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Abstract. Thanks to the results of Andrew Wiles, we know that Fermat’s last theorem is true.

As a matter of fact, this result is a corollary of a major result of Wiles: every semi-stable elliptic

curve over Q is modular. The modularity of elliptic curves over Q is the content of the Shimura-

Taniyama conjecture, and in this lecture, we will restrain ourselves to explaining in elementary

terms the meaning of this deep conjecture.

§1. Introduction

A few years ago, the New York Times highlighted the proof of Fermat’s last theorem by

Andrew Wiles, completed in collaboration with his former Ph.D. student Richard Taylor.

This was the last chapter in an epic initiated around 1630, when Pierre de Fermat wrote

in the margin of his Latin version of Diophantus’ ARITHMETICA the following enigmatic

lines, unaware of the passions they were about to unleash:

Cubum autem in duos cubos, aut quadrato-quadratum in duos quadrato-quadratos,

et generaliter nullam in infinitum ultra quadratum, potestatem in duos ejusdem

nominis fas est dividere. Cujus rei demonstrationem mirabilem sane detexi. Hanc

marginis exiguitas non caperet.

In plain English, for those unfamiliar with Latin:

One cannot write a cube as a sum of two cubes, a fourth power as a sum of two

fourth powers, and more generally a perfect power as a sum of two like powers.

I have found a quite remarkable proof of this fact, but the margin is too narrow

to contain it.

The sequel is well-known: Fermat never revealed his alleged proof. Thousands of math-

ematicians (from amateurs to most famous scholars) working desperately hard at refinding

this proof were baffled for more than three centuries.

1Written English version of a lecture given in French by Henri Darmon on October 14, 1995, at CEGEP
de Lévis-Lauzon on the occasion of the Colloque des Sciences Mathématiques du Québec and which appeared
in French in the Comptes Rendus du 38e Congrès de l’Association Mathématique du Québec.
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Fermat’s Last Theorem. The equation

xn + yn = zn (n ≥ 3) (1.1)

has no integral solution with xyz 6= 0.

Using his so-called method of infinite descent, Fermat himself proved the theorem when

n = 4. Euler is credited for the proof of the case n = 3 (though his proof was incomplete).

The list of mathematicians who worked on this problem of Fermat reads like a Pantheon of

number theory: Dirichlet, Legendre, Cauchy, Lamé, Sophie Germain, Lebesgue, Kummer,

Wieferich, to name but the most famous. Their results secured the proof of Fermat’s last

theorem for all exponents n ≤ 100.

Though the importance of the theorem looks like being mostly symbolic, this problem

of Fermat was extraordinarily fruitful for modern mathematics. Kummer’s efforts generated

huge bulks of mathematical theories: algebraic number theory, cyclotomic fields. In 1985,

the theory of elliptic curves and modular forms threw an unexpected light on the problem.

This point of view was initiated by Gerhard Frey and led ten years later to the proof of

Wiles.

Here is (at last!) this famous proof of Fermat’s last theorem which was so keenly sought

for. Roughly! (With references quoted from the appendix.)

Proof of Fermat’s Last Theorem.
By K. Ribet [R], the Shimura–Taniyama conjecture (for semi-stable
elliptic curves) implies the truth of Fermat’s last theorem.
Thanks to the works of Wiles [W] and Taylor–Wiles [T–W], we
know that the Shimura–Taniyama conjecture is true for semi-stable
elliptic curves. Q.E.D.

This is a very short proof and it could possibly fit in that famous margin of the book of

Diophantus. Hence Fermat’s proof, if it existed, was different. . .

Readers will point out that this last proof lacks some details! The papers of Wiles and

Taylor-Wiles cover more than 130 pages of the prestigious journal “Annals of Mathematics”,

and rely on numerous previous papers which could hardly be summarized in less than one

thousand pages addressed to initiated readers.

