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Remarks on transcendence

Given a real or p-adic number α, defined analytically (as the limit
of a sequence, infinite series, integral, etc.)

e.g.,, α = π, e, eπ, ζ(3),
∞∑

n=1

1

2n!
,

∫ 1

0

dt√
t3 − t

,

one may try to

1 show that α is transcendental;

2 show that α is algebraic.

Some motivation is required to pursue direction 2: a real or p-adic
number is unlikely to be algebraic, unless there is a “good reason”.

Theme of this talk: Some instances of problem 2 related to
Complex Multiplication and eventual generalisations.



An illustration of problem 2

Let K be a finite unramified extension of Q2 of degree d > 2, and
let a ∈ OK be an element satisfying a ≡ 1 (mod 4). Consider the
sequence defined inductively by

a0 = a, an+1 =
1 + an

2
√

an
.

Fact: The subsequence (and)n converges to a limit, a∞ ∈ K . This
limit is algebraic. More precisely, a2

∞ belongs to a ring class field of
some imaginary quadratic field.

Underlying reason: Elliptic curves, Serre-Tate canonical lifts,
2-adic AGM, Complex Multiplication, ...



Explicit class field theory

Theorem (Kronecker-Weber)

The values of the function e2πiz at rational arguments are
algebraic, and generate the maximal abelian extension of Q.

Theorem (Kronecker)

Let K be a quadratic imaginary field, and let H be the Poincaré
upper half plane. The values j(τ), for τ ∈ K ∩H, are algebraic.
More precisely they belong to abelian extensions of Q.



Explicit class field theory

Finally, the extension of Kronecker’s theorem to the case
that, in place of the realm of rational numbers or of the
imaginary quadratic field, any algebraic field whatever is
laid down as realm of rationality, seems to me of the
greatest importance. I regard this problem as one of the
most profound and far reaching in the theory of numbers
and of functions. (Hilbert, Paris ICM, 1900)

Simplest case: What object plays the role of j(z) if K is a real
quadratic field?



Modular parametrisations

Let E be an elliptic curve over Q, of conductor N.

Theorem (Wiles)

There is a non-constant analytic map

jE : Γ0(N)\H −→ E (C).

Explicit formula for jE :

L(E , s) =:
∞∑

n=1

ann−s , ωE :=
∞∑

n=1

ane2πinzdz ∈ Ω1(Γ0(N)\H).

jE (τ) =

∫ τ

i∞
ωE =

∞∑
n=1

an

n
e2πinτ ∈ C/ΛE = E (C).



Complex multiplication points

Theorem

Let K be an imaginary quadratic field. If τ ∈ K ∩H, then jE (τ) is
an algebraic point on E , defined over a class field of K .

The points jE (τ) are called CM points attached to K , or Heegner
points.

The Stark-Heegner points of the title are conjectural
generalisations of these points when K is replaced by a real
quadratic field.



Quadratic cycles

Let Ψ : K ↪→ M2(Q) be an embedding of a quadratic field (either
imaginary, or real).

1 If K is imaginary, τΨ := fixed point of Ψ(K×) 	 H;
∆Ψ := {τΨ}.

2 If K is real, τΨ, τ
′
Ψ := fixed points of Ψ(K×) 	 (H ∪ R);

ΥΨ = geodesic(τΨ → τ ′Ψ).

τΨ τ ′Ψ
• •

∆Ψ = 〈Ψ(O×K )〉\ΥΨ ' (R/Z) ⊂ Γ0(N)\H.



Digression: elliptic curves over totally real fields

Let F be a totally real field of degree n,

v1, . . . , vn : F −→ R; SL2(OF ) 	 Hn.

E an elliptic curve over F of conductor 1 (to simplify notations);

Definition

The elliptic curve E/F is modular if there is a Hilbert modular
form G ∈ S2(SL2(OF )) over F such that

L(E/F , s) = L(G , s).

