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Fermat famously claimed to have discovered “a
truly marvelous proof” of his Last Theorem,
which the margin of his copy of Diophantus’s
Arithmetica was too narrow to contain. While
this proof (if it ever existed) is lost to posterity,

Andrew Wiles’s marvelous proof has been public for over
two decades and has now earned him the Abel Prize.
According to the prize citation, Wiles merits this recogni-
tion “for his stunning proof of Fermat’s Last Theorem by
way of the modularity conjecture for semistable elliptic
curves, opening a new era in number theory.”

Few can remain insensitive to the allure of Fermat’s
Last Theorem, a riddle with roots in the mathematics

It is also a centerpiece
of the “Langlands
program,” the

imposing, ambitious
edifice of results and
conjectures which

has come to dominate
the number theorist’s
view of the world.

of ancient Greece,
simple enough
to be understood
and appreciated
by a novice
(like the ten-
year-old Andrew
Wiles browsing
the shelves of
his local pub-
lic library), yet
eluding the con-
certed efforts of
the most brilliant
minds for well
over three cen-
turies, becoming
over its long his-
tory the object of
lucrative awards
like theWolfskehl Prize and,more importantly,motivating
a cascade of fundamental discoveries: Fermat’smethod of
infinite descent, Kummer’s theory of ideals, the ABC con-
jecture, Frey’s approach to ternary diophantine equations,
Serre’s conjecture on mod 𝑝 Galois representations,….

Even without its seemingly serendipitous connection
to Fermat’s Last Theorem, Wiles’s modularity theorem
is a fundamental statement about elliptic curves (as evi-
denced, for instance, by the key role it plays in the proof
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Wiles giving his first lecture in Princeton about his
approach to proving the Modularity Conjecture in
early 1994.

of Theorem 2 of Karl Rubin’s contribution in this volume).
It is also a centerpiece of the “Langlands program,” the
imposing, ambitious edifice of results and conjectures
which has come to dominate the number theorist’s view
of the world. This program has been described as a “grand
unified theory” of mathematics. Taking a Norwegian per-
spective, it connects the objects that occur in the works
of Niels Hendrik Abel, such as elliptic curves and their
associated Abelian integrals and Galois representations,
with (frequently infinite-dimensional) linear representa-
tions of the continuous transformation groups whose
study was pioneered by Sophus Lie. This report focuses
on the role of Wiles’s theorem and its “marvelous proof”
in the Langlands program in order to justify the closing
phrase in the prize citation: howWiles’s proof has opened
“a new era in number theory” and continues to have a
profound and lasting impact on mathematics.

Our “beginner’s tour” of the Langlands program will
only give a partial and undoubtedly biased glimpse of
the full panorama, reflecting the author’s shortcomings
as well as the inherent limitations of a treatment aimed
at a general readership. We will motivate the Langlands
program by starting with a discussion of diophantine
equations: for the purposes of this exposition, they are
equations of the form
(1) 𝒳 ∶ 𝑃(𝑥1,… , 𝑥𝑛+1) = 0,
where 𝑃 is a polynomial in the variables 𝑥1,… , 𝑥𝑛+1
with integer (or sometimes rational) coefficients. One can
examine the set, denoted 𝒳(𝐹), of solutions of (1) with
coordinates in any ring 𝐹. As we shall see, the subject
draws much of its fascination from the deep and subtle
ways in which the behaviours of different solution sets
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can resonate with each other, even if the sets 𝒳(ℤ) or
𝒳(ℚ) of integer and rational solutions are foremost in
our minds. Examples of diophantine equations include
Fermat’s equation 𝑥𝑑 + 𝑦𝑑 = 𝑧𝑑, the Brahmagupta–Pell
equation 𝑥2−𝐷𝑦2 = 1with𝐷 > 0, as well as elliptic curve
equations of the form 𝑦2 = 𝑥3 +𝑎𝑥+𝑏, in which 𝑎 and 𝑏
are rational parameters, the solutions (𝑥, 𝑦) with rational
coordinates being the object of interest in the latter case.

It canbe instructive to approachadiophantine equation
by first studying its solutions over simpler rings, such as
the complete fields of real or complex numbers. The set
(2) ℤ/𝑛ℤ ∶= {0, 1,… ,𝑛 − 1}
of remainders after division by an integer 𝑛 ≥ 2, equipped
with its natural laws of addition, subtraction, and mul-
tiplication, is another particularly simple collection of
numbers of finite cardinality. If 𝑛 = 𝑝 is prime, this ring
is even a field: it comes equipped with an operation of
division by nonzero elements, just like the more familiar
collections of rational, real, or complex numbers. The fact
that 𝔽𝑝 ∶= ℤ/𝑝ℤ is a field is an algebraic characterisation
of the primes that forms the basis for most known ef-
ficient primality tests and factorisation algorithms. One
of the great contributions of Evariste Galois, in addition
to the eponymous theory which plays such a crucial role
in Wiles’s work, is his discovery of a field of cardinality
𝑝𝑟 for any prime power 𝑝𝑟. This field, denoted 𝔽𝑝𝑟 and
sometimes referred to as the Galois field with 𝑝𝑟 elements,
is even unique up to isomorphism.

For a diophantine equation 𝒳 as in (1), the most basic
invariant of the set

(3) 𝒳(𝔽𝑝𝑟) ∶= { (𝑥1,… , 𝑥𝑛+1) ∈ 𝔽𝑛+1
𝑝𝑟 such that

𝑃(𝑥1,… , 𝑥𝑛+1) = 0 }

of solutions over 𝔽𝑝𝑟 is of course its cardinality

(4) 𝑁𝑝𝑟 ∶= #𝒳(𝔽𝑝𝑟).
What patterns (if any) are satisfied by the sequence
(5) 𝑁𝑝,𝑁𝑝2 ,𝑁𝑝3 ,… ,𝑁𝑝𝑟 ,…?
This sequence can be packaged into a generating series
like

(6)
∞
∑
𝑟=1

𝑁𝑝𝑟𝑇𝑟 or
∞
∑
𝑟=1

𝑁𝑝𝑟

𝑟 𝑇𝑟.

