Laurent Fargues (IAS and Paris-Sud) 
Reduction Theory for p-Adic Moduli Spaces of Abelian 
Varieties and p-Divisible Groups
I will first explain how one can parametrize some particular cases of 
p-adic moduli spaces of p-divisible groups, Lubin-Tate spaces, by the 
geometric realization of Bruhat-Tits buildings. By a p-adic space I mean 
Berkovich analytic space. I will then explain how this extends to a 
parameterization of the p-adic spaces associated to some particular 
cases of Shimura varieties by compactifications of those buildings, the 
Lubin-Tate spaces being some p-adic Milnor fiber inside those p-adic 
Shimura varieties. I will then explain how to study the p-adic geometry 
of more general Shimura varieties or more general moduli spaces of 
p-divisible groups by using Harder-Narasimhan filtrations for finite 
flat group schemes and p-divisible groups. Those filtrations allows us 
to study p-adic reduction theory (in the sens of Siegel) for the action 
of Hecke correspondences at p on those p-adic moduli spaces.