Modularity is often known, and will be assumed from now on.



Geometric meaning of modularity

Geometrically, the Hilbert modular form G corresponds to a
(2n-dimensional) subspace

ΩG ⊂ Ωn
har(SL2(OF )\Hn).

Goal: Produce algebraic points on P ∈ E (F̄ ) by an analytic recipe
involving integration of the harmonic n-forms in ΩG .



ATR cycles

Definition. A quadratic extension K/F is called an ATR extension
if all but exactly one of the real places of F are real in K/F :

ṽ1 : K −→ C, ṽ2, . . . , ṽn : K −→ R.

ATR cycles: To each F -algebra embedding

Ψ : K −→ M2(F ),

we will attach a topological cycle

∆Ψ ⊂ SL2(OF )\Hn

of real dimension n − 1 which is analogous to a real quadratic
cycle, but “behaves like a Heegner point”.



ATR cycles

τ
(1)
Ψ := fixed point of Ψ(K×) 	 H1;

2 ≤ j ≤ n: τ
(j)
Ψ , τ

(j)′
Ψ := fixed points of Ψ(K×) 	 (Hj ∪ R);

ΥΨ = {τ (1)
Ψ }×geodesic(τ

(2)
Ψ → τ

(2)′
Ψ )×· · ·×geodesic(τ

(n)
Ψ → τ

(n)′
Ψ ).

•
τ

(1)
Ψ

×
τ

(2)
Ψ τ

(2)′
Ψ

• • × · · · ×
τ

(n)
Ψ τ

(n)′
Ψ

• •

∆Ψ = ΥΨ/〈Ψ(O×K )〉 ' (R/Z)n−1 ⊂ SL2(OF )\Hn.

Key fact: The cycles ∆Ψ are null-homologous.



Stark-Heegner Points attached to ATR cycles

Abel-Jacobi map: Choose an n-form ωG ∈ ΩG ,

P?
Ψ(ωG ) :=

∫
∂−1∆Ψ

ωG ∈ C/ΛG .

Conjecture (Oda,1982)

For a suitable choice of ωG , we have C/ΛG ∼ E (C). In particular
P?

Ψ(ωG ) can then be viewed as a point in E (C).

Conjecture (Logan, D, 2003)

The points P?
Ψ(ωG ) are algebraic, and belong to E (K ab).

They are called Stark-Heegner points attached to ATR cycles.



Numerical evidence (Xavier Guitart, Marc Masdeu)

F = Q(ω), ω = 1+
√

509
2 ;

E : y 2 − xy − ωy = x3 + (2 + 2ω)x2 + (162 + 3ω)x + (71 + 34ω);

K = F (
√

98577 + 9144ω).

For suitable (well-chosen) embeddings Ψ1,Ψ2 : OK −→ M2(OF ),

PΨ1(ωG ) + Pψ2(ωG )
?
= 4

(
ω + 17,

17

2
+ ω +

√
98577 + 9144ω

2

)
.

This identity was verified to many decimal digits of accuracy.



A critique of the ATR setting

1. Like the original Stark conjectures, the conjecture on
“Stark-Heegner points attached to ATR cycles” seems to lie very
deep; we lack (to the speaker’s understanding!) theoretical tools
with which to tackle it.

2. The ATR setting is somewhat recundite, and does not capture
the more natural “simplest setting” of elliptic curves over Q, and
class fields of real quadratic fields.



Back to “Heegner points attached to real quadratic fields”

Simplest setting:

E/Q is an elliptic curve of prime conductor p;

K is a real quadratic field in which the prime p is inert.

Hp = P1(Cp)− P1(Qp),

SL2(Z [1/p]) 	 Hp ×H.