For technical reasons it is best to consider the exponential
of the latter:

(7) 𝜁𝑝(𝒳;𝑇) ∶= exp(
∞
∑
𝑟=1

𝑁𝑝𝑟

𝑟 𝑇𝑟) .

This power series in 𝑇 is known as the zeta function
of 𝒳 over 𝔽𝑝. It has integer coefficients and enjoys the
following remarkable properties:

(1) It is a rational function in 𝑇:

(8) 𝜁𝑝(𝒳;𝑇) = 𝑄(𝑇)
𝑅(𝑇) ,

where𝑄(𝑇) and 𝑅(𝑇) are polynomials in 𝑇whose
degrees (for all but finitely many 𝑝) are inde-
pendent of 𝑝 and determined by the shape—the
complex topology—of the set 𝒳(ℂ) of complex
solutions;

(2) the reciprocal roots of𝑄(𝑇) and𝑅(𝑇) are complex
numbers of absolute value 𝑝𝑖/2 with 𝑖 an integer
in the interval 0 ≤ 𝑖 ≤ 2𝑛.

The first statement—the rationality of the zeta function,
which was proved by Bernard Dwork in the early 1960s—
is a key part of the Weil conjectures, whose formulation
in the 1940s unleashed a revolution in arithmetic ge-
ometry, driving the development of étale cohomology
by Grothendieck and his school. The second statement,
which asserts that the complex function 𝜁𝑝(𝒳;𝑝−𝑠) has
its roots on the real lines ℜ(𝑠) = 𝑖/2 with 𝑖 as above,
is known as the Riemann hypothesis for the zeta func-
tions of diophantine equations over finite fields. It was
proved by Pierre Deligne in 1974 and is one of the major
achievements for which he was awarded the Abel Prize in
2013.

That the asymptotic behaviour of 𝑁𝑝 can lead to deep
insights into the behaviour of the associated diophantine
equations is one of the key ideas behind the Birch and
Swinnerton-Dyer conjecture. Understanding the patterns
satisfied by the function
(9) 𝑝 ↦ 𝑁𝑝 or 𝑝 ↦ 𝜁𝑝(𝒳;𝑇)
as the prime 𝑝 varies will also serve as our motivating
question for the Langlands program.

It turns out to be fruitful to package the zeta functions
over all the finite fields into a single function of a complex
variable 𝑠 by taking the infinite product
(10) 𝜁(𝒳; 𝑠) = ∏

𝑝
𝜁𝑝(𝒳;𝑝−𝑠)

as 𝑝 ranges over all the prime numbers. In the case of the
simplest nontrivial diophantine equation 𝑥 = 0, whose
solution set over 𝔽𝑝𝑟 consists of a single point, one has
𝑁𝑝𝑟 = 1 for all 𝑝, and therefore

(11) 𝜁𝑝(𝑥 = 0;𝑇) = exp(∑
𝑟≥1

𝑇𝑟

𝑟 ) = (1 −𝑇)−1.

It follows that

𝜁(𝑥 = 0; 𝑠) = ∏
𝑝

(1− 1
𝑝𝑠)

−1
(12)

= ∏
𝑝

(1+ 1
𝑝𝑠 + 1

𝑝2𝑠 + 1
𝑝3𝑠 +⋯)(13)

=
∞
∑
𝑛=1

1
𝑛𝑠 = 𝜁(𝑠).(14)

The zeta function of even the humblest diophantine
equation is thus a central object of mathematics: the
celebrated Riemann zeta function, which is tied to some
of the deepest questions concerning the distribution of
prime numbers. In his great memoir of 1860, Riemann
proved that, even though (13) and (14) only converge
absolutely on the right half-plane ℜ(𝑠) > 1, the function
𝜁(𝑠) extends to a meromorphic function of 𝑠 ∈ ℂ (with a
single pole at 𝑠 = 1) and possesses an elegant functional
equation relating its values at 𝑠 and 1 − 𝑠. The zeta
functions of linear equations 𝒳 in 𝑛+1 variables are just
shifts of the Riemann zeta function, since 𝑁𝑝𝑟 is equal to
𝑝𝑛𝑟, and therefore 𝜁(𝒳; 𝑠) = 𝜁(𝑠 − 𝑛).
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Moving on to equations of degree two, the general
quadratic equation in one variable is of the form 𝑎𝑥2+𝑏𝑥+
𝑐 = 0, and its behaviour is governed by its discriminant

(15) Δ ∶= 𝑏2 − 4𝑎𝑐.
This purely algebraic fact remains true over the finite
fields, and for primes 𝑝 ∤ 2𝑎Δ one has

(16) 𝑁𝑝 = { 0 if Δ is a nonsquare modulo 𝑝,
2 if Δ is a square modulo 𝑝.

