.



Hida families

Iwasawa algebra: A = Z,[[1 + pZp]] ~ Z[[T]]:

Weight space: Q :=hom(A,C,) C hom((1 + pZy)*,CJ).

The integers form a dense subset of Q via k < (x — x¥).

Classical weights: Q. := 722 C Q.

If A is a finite flat extension of A, let £ = hom(A, C,) and let
ki X —Q

be the natural projection to weight space.

Classical points: X := {x € X such that x(x) € Qq}.



Hida families, cont'd

Definition
A Hida family of tame level N is a triple (A, Qf, f), where

@ /\r is a finite flat extension of A;

Q@ Qf C Af := hom(Ar, Cp) is a non-empty open subset (for the
p-adic topology);

@ f =) ,a,q9" € Af[[q]] is a formal g-series, such that
f(x):=>_,x(an)q" is the g series of the ordinary
p-stabilisation fx(p) of a normalised eigenform, denoted f., of
weight k(x) on T'1(N), for all x € Qf o == Qr N X q.




Hida's theorem

f = normalised eigenform of weight kK > 1 on I'1(N).
pt N an ordinary prime for f (i.e., ap(f) is a p-adic unit).

Theorem (Hida)

There exists a Hida family (Af, ¢, f) and a classical point
xo € Q¢ o satisfying

k(x0) = k, By =3 (7o

As x varies over )¢ ¢, the specialisations £, give rise to a
“p-adically coherent” collection of classical newforms on '1(N),
and one can hope to construct p-adic L-functions by interpolating
classical special values attached to these eigenforms.



Hida's p-adic Rankin L-functions

They should interpolate critical values of the form

L(f)<®gY7J) B :
—_— Qf o) X Qg X Z.
Q(fx,gy7_j) E Q7 (X,y,]) 6 f, | X g, | X

Proposition

The special value L(f, ® gy, j) is critical if and only if either:
o r(y) <j < k(x) — 1, then Q(f, gy,J) = *(£ fx).
o r(x) <j < k(y) —1; then Q(f:, gy,J) = *(8&y, &)-

Let X¢, X, C Qf x £ x € be the two sets of critical points.

Note that they are both dense in the p-adic domain.



Hida's p-adic Rankin L-functions

Theorem (Hida)

There are two (a priori quite distinct) p-adic L-functions,
Li(fog), L5(fog): Q xQxQ— Cp,

interpolating the algebraic parts of L(f, ® gy, j) for (x,y,J)
belonging to ¥X¢ and Y4 respectively.




CH(S/2,1) ——— HH(Q, H&(5,Q,)(2))

CHA(S /2, 1) ~ragr—— HHQp HE(3,2,)(2)

. Iogp
ey
Fil' H3r(S/Qp)"

The dotted arrow is called the p-adic regulator and denoted reg,.




Syntomic regulators

Coleman-de Shalit, Besser: A direct, p-adic analytic description
of the p-adic regulator in terms of Coleman’s theory of p-adic
integration.




The p-adic Beilinson formula: the set-up

f = Hida family of tame level N specialising to the weight two
cusp form f € Sy(Fo(N), xr) at xo € Qf.

g = Hida family of tame level N specialising to the weight two
cusp form g € So(lMo(N), xg) at yo € Q.

x = (xrxg) L.

n4" = unique class in Hig(Xo(N)/Cp)" which is in the unit root
subspace for Frobenius and satisfies (wr,n;") = 1.



The p-adic Beilinson formula

Theorem (Bertolini, Rotger, D)

LE(F. £)(x0,0,2) = 5((f)g’( ))
L%(L £)00,50,2) = 8(;)8*(;) regp(AuX)(wf A U;r),

regy(Au, )(nf" A wg),

where

E(f,g.2) = (1= Bp(Fap(g)p™2(1 — Bo(f)Bp(g)P )
X (1= Bp(Fep(8)x(p)p 1) (1 — Bp(F)Ba(g)x(P)P™

Y

E(F)=1=Bo(Fx7 (PP 2 E(F)=1-=Bx(F)x; (p)p "

v



Arithmetic applications: Dasgupta’s formula

In his work on the L-invariant for the symmetric square, Dasgupta
is led to study Lgida(f, f) when f = g, and its restriction
Lgida(f,f)(x,x,j) to the diagonal in Qf x Q.