A dictionary between the two settings

ATR cycles (n = 2) Real quadratic points

F real quadratic Q

∞0, ∞1 p, ∞

E/F of conductor 1 E/Q of conductor p

SL2(OF )\(H×H) SL2(Z[1/p])\(Hp ×H)

K/F ATR K/Q real quadratic, with p inert

ATR cycles ∆Ψ ' (R/Z) ⊂ Cycles ∆Ψ ' (R/Z) ⊂

SL2(OF )\(H×H) SL2(Z[1/p])\(Hp ×H)



A dictionary between the two settings

One can develop the notions in the right-hand column to the
extent of

1 Attaching to f ∈ S2(Γ0(p)) a “Hilbert modular form” G on
SL2(Z[1/p])\(Hp ×H).

2 Making sense of the expression∫
∂−1∆Ψ

ωG ∈ K×p /qZ = E (Kp)

for any real quadratic cycle ∆Ψ on Hp ×H.

The resulting local points are defined (conjecturally) over ring class
fields of K . They are called “Stark-Heegner points attached to
cycles on Hp ×H”.



p-adic versus ATR Stark-Heegner points

The fact that Stark-Heegner points arising from cycles on Hp ×H
involve a mixture of complex and p-adic integration makes them
appear somewhat more exotic than their ATR counterparts.

On the other hand, p-adic variants of the Stark conjecture seem
more tractable than the complex conjectures, thanks to the
possibility of attacking them using powerful tools based on p-adic
variation of motives and congruences between modular forms.



The p-adic Gross-Stark conjecture

New cases of the p-adic Gross-Stark conjecture:

Samit Dasgupta, Robert Pollack, HD, Hilbert modular forms and
the Gross-Stark conjecture, Annals of Math. (2) 174 (2011),

proved by exploiting ideas used by Wiles to prove the Iwasawa
Main Conjecture for totally real fields.

Recent work (joint with Victor Rotger) suggests that likewise, the
algebraicity of the Stark-Heegner points arising from cycles on
Hp ×H may be more tractable than the analogous problem for
ATR cycles.

The approach followed here is guided by the seminal ideas of Kato
and Perrin-Riou on Euler systems and p-adic Hodge theory.



Heegner points and the BSD conjecture

Theorem (Gross-Zagier (1985), Kolyvagin (1987))

Let E be a (modular) elliptic curve over Q. If
ords=1 L(E/K , s) ≤ 1, then LLI (E/K ) is finite, and

rank(E (K )) = ords=1 L(E/K , s).

This result is still the best theoretical evidence for the BSD
conjecture.

Key ingredient in the proof: the collection of Heegner points which
is used to mediate between L(E/K , s) (via the theorem of
Gross-Zagier) and the arithmetic of E/K (via the theorem of
Kolyvagin).



Heegner points and the BSD conjecture

Theorem (Bertolini, D, Nekovar, Rotger, Seveso, Vigni, Zhang, ...)

Let χ be a ring class character of K . If ords=1 L(E/K , χ, s) ≤ 1,
then

dimC(E (Hχ)⊗ C)χ = ords=1 L(E/K , χ, s),

as predicted by a natural Galois-equivariant refinement of the BSD
conjecture.

This theorem has been proved in gradually increasing generality,
over the last 20 or so years.

Until very recently, Heegner points supplied the only available
approach to proving this result, when χ is non-quadratic.



A conditional result

Theorem (Bertolini, Dasgupta, D, 2006)

Assume that the Stark-Heegner points attached to real quadratic
cycles on Hp ×H enjoy the predicted algebraicity properties. Let χ
be a ring class character of a real quadratic F/Q. If
L(E/F , χ, s) 6= 0, then

dimC(E (Hχ)⊗ C)χ = 0,

as predicted by a natural Galois-equivariant refinement of the BSD
conjecture.

One thus has a (not so surprising, in light of Kolyvagin’s work)
arithmetic application of Stark-Heegner points to the Birch and
Swinnerton-Dyer conjecture over ring class fields of real quadratic
fields.



This result is now unconditional!