A priori, the criterion for whether 𝑁𝑝 = 2 or 0—whether
the integer Δ is or is not a quadratic residue modulo
𝑝—seems like a subtle condition on the prime 𝑝. To get
a better feeling for this condition, consider the example
of the equation 𝑥2 − 𝑥 − 1, for which Δ = 5. Calculating
whether 5 is a square or not modulo 𝑝 for the first few
primes 𝑝 ≤ 101 leads to the following list:
(17)

𝑁𝑝={2 for 𝑝=11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101,…
0 for 𝑝=2, 3, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73,…

A clear pattern emerges from this experiment: whether
𝑁𝑝 = 0 or 2 seems to depend only on the rightmost digit
of 𝑝, i.e., on what the remainder of 𝑝 is modulo 10. One
is led to surmise that

(18) 𝑁𝑝 = { 2 if 𝑝 ≡ 1, 4 (mod 5),
0 if 𝑝 ≡ 2, 3 (mod 5),

a formula that represents a dramatic improvement over
(16), allowing a much more efficient calculation of 𝑁𝑝 for
example. The guess in (18) is in fact a consequence of
Gauss’s celebrated law of quadratic reciprocity:

Theorem (Quadratic reciprocity). For any equation 𝑎𝑥2+
𝑏𝑥+𝑐, withΔ ∶= 𝑏2−4𝑎𝑐, the value of the function 𝑝 ↦ 𝑁𝑝
(for 𝑝 ∤ 𝑎Δ) depends only on the residue class of 𝑝 modulo
4Δ and hence is periodic with period length dividing 4|Δ|.

The repeating pattern satisfied by the 𝑁𝑝’s as 𝑝 varies
greatly facilitates the manipulation of the zeta functions
of quadratic equations. For example, the zeta function of
𝒳 ∶ 𝑥2 − 𝑥− 1 = 0 is equal to

𝜁(𝒳; 𝑠) = 𝜁(𝑠)×{(1− 1
2𝑠 −

1
3𝑠 +

1
4𝑠)+(1

6𝑠 −
1
7𝑠 −

1
8𝑠 +

1
9𝑠)

+ (1 1
11𝑠 −

1
12𝑠 −

1
13𝑠 +

1
14𝑠)+⋯} .(19)

The series that occurs on the right-hand side is a prototyp-
ical example of a Dirichlet 𝐿-series. These 𝐿-series, which
are the key actors in the proof of Dirichlet’s theorem on
the infinitude of primes in arithmetic progressions, enjoy
many of the same analytic properties as the Riemann zeta
function: an analytic continuation to the entire complex
plane and a functional equation relating their values at 𝑠
and 1−𝑠. They are also expected to satisfy a Riemann hy-
pothesis which generalises Riemann’s original statement
and is just as deep and elusive.

It is a (not completely trivial) fact that the zeta function
of the general quadratic equation in 𝑛 variables

(20)
𝑛
∑

𝑖,𝑗=1
𝑎𝑖𝑗𝑥𝑖𝑥𝑗 +

𝑛
∑
𝑖=1

𝑏𝑖𝑥𝑖 + 𝑐 = 0

involves the same basic constituents, Dirichlet series,
as in the one-variable case. This means that quadratic
diophantine equations in any number of variables are
well understood, at least as far as their zeta functions are
concerned.

The plot thickens when equations of higher degree
are considered. Consider for instance the cubic equation
𝑥3 − 𝑥 − 1 of discriminant Δ = −23. For all 𝑝 ≠ 23,
this cubic equation has no multiple roots over 𝔽𝑝𝑟 , and
therefore 𝑁𝑝 = 0, 1, or 3. A simple expression for 𝑁𝑝 in
this case is given by the following theorem of Hecke:

Theorem (Hecke). The following hold for all primes 𝑝 ≠
23:

(1) If 𝑝 is not a square modulo 23, then 𝑁𝑝 = 1.
(2) If 𝑝 is a square modulo 23, then

(21) 𝑁𝑝 = { 0 if 𝑝 = 2𝑎2 +𝑎𝑏+ 3𝑏2,
3 if 𝑝 = 𝑎2 +𝑎𝑏+ 6𝑏2,

for some 𝑎,𝑏 ∈ ℤ.
Hecke’s theorem implies that

𝜁(𝑥3 − 𝑥− 1; 𝑠) = 𝜁(𝑠) ×
∞
∑
𝑛=1

𝑎𝑛𝑛−𝑠,(22)

where the generating series
(23)
𝐹(𝑞)∶=∑𝑎𝑛𝑞𝑛 = 𝑞−𝑞2−𝑞3+𝑞6+𝑞8−𝑞13−𝑞16+𝑞23+⋯
is given by the explicit formula

(24) 𝐹(𝑞) = 1
2
⎛
⎝

∑
𝑎,𝑏∈ℤ

𝑞𝑎2+𝑎𝑏+6𝑏2 −𝑞2𝑎2+𝑎𝑏+3𝑏2⎞
⎠
.

The function 𝑓(𝑧) = 𝐹(𝑒2𝜋𝑖𝑧) that arises by setting 𝑞 =
𝑒2𝜋𝑖𝑧 in (24) is a prototypical example of a modular form:
namely, it satisfies the transformation rule
(25)

𝑓(𝑎𝑧+ 𝑏
𝑐𝑧+ 𝑑) = (𝑐𝑧+𝑑)𝑓(𝑧), {𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ, 𝑎𝑑− 𝑏𝑐 = 1

23|𝑐, ( 𝑎
23) = 1.

under so-calledmodular substitutionsof the form𝑧↦ 𝑎𝑧+𝑏
𝑐𝑧+𝑑 .

This property follows from the Poisson summation for-
mula applied to the expression in (24). Thanks to (25), the
zeta function of𝒳 can bemanipulated with the same ease
as the zeta functions of Riemann and Dirichlet. Indeed,
Hecke showed that the 𝐿-series ∑∞

𝑛=1 𝑎𝑛𝑛−𝑠 attached to
a modular form ∑∞

𝑛=1 𝑎𝑛𝑒2𝜋𝑖𝑛𝑧 possesses very similar an-
alytic properties, notably an analytic continuation and a
Riemann-style functional equation.