This restriction has no critical values.

The “Artin formalism” for p-adic L-functions suggests that it
should factor into a product of

@ the Coates-Schmidt p-adic L-function LSS(Sym?(f))(x, ),
which does have critical points;

@ the Kubota-Leopoldt p-adic L-function L?L(X,c,j + 1 — k(x)).



Dasgupta'’s formula

Theorem (Dasgupta)

Lgida(ii)(x’x’j) — LSS(Sym2(f))(X,J') X LffL(xf,J' +1-— '{(X))',

Theorem (Gross)

Let x be an even Dirichlet character, K an imaginary quadratic
field in which p splits.

L,Infatz(X|K7S) = LEL(XGKU% S)L,I;L(X_la 1- S).

The role of elliptic units in Gross' proof is played by Beilinson-Flach
elements (and associated units) in Dasgupta's argument.




For more, see Samit’s lecture tomorrow!




Euler systems of “Garrett-Rankin-Selberg type”

There is a strong parallel between:

@ Beilinson-Kato elements in CH2(X1(N),2), or in
Ka(X1(N)) ® Q, formed from pairs of modular units;

@ Beilinson-Flach elements in CH2(X1(N)?,1), or in
Ki(X1(N) x X1(N)) ® Q, formed from modular units
supported on the diagonal;

@ Gross-Kudla Schoen diagonal cycles in CH?(X1(N)3)o formed
from the principal diagonal in the triple product of modular
curves.

The first two can be viewed as “degenerate cases” of the last.



p-adic formulae
1. (Kato-Brunault-Gealy, M. Niklas, Bertolini-D):
L o(F, X1, 2) L5 (F, x2, 1) > regp{uy, , th o H(0");
Lys = Mazur-Swinnerton-Dyer L-function.
2. (Bertolini-Rotger-D)
Ly (F @ g,2) < regy (D) (1 A wg);
L5 — Hida's Rankin p-adic L-function;
3. (Rotger-D)
LEAT(f @ g @ h,2) <+ Adp(Dcks)(nf" Awg Aws).

Lf,’HT = Harris-Tilouine's triple product p-adic L-function.



Complex formulae

All of the formulae of the previous slide admit complex analogues:

@ The first two are due to Beilinson;

@ The last, which relates heights of diagonal cycles to central
critical derivatives of Garrett-Rankin triple product L-series, is
due to Gross-Kudla and Wei-Zhang-Zhang. (But here the
analogy is less immediate.)



On the importance of p-adic formulae

p-adic formulae enjoy the following advantages over their complex
analogues:

@ the p-adic regulators and Abel-Jacobi maps factor through
their counterparts in p-adic étale cohomology, which yield
arithmetically interesting global cohomology classes with
p-adic coefficients.

@ The p-adic formulae can be subjected to variation in p-adic
families, yielding global classes with values in p-adic
representations for which the geometric construction ceases to
be available.



Beilinson-Kato classes

Beilinson elements: {uy, ty, \,} € K2(X1(N))(Qy,) ® F,

leg uy = E2(17X)7 leg Uyi,xo = E2(X17X2)-

étale regulator:

rege; - Ko(Xa(N))(Qy) —  H&(Xi(N)g,,,Qp(2))
— HY(Qy, Ha(X1(N), Qp(2)))-
Beilinson-Kato class:
"{(fv E2(1a X)> E2(X1, X2)) = reget({uX’ qu,Xz})f € Hl((@xw Vf(z))

& HYQ, Vr2)(x )



Beilinson-Flach classes

étale regulator:

rege; - Ki(X1(N)?)

Beilinson-Flach class:

K(f, 8, E2(x)) = reger(Ay) 8 € HY(Q, Vi © Vg(2)).