Theorem (Victor Rotger, D)

Let χ be a ring class character of a real quadratic F/Q. If
L(E/F , χ, s) 6= 0, then

dimC(E (Hχ)⊗ C)χ = 0,

as predicted by a natural Galois-equivariant refinement of the BSD
conjecture.

The methods used to prove this theorem completely avoid the
conjectural Stark-Hegner points.

We hope that they will, eventually, give information about the
global properties of these mysterious objects, which are defined
purely analytically.



A more general result

Theorem (Victor Rotger, D)

Let E/Q be an elliptic curve, and let ρ1 and ρ2 be odd, irreducible,
two-dimensional Artin representations of Q, satisfying

det(ρ1) = χ, det(ρ2) = χ−1.

If L(E , ρ1 ⊗ ρ2, 1) 6= 0, then

dimC homGQ(Vρ1 ⊗ Vρ2 ,E (Kρ1⊗ρ2)⊗ C) = 1.

If ρ1 = IndQ
F χ1, ρ2 = IndQ

F χ2, then

(IndQ
F χ1)⊗ (IndQ

F χ2) = (IndQ
F ψ1)⊕ (IndQ

F ψ2),

where ψ1 = χ1χ2, ψ2 = χ1χ
′
2.



Gross-Kudla-Schoen diagonal cycles

The Gross-Kudla-Schoen cycle:

∆ = X0(N) ⊂ X0(N)3, ∆ ∈ CH2(X0(N)3)0,

modified in a simple way so as to become null-homologous.

The p-adic étale Abel-Jacobi map:

AJet : CH2(X0(N)3) −→ H1(Q,H3
et(X0(N)3

Q̄,Zp)(2))

−→ H1(Q,Vf ⊗ Vg ⊗ Vh(2)),

Vf , Vg and Vh: Deligne-Serre representations attached to weight
two forms f , g , and h.



The BSD cohomology class

We have global cohomology classes

κ(f , g , h) := AJet(∆) ∈ H1(Q,Vf ⊗ Vg ⊗ Vh(2)),

indexed by triples of modular forms (f , g , h) of weight two.

For the application to the BSD conjecture, one rather needs to
construct global classes with values in Vf ⊗ Vg1 ⊗ Vh1 , where

f is a form of weight two, attached to an elliptic curve;

g1 and h1 are forms of weight one, attached to Artin
representations ρg1 and ρh1 .



The theme of p-adic variation

Basic idea:

1. p-adically interpolate the classes κ(f , g , h) as g and h vary over
the weight two specialisations of suitable Hida families specialising
to g1 and h1 in weight one.

2. Study the weight one specialisation κ(f , g1, h1) of the resulting
family, and relate its local behaviour at p to the central critical
value L(E , ρg1 ⊗ ρh1 , 1).



The global reciprocity law

The following result is the technical core of the proof:

Theorem (Rotger, D)

The class κ(f , g1, h1) is cristalline at p if and only if
L(E , ρg1 ⊗ ρh1 , 1) 6= 0.

When L(E , ρg1 ⊗ ρh1 , 1) 6= 0, the ramified classes κ(f , g1, h1) can
be used to bound the associated Selmer group, by the standard
“Euler system approach” exploiting local and global Tate duality.

The global classes κ(f , g1, h1) obtained by p-adically deforming the
p-adic étale Abel-Jacobi images of diagonal cycle classes, are the
objects which play the role of the (Kummer images of) Heegner
points in Kolyvagin’s original argument.



A question

Question: When ρg1 and ρh1 are induced from characters χ1 and
χ2 of the same real quadratic field F , can one relate the global
cohomology class

κ(f , g1, h1) ∈ H1(Q,Vp(E )⊗(IndQ
F ψ1))⊕H1(Q,Vp(E )⊗(IndQ

F ψ2))

to the Stark-Heegner points attached to cycles on Hp ×H, which
are conjecturally defined over the abelian extensions of F cut out
by ψ1 and ψ2?



Thank you for your attention