The generating series 𝐹(𝑞) can also be expressed as an
infinite product:
(26)
1
2
⎛
⎝

∑
𝑎,𝑏∈ℤ

𝑞𝑎2+𝑎𝑏+6𝑏2 −𝑞2𝑎2+𝑎𝑏+3𝑏2⎞
⎠
=𝑞

∞
∏
𝑛=1

(1−𝑞𝑛)(1−𝑞23𝑛).

The first few terms of this power series identity can readily
be verified numerically, but its proof is highly nonobvious
and indirect. It exploits the circumstance that the space of
holomorphic functions of 𝑧 satisfying the transformation
rules (25) togetherwith suitable growthproperties is a one-
dimensional complex vector space which also contains
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the infinite product above. Indeed, the latter is equal to
𝜂(𝑞)𝜂(𝑞23), where

(27) 𝜂(𝑞) = 𝑞1/24
∞
∏
𝑛=1

(1 − 𝑞𝑛)

is the Dedekind eta function whose logarithmic derivative
(after viewing 𝜂 as a function of 𝑧 through the change of
variables 𝑞 = 𝑒2𝜋𝑖𝑧) is given by

𝜂′(𝑧)
𝜂(𝑧) = −𝜋𝑖(−1

12 + 2
∞
∑
𝑛=1

(∑
𝑑|𝑛

𝑑)𝑒2𝜋𝑖𝑛𝑧)(28)

= 𝑖
4𝜋

∞
∑

𝑚=−∞

∞
∑

𝑛=−∞

1
(𝑚𝑧+ 𝑛)2 ,(29)

where the term attached to (𝑚,𝑛) = (0, 0) is excluded
from the last sum. The Dedekind 𝜂-function is also
connected to the generating series for the partition
function 𝑝(𝑛) describing the number of ways in which
𝑛 can be expressed as a sum of positive integers via the
identity

(30) 𝜂−1(𝑞) = 𝑞−1/24
∞
∑
𝑛=0

𝑝(𝑛)𝑞𝑛,

“There are five
elementary
arithmetical
operations:
addition,

subtraction,
multiplication,
division,…and
modular forms.”

which plays a starring
role alongside Jeremy
Irons and Dev Patel in
a recent film about
the life of Srinivasa
Ramanujan.

Commenting on the
“unreasonable effec-
tiveness and ubiquity
of modular forms,”
Martin Eichler once
wrote, “There are
five elementary arith-
metical operations:
addition, subtraction,
multiplication, divi-
sion,…and modular
forms.” Equations (26),
(29), and (30) are just a
few of the many won-

drous identities which abound, like exotic strains of
fragrant wild orchids, in what Roger Godement has called
the “garden of modular delights.”

The example above and many others of a similar type
are described in Jean-Pierre Serre’s delightful monograph
[Se], touching on themes that were also covered in Serre’s
lecture at the inaugural Abel Prize ceremony in 2003.

Heckewas able to establish that all cubic polynomials in
one variable aremodular; i.e., the coefficients of their zeta
functions obey patterns just like those of (24) and (25).
Wiles’s achievement was to extend this result to a large
class of cubic diophantine equations in two variables over
the rational numbers: the elliptic curve equations which
can be brought to the form

(31) 𝑦2 = 𝑥3 +𝑎𝑥+ 𝑏

after a suitable change of variables and which are non-
singular, a condition equivalent to the assertion that the
discriminant Δ ∶= −16(4𝑎3 + 27𝑏2) is nonzero.

To illustrate Wiles’s theorem with a concrete example,
consider the equation
(32) 𝐸 ∶ 𝑦2 = 𝑥3 − 𝑥,
of discriminant Δ = 64. After setting
(33)
𝜁(𝐸; 𝑠) = 𝜁(𝑠−1)×(𝑎1 +𝑎22−𝑠 +𝑎33−𝑠 +𝑎44−𝑠 +⋯)−1 ,
the associated generating series satisfies the following
identities reminiscent of (24) and (26):

𝐹(𝑞) = ∑𝑎𝑛𝑞𝑛 = 𝑞− 2𝑞5 −3𝑞9 + 6𝑞13 +2𝑞17 −𝑞25 +⋯

(34)

= ∑
𝑎,𝑏

𝑎 ⋅ 𝑞(𝑎2+𝑏2)(35)

= 𝑞
∞
∏
𝑛=1

(1 − 𝑞4𝑛)2(1 − 𝑞8𝑛)2,(36)

where the sum in (35) runs over the (𝑎, 𝑏) ∈ ℤ2 for which
the Gaussian integer 𝑎 + 𝑏𝑖 is congruent to 1 modulo
(1+𝑖)3. (This identity follows fromDeuring’s study of zeta
functions of elliptic curves with complex multiplication
and may even have been known earlier.) Once again, the
holomorphic function 𝑓(𝑧) ∶= 𝐹(𝑒2𝜋𝑖𝑧) is a modular form
satisfying the slightly different transformation rule
(37)

𝑓(𝑎𝑧+ 𝑏
𝑐𝑧+ 𝑑) = (𝑐𝑧+𝑑)2𝑓(𝑧), {𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ, 𝑎𝑑 − 𝑏𝑐 = 1,

32|𝑐.
Note the exponent 2 that appears in this formula. Because
of it, the function 𝑓(𝑧) is said to be a modular form of
weight 2 and level 32. The modular forms of (25) attached
to cubic equations in one variable are of weight 1, but
otherwise the parallel of (35) and (36) with (24) and (26)
is striking. The original conjecture of Shimura–Taniyama,
and Weil asserts the same pattern for all elliptic curves:

Conjecture (Shimura–Taniyama–Weil). Let 𝐸 be any ellip-
tic curve. Then

(38) 𝜁(𝐸; 𝑠) = 𝜁(𝑠 − 1) × (
∞
∑
𝑛=1

𝑎𝑛𝑛−𝑠)
−1

,

where 𝑓𝐸(𝑧) ∶= ∑𝑎𝑛𝑒2𝜋𝑖𝑛𝑧 is a modular form of weight 2.
The conjecturewas actuallymore precise andpredicted

that the level of 𝑓𝐸—i.e., the integer that appears in the
transformation property for 𝑓𝐸 as the integers 23 and 32
in (25) and (37) respectively—is equal to the arithmetic
conductor of 𝐸. This conductor, which is divisible only by
primes forwhich the equationdefining𝐸becomessingular
modulo 𝑝, is a measure of the arithmetic complexity of
𝐸 and can be calculated explicitly from an equation for
𝐸 by an algorithm of Tate. An elliptic curve is said to be
semistable if its arithmetic conductor is squarefree. This
class of elliptic curves includes those of the form
(39) 𝑦2 = 𝑥(𝑥 − 𝑎)(𝑥 − 𝑏)
with gcd(𝑎, 𝑏) = 1 and 16|𝑏. The most famous elliptic
curves in this class are those that ultimately do not exist:
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Andrew Wiles, Henri Darmon, and Mirela Çiperiani in
June 2016 at Harvard University during a conference
in honor of Karl Rubin’s sixtieth birthday.

the “Frey curves” 𝑦2 = 𝑥(𝑥 − 𝑎𝑝)(𝑥 + 𝑏𝑝) arising from
putative solutions to Fermat’s equation 𝑎𝑝 + 𝑏𝑝 = 𝑐𝑝,
whose nonexistence had previously been established in a
landmark article of Kenneth Ribet1 under the assumption
of their modularity. It is the proof of the Shimura–
Taniyama–Weil conjecture for semistable elliptic curves
that earned Andrew Wiles the Abel Prize:

Theorem (Wiles). Let 𝐸 be a semistable elliptic curve. Then
𝐸 satisfies the Shimura–Taniyama–Weil conjecture.

The semistability assumption in Wiles’s theorem was
later removed by Christophe Breuil, Brian Conrad, Fred
Diamond, and Richard Taylor around 1999. (See, for
instance, the account [Da] that appeared in the Notices at
the time.)

As a prelude to describing some of the important ideas
in its proof, one must first try to explain why Wiles’s
theorem occupies such a central position in mathematics.
The Langlands program places it in a larger context
by offering a vast generalisation of what it means for
a diophantine equation to be “associated to a modular
form.” The key is to viewmodular forms attached to cubic
equations or to elliptic curves as in (24) or (34) as vectors
in certain irreducible infinite-dimensional representations
of the locally compact topological group
(40) GL2(𝔸ℚ) = ∏ ′

𝑝GL2(ℚ𝑝) ×GL2(ℝ)
(where ∏′

𝑝 denotes a restricted direct product over all
the prime numbers consisting of elements (𝛾𝑝)𝑝 for
which the 𝑝th component 𝛾𝑝 belongs to the maximal

1See the interview with Ribet as the new AMS president in this
issue, page 229.

compact subgroup GL2(ℤ𝑝) for all but finitely many 𝑝).
The shift in emphasis frommodular forms to the so-called
automorphic representations which they span is decisive.
Langlands showed how to attach an 𝐿-function to any
irreducible automorphic representation of 𝐺(𝔸ℚ) for an
arbitrary reductive algebraic group𝐺, of which the matrix
groups GL𝑛 and more general algebraic groups of Lie
type are prototypical examples. This greatly enlarges the
notion of what it means to be “modular”: a diophantine
equation is now said to have this property if its zeta
function can be expressed in terms of the Langlands 𝐿-
functions attached to automorphic representations. One
of the fundamental goals in the Langlands program is to
establish further cases of the following conjecture:
Conjecture. All diophantine equations are modular in the
above sense.

This conjecture can be viewed as a far-reaching gen-
eralisation of quadratic reciprocity and underlies the
non-Abelian reciprocity laws that are at the heart of
Andrew Wiles’s achievement.

Before Wiles’s proof, the following general classes of
diophantine equations were known to be modular:
• Quadratic equations, by Gauss’s law of quadratic

reciprocity;
• Cubic equations in one variable, by the work of Hecke

and Maass;
• Quartic equations in one variable.
This last case deserves further comment, since it has
not been discussed previously and plays a primordial
role in Wiles’s proof. The modularity of quartic equations
follows from the seminal work of Langlands and Tunnell.
While it is beyond the scope of this survey to describe
their methods, it must be emphasised that Langlands and
Tunnell make essential use of the solvability by radicals of
the general quartic equation, whose underlying symmetry
group is contained in thepermutationgroup𝑆4 on4 letters.
Solvable extensions are obtained from a succession of
Abelian extensions, which fall within the purview of the
class field theory developed in the nineteenth and first
half of the twentieth century. On the other hand, the
modularity of the general equation of degree > 4 in one
variable, which cannot be solved by radicals, seemed to
lie well beyond the scope of the techniques that were
available in the “pre-Wiles era.” The readerwhoperseveres
to the end of this essay will be given a glimpse of how
our knowledge of the modularity of the general quintic
equation has progressed dramatically in the wake of
Wiles’s breakthrough.

Prior to Wiles’s proof, modularity was also not known
for any interesting general class of equations (of degree
> 2, say) in more than one variable; in particular it had
only been verified for finitely many elliptic curves over ℚ
up to isomorphism over ℚ̄ (including the elliptic curves
over ℚ with complex multiplication, of which the elliptic
curve of (31) is an instance.) Wiles’s modularity theorem
confirmed the Langlands conjectures in the important
test case of elliptic curves, which may seem like (and, in
fact, are) very special diophantine equations, but have
provided a fertile terrain for arithmetic investigations,
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both in theory and in applications (cryptography, coding
theory…).