Gross-Kudla-Schoen diagonal classes

étale Abel-Jacobi map:

Ale : CHA(X(N)®)o  —  HA(X(N)3,Qp(2))o
— HY(Q HACG(N), Qu(2)))
R

HY(Q, Hee(Xa(N), @p)*(2))

Gross-Kudla Schoen class:

K(faga h) = AJet(A)ﬂg’h € Hl(Qa Vf b2y Vg ® Vh(2))



A p-adic family of global classes

Theorem (Rotger-D)

Let f, g, h be three Hida families. There is a A-adic cohomology
Class

K(f, g, h) € HY(Q, Vi ® (Vg @ V1),

where V., V, = Hida’s N-adic representations attached to f and
g, satisfying, for all "weight two” points (y,z) € Qg x Q,

log,, k(f, gy, hz)(nF" N\ wg, Awh,) < LI’;’HT(f,g, h)(y,z,2).

This A-adic class generalises Kato's class, which one recovers when
g and h are families of Eisenstein series.



Kato's reciprocity law

Kato’s idea: Specialise the A-adic cohomology class
k(f, E(x), E(x1,x2)) to Eisenstein series of weight one.

Kkato(f5 X1, x2) = &(f, E1(1, x), E1(x1, X2))-

Theorem (Kato)

The class kxato(f, X1, x2) is cristalline if and only if
L(fa X1, 1)L(fa X2, 1) =0.

Corollary

Let E be an elliptic curve over Q and x a Dirichlet character. If

L(E, x1,1) # 0, then hom(C(x), E(Q) ® C) = 0.




Reciprocity law for diagonal cycles

One can likewise consider the specialisations of x(f,g, h) when g
and h are evaluated at points of weight one.
Theorem (Rotger-D)

Let (y,z) € Qg x Qp be points with wt(y) = wt(z) = 1. The class
x(f, gy, h;) is cristalline if and only if L(f ® g, ® h,,1) = 0.

Corollary

Let E be an elliptic curve over Q and pi, p2 odd irreducible
two-dimensional Galois representations. If L(E, p1 ® p2,1) # 0,

then hom(p1 ® p2, E(Q) ® C) = 0.




Reciprocity laws for Beilinson-Flach elements

When g is cuspidal and only h is a family of Eisenstein series, the
class k(f, g, E) constructed from families of Beilinson Flach
elements should satisfy similar reciprocity laws (details are still to
be worked out).

BSD application (Bertolini, Rotger, in progress):

L(E,p,1) # 0 = hom(p, E(Q) ® C) = 0.



The work of Loeffler-Zerbes

In their article
“lwasawa Theory and p-adic L-functions over Z%—extensions”,

David Loeffler and Sarah Zerbes construct a generalisation of
Perrin-Riou’s “big dual exponential map” for the two-variable
Zp-extension of an imaginary quadratic field K:

Logy k : Hiy (K, V) := (lim H'(Ky, T))g, — Daris(V) ® Ax.

They then conjecture, following Perrin-Riou, a construction of the
two-variable p-adic L-function attached to V /K as the image
under Logy x of a suitable norm-compatible system of global
classes.



The work of Lei-Loeffler-Zerbes

Goal: Construct this conjectured global class using the
Beilinson-Flach family x(f, g, E), when g is a family of theta-series
attached to K.




A rough classification of Euler systems

The Euler systems that have been most studied so far fall into two
broad categories:

1. The Euler system of Heegner points, and its “degenerate
cases’, elliptic units and circular units. (Cf. work with Bertolini,
Prasanna, and in Francesc Castella’s ongoing PhD thesis.) Cycles
on U(2) x U(1).

2. Euler systems of Garrett-Rankin-Selberg type: diagonal cycles
and the “degenerate settings” of the Beilinson-Flach and
Beilinson-Kato elements. Cycles on SO(4) x SO(3).

3. Other settings? p-adic families of cycles on U(n) x U(n —1)?



Le mot de la fin

In further developments of the theory of Euler systems, the notion
of p-adic deformations of automorphic forms and their associated

Galois representations pioneered by Hida is clearly destined to play
a central role.



k \ \ A ¥
Happy Birthday!