Wiles’s proof is
also important
for having

introduced a
revolutionary
new approach
which has
opened the

floodgates for
many further
breakthroughs
in the Langlands

program.

Returning to the main
theme of this report,
Wiles’sproof is also impor-
tant for having introduced
a revolutionary new ap-
proach which has opened
the floodgates for many
further breakthroughs in
the Langlands program.

To expand on this
point, we need to present
another of the dramatis
personae in Wiles’s proof:
Galois representations. Let
𝐺ℚ = Gal(ℚ̄/ℚ) be the
absolute Galois group of
ℚ, namely, the automor-
phism group of the field
of all algebraic numbers.
It is a profinite group,
endowed with a natu-
ral topology for which
the subgroups Gal(ℚ̄/𝐿)
with 𝐿 ranging over the
finite extensions of ℚ
form a basis of open
subgroups. Following the

original point of view taken by Galois himself, the group
𝐺ℚ acts naturally as permutations on the roots of poly-
nomials with rational coefficients. Given a finite set 𝑆 of
primes, one may consider only the monic polynomials
with integer coefficients whose discriminant is divisible
only by primes ℓ ∈ 𝑆 (eventually after a change of vari-
ables). The topological group 𝐺ℚ operates on the roots of
such polynomials through a quotient, denoted 𝐺ℚ,𝑆—the
automorphism group of the maximal algebraic extension
unramified outside 𝑆, which can be regarded as the sym-
metry group of all the zero-dimensional varieties over ℚ
having “nonsingular reduction outside 𝑆.”

In addition to the permutation representations of 𝐺ℚ
that were so essential in Galois’s original formulation
of his theory, it has become important to study the
(continuous) linear representations

(41) 𝜚 ∶ 𝐺ℚ,𝑆 ⟶ 𝐺𝐿𝑛(𝐿)
of this Galois group, where 𝐿 is a complete field, such as
the fields ℝ or ℂ of real or complex numbers, the finite
field 𝔽ℓ𝑟 equipped with the discrete topology, or a finite
extension 𝐿 ⊂ ℚ̄ℓ of the field ℚℓ of ℓ-adic numbers.

Galois representations were an important theme in the
work of Abel and remain central in modern times. Many
illustrious mathematicians in the twentieth century have
contributed to their study, including three former Abel
Prize winners: Jean-Pierre Serre, John Tate, and Pierre
Deligne. Working on Galois representations might seem
to be a prerequisite for an algebraic number theorist to
receive the Abel Prize!

Likediophantine equations,Galois representationsalso
give rise to analogous zeta functions. More precisely, the
group𝐺ℚ,𝑆 contains, for eachprime𝑝 ∉ 𝑆, a distinguished
element called the Frobenius element at 𝑝, denoted 𝜎𝑝.
Strictly speaking, this element is well defined only up
to conjugacy in 𝐺ℚ,𝑆, but this is enough to make the
arithmetic sequence
(42) 𝑁𝑝𝑟(𝜚) ∶= Trace(𝜚(𝜎𝑟

𝑝))
well defined. The zeta function 𝜁(𝜚; 𝑠) packages the
information from this sequence in exactly the same way
as in the definition of 𝜁(𝒳; 𝑠).

For example, if 𝒳 is attached to a polynomial 𝑃 of
degree 𝑑 in one variable, the action of 𝐺ℚ,𝑆 on the
roots of 𝑃 gives rise to a 𝑑-dimensional permutation
representation
(43) 𝜚𝒳 ∶ 𝐺ℚ,𝑆 ⟶ GL𝑑(ℚ),
and 𝜁(𝒳, 𝑠) = 𝜁(𝜚𝒳, 𝑠). This connection goes far deeper,
extending to diophantine equations in 𝑛+1 variables for
general 𝑛 ≥ 0. The glorious insight at the origin of the
Weil conjectures is that 𝜁(𝒳; 𝑠) can be expressed in terms
of the zeta functions of Galois representations arising
in the étale cohomology of 𝒳, a cohomology theory with
ℓ-adic coefficients which associates to 𝒳 a collection

{𝐻𝑖
et(𝒳/ℚ̄,ℚℓ)}0≤𝑖≤2𝑛

of finite-dimensional ℚℓ-vector spaces endowed with a
continuous linear action of 𝐺ℚ,𝑆. (Here 𝑆 is the set of
primes 𝑞 consisting of ℓ and the primes for which the
equation of 𝒳 becomes singular after being reduced
modulo 𝑞.) These representations generalise the repre-
sentation 𝜚𝒳 of (43), insofar as the latter is realised by
the action of 𝐺ℚ,𝑆 on 𝐻0

et(𝒳ℚ̄,ℚℓ) after extending the
coefficients from ℚ to ℚℓ.

Theorem (Weil, Grothendieck,…). If 𝒳 is a diophantine
equation having good reduction outside 𝑆, there exist Ga-
lois representations 𝜚1 and 𝜚2 of 𝐺ℚ,𝑆 for which

(44) 𝜁(𝒳; 𝑠) = 𝜁(𝜚1; 𝑠)/𝜁(𝜚2; 𝑠).
The representations 𝜚1 and 𝜚2 occur in ⊕𝐻𝑖

et(𝒳/ℚ̄,ℚℓ),
where the direct sum ranges over the odd and even values
of 0 ≤ 𝑖 ≤ 2𝑛 for 𝜚1 and 𝜚2 respectively. More canonically,
there are always irreducible representations 𝜚1,… ,𝜚𝑡 of
𝐺ℚ,𝑠 and integers 𝑑1,…𝑑𝑡 such that

(45) 𝜁(𝒳; 𝑠) =
𝑡
∏
𝑖=1

𝜁(𝜚𝑖; 𝑠)𝑑𝑖 ,

arising from the decompositions of the (semisimplifi-
cation of the) 𝐻𝑖

et(𝒳ℚ̄,ℚℓ) into a sum of irreducible
representations. The 𝜁(𝜚𝑖, 𝑠) can be viewed as the
“atomic constituents” of 𝜁(𝒳, 𝑠) and reveal much of
the “hidden structure” in the underlying equation. The de-
composition of 𝜁(𝒳; 𝑠) into a product of different 𝜁(𝜚𝑖; 𝑠)
is not unlike the decomposition of a wave function into
its simple harmonics.

A Galois representation is said to bemodular if its zeta
function can be expressed in terms of generating series
attached to modular forms and automorphic representa-
tions and is said to be geometric if it can be realised in
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an étale cohomology group of a diophantine equation as
above. The “main conjecture of the Langlands program”
can now be amended as follows:

Conjecture. All geometric Galois representations of 𝐺ℚ,𝑆
are modular.

Given a Galois representation
(46) 𝜚 ∶ 𝐺ℚ,𝑆 ⟶ GL𝑛(ℤℓ)
with ℓ-adic coefficients, one may consider the resulting
mod ℓ representation
(47) ̄𝜚 ∶ 𝐺ℚ,𝑆 ⟶ GL𝑛(𝔽ℓ).
The passage from 𝜚 to ̄𝜚 amounts to replacing the
quantities 𝑁𝑝𝑟(𝜚) ∈ ℤℓ as 𝑝𝑟 ranges over all the prime

Since then,
“modularity lifting
theorems” have
proliferated, and
their study, in ever
more general and
delicate settings,
has spawned an

industry.

powers with their
mod ℓ reduction.
Such a passage would
seem rather contrived
for the sequences
𝑁𝑝𝑟(𝒳)—why study
the solution counts of
a diophantine equa-
tion over different
finite fields, taken
modulo ℓ?—if one
did not know a pri-
ori that these counts
arise from ℓ-adic Ga-
lois representations
with coefficients in ℤℓ.
There is a correspond-
ing notion of what it
means for ̄𝜚 to bemod-
ular, namely, that the
data of 𝑁𝑝𝑟( ̄𝜚) agrees, very loosely speaking, with the
mod ℓ reduction of similar data arising from an automor-
phic representation. We can now state Wiles’s celebrated
modularity lifting theorem, which lies at the heart of his
strategy:

Wiles’s Modularity Lifting Theorem. Let

(48) 𝜚 ∶ 𝐺ℚ,𝑆 ⟶ GL2(ℤℓ)
be an irreducible geometric Galois representation satisfy-
ing a few technical conditions (involving, for the most part,
the restriction of 𝜚 to the subgroup 𝐺ℚℓ = Gal(ℚ̄ℓ/ℚℓ) of
𝐺ℚ,𝑆). If ̄𝜚 is modular and irreducible, then so is 𝜚.

This stunning result was completely new at the time:
nothing remotely like it had ever beenprovedbefore! Since
then, “modularity lifting theorems” have proliferated, and
their study, in evermore general and delicate settings, has
spawned an industry and led to a plethora of fundamental
advances in the Langlands program.

Let us first explain how Wiles himself parlays his
original modularity lifting theorem into a proof of the
Shimura–Taniyama-Weil conjecture for semistable elliptic
curves. Given such an elliptic curve 𝐸, consider the groups
(49)
𝐸[3𝑛] ∶= {𝑃 ∈ 𝐸(ℚ̄) ∶ 3𝑛𝑃 = 0} , 𝑇3(𝐸) ∶= lim

←
𝐸[3𝑛],

the inverse limit being taken relative to the multiplication-
by-3 maps. The groups 𝐸[3𝑛] and 𝑇3(𝐸) are free modules
of rank 2 over (ℤ/3𝑛ℤ) and ℤ3 respectively and are
endowed with continuous linear actions of 𝐺ℚ,𝑆, where 𝑆
is a set of primes containing 3 and the primes that divide
the conductor of 𝐸. One obtains the associated Galois
representations:

(50)
̄𝜚𝐸,3 ∶ 𝐺ℚ,𝑆 ⟶ Aut(𝐸[3]) ≃ GL2(𝔽3),

𝜚𝐸,3 ∶ 𝐺ℚ,𝑆 ⟶ GL2(ℤ3).
The theorem of Langlands and Tunnell about themodular-
ity of the general quartic equation leads to the conclusion
that ̄𝜚𝐸,3 is modular. This rests on the happy circumstance
that
(51) GL2(𝔽3)/⟨±1⟩ ≃ 𝑆4,
and hence that 𝐸[3] has essentially the same symmetry
group as the general quartic equation! The isomorphism
in (51) can be realised by considering the action ofGL2(𝔽3)
on the set {0, 1, 2,∞} of points on the projective line over
𝔽3.

If 𝐸 is semistable, Wiles is able to check that both
𝜚𝐸,3 and ̄𝜚𝐸,3 satisfy the conditions necessary to apply
the Modularity Lifting Theorem, at least when ̄𝜚𝐸,3 is
irreducible. It then follows that 𝜚𝐸,3 is modular, and
therefore so is 𝐸, since 𝜁(𝐸; 𝑠) and 𝜁(𝜚𝐸,3; 𝑠) are the same.

Note the key role played by the result of Langlands–
Tunnell in the above strategy. It is a dramatic illustration
fo the unity and historical continuity of mathematics that
the solution in radicals of the general quartic equation,
one of the great feats of the algebraists of the Italian
Renaissance, is preciselywhat allowed Langlands, Tunnell,
and Wiles to prove their modularity results more than
five centuries later.

Having established the modularity of all semistable el-
liptic curves 𝐸 for which ̄𝜚𝐸,3 is irreducible, Wiles disposes
of the others by applying his lifting theorem to the prime
ℓ = 5 instead of ℓ = 3. The Galois representation ̄𝜚𝐸,5 is
always irreducible in this setting, because no elliptic curve
overℚ can have a rational subgroup of order 15. Nonethe-
less, the approach of exploiting ℓ = 5 seems hopeless
at first glance, because the Galois representation 𝐸[5] is
not known to be modular a priori, for much the same
reason that the general quintic equation cannot be solved
by radicals. (Indeed, the symmetry group SL2(𝔽5) is a
double cover of the alternating group 𝐴5 on 5 letters and
thus is closely related to the symmetry group underlying
the general quintic.) To establish the modularity of 𝐸[5],
Wiles constructs an auxiliary semistable elliptic curve 𝐸′

satisfying
(52) ̄𝜚𝐸′,5 = ̄𝜚𝐸,5, ̄𝜚𝐸′,3 is irreducible.
It then follows from the argument in the previous para-
graph that 𝐸′ is modular, hence that 𝐸′[5] = 𝐸[5] is
modular as well, putting 𝐸 within striking range of the
modularity lifting theorem with ℓ = 5. This lovely epi-
logue of Wiles’s proof, which came to be known as the
“3-5 switch,” may have been viewed as an expedient trick
at the time. But since then the prime switching argument
has become firmly embedded in the subject, and many
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variants of it have been exploited to spectacular effect in
deriving new modularity results.

The modularity of
elliptic curves was
only the first in a

series of
spectacular
applications.

Wiles’s modularity
lifting theorem reveals
that “modularity is
contagious” and can
often be passed on to
an ℓ-adic Galois rep-
resentation from its
mod ℓ reduction. It
is this simple prin-
ciple that accounts
for the tremendous
impact that the Modu-
larity Lifting Theorem,
and the many variants

proved since then, continue to have on the subject. Indeed,
the modularity of elliptic curves was only the first in a
series of spectacular applications of the ideas introduced
by Wiles, and since 1994 the subject has witnessed a
real golden age, in which open problems that previously
seemed completely out of reach have succumbed one by
one.

Among these developments, let us mention:
• The two-dimensional Artin conjecture, first formu-

lated in 1923, concerns the modularity of all odd,
two-dimensional Galois representations

(53) 𝜚 ∶ 𝐺ℚ,𝑆 ⟶ GL2(ℂ).
The image of such a 𝜚 modulo the scalar matrices
is isomorphic either to a dihedral group, to 𝐴4, to
𝑆4, or to 𝐴5. Thanks to the earlier work of Hecke,
Langlands, and Tunnell, only the case of projective
image 𝐴5 remained to be disposed of. Many new cases
of the two-dimensional Artin conjecture were proved
in this setting by Kevin Buzzard, Mark Dickinson, Nick
Shepherd-Barron, and Richard Taylor around 2003 us-
ing the modularity of all mod 5 Galois representations
arising from elliptic curves as a starting point.

• Serre’s conjecture, which was formulated in 1987,
asserts the modularity of all odd, two-dimensional
Galois representations

(54) 𝜚 ∶ 𝐺ℚ,𝑆 ⟶ GL2(𝔽𝑝𝑟),
with coefficients in a finite field. This result was proved
byChandrasekhar Khare and Jean-PierreWintenberger
in 2008 by a glorious extension of the “3-5 switching
technique” in which essentially all the primes are used.
(See Khare’s report in this volume.) This result also
implies the two-dimensional Artin conjecture in the
general case.

• The two-dimensional Fontaine–Mazur conjecture con-
cerning themodularity of odd, two-dimensional𝑝-adic
Galois representations

(55) 𝜚 ∶ 𝐺ℚ,𝑆 ⟶ GL2(ℚ̄𝑝)
satisfying certain technical conditions with respect
to their restrictions to the Galois group of ℚ𝑝. This
theorem was proved in many cases as a consequence
of work of Pierre Colmez, Matthew Emerton, and Mark
Kisin.

• The Sato–Tate conjecture concerning the distribution
of the numbers 𝑁𝑝(𝐸) for an elliptic curve 𝐸 as the
prime 𝑝 varies, whose proof was known to follow
from the modularity of all the symmetric power
Galois representations attached to 𝐸, was proved in
large part by Laurent Clozel, Michael Harris, Nick
Shepherd-Barron, and Richard Taylor around 2006.

• One can also make sense of what it should mean
for diophantine equations over more general number
fields to be modular. The modularity of elliptic curves
over all real quadratic fields has been proved very
recentlybyNunoFreitas, BaoLeHung, andSamirSiksek
by combining the ever more general and powerful
modularity lifting theorems currently available with a
careful diophantine study of the elliptic curves which
could a priori fall outside the scope of these lifting
theorems.

• Among the spectacular recent developments building
on Wiles’s ideas is the proof, by Laurent Clozel and
Jack Thorne, of the modularity of certain symmetric
powers of the Galois representations attached to
holomorphic modular forms, which is described in
Thorne’s contribution to this volume.
These results are just a sampling of the transformative

impact of modularity lifting theorems. The Langlands pro-
gram remains a lively area, with many alluring mysteries
yet to be explored. It is hard to predict where the next
breakthroughs will come, but surely they will continue to
capitalise on the rich legacy of Andrew Wiles’s marvelous
proof.
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