So Wiles did not succeed in making his proof contained in some narrow margin of any

manuscript. In August 1995, the organizers of a conference held in Boston on Fermat’s last

theorem got off with printing the proof on a tee-shirt, put on by the first author during

2



his lecture at the Colloque des Sciences mathématiques du Québec, and whose content is

reproduced in the appendix.

In this lecture, we will refrain from dealing with the existing link between Fermat’s last

theorem and the Shimura–Taniyama conjecture; we refer interested readers to papers listed in

the bibliography. We shall restrain ourselves to explaining in elementary terms the meaning

of the Shimura–Taniyama conjecture. As a matter of fact, we would like to make readers

aware of the importance of this conjecture, which goes much beyond Fermat’s last theorem,

and is tied to some of the deepest and most fundamental questions of number theory.

§2. Pythagoras’ equation

Let us start with Pythagoras’ equation

x2 + y2 = 1 (2.1)

whose non-zero rational solutions (x, y) = (a
c
, b

c
) give birth to Pythagoras’ triples (a, b, c)

verifying the equation a2 + b2 = c2. This equation was highlighted in Diophantus’ treatise

and led Fermat to consider the case where the exponents are greater than 2. (So our starting

point is the same as Fermat’s one, even if we will not deal with his last theorem. . . )

The rational solutions of Pythagoras’ equation are given in a parametric way by

(x, y) =

(
1− t2

1 + t2
,

2t

1 + t2

)
, t ∈ Q ∪ {∞}, (2.2)

which provides the classification of Pythagoras’ triples and leads to the complete solution of

Fermat’s equation for n = 2. Integral solutions (with x, y ∈ Z) are still simpler to describe.

There are 4 of them, namely (1, 0), (−1, 0), (0, 1), (0,−1); hence we write

NZ = 4. (2.3)

We can also study the equation x2 + y2 = 1 on fields other than the rational numbers;

for instance, the field R of real numbers, or the fields Fp = {0, 1, 2, . . . , p− 1} of congruence

classes modulo p, where p is a prime number.

Solutions in real numbers of the equation x2 + y2 = 1 correspond to points on a circle of

radius 1. Let us give the set of real solutions a quantitative measure by writing

NR = 2π, (2.4)
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the circonference of the circle.

The solutions of x2 + y2 = 1 on Fp form a finite set, and we set

Np = #{(x, y) ∈ F2
p : x2 + y2 = 1}. (2.5)

To calculate Np, we let x run between 0 and p − 1 and look for solutions whose first

coordinate is x. There will be 0, 1, or 2 solutions according to whether 1−x2 is not a square

modulo p, is equal to 0, or is a non-zero square modulo p, respectively. Since half of the

non-zero integers modulo p are squares, it is expected that Np is roughly equal to p; this

prompts us to define ap as the “error term” of this rough estimate:

ap = p−Np. (2.6)

In so doing, we arrive at the main problem which, as will be seen later, leads directly to

the Shimura–Taniyama conjecture.

Problem 1. Does there exist a simple formula for the numbers Np as a function of p

(or, which in the same, for the numbers ap)?

Experimental methods play an important role in the theory of numbers, probably to a

greater extent than in other fields of pure mathematics. Gauss was a prodigious calculator,

and found his quadratic reciprocity law in some empiric way, before giving it many rigorous

proofs. Following in the footsteps of the master, let us give a list of the values of Np for some

values of p.

p Np ap

2 2 0
3 4 −1
5 4 1
7 8 −1
11 12 −1
13 12 1
17 16 1
19 20 −1
23 24 −1
29 28 1
31 32 −1
37 36 1
41 40 1
..
.

..

.
..
.

10007 10008 −1
..
.

..

.
..
.

Table 1: x2 + y2 = 1

A look at the table leads at once to the following conjecture.
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Conjecture 2. The value of Np is 2 if p = 2 and we have

Np =


p− 1 if p ≡ +1 (mod 4),

p + 1 if p ≡ −1 (mod 4).
(2.7)

(In particular, we see that p 6= Np, which might be of interest to our computer science

colleagues: P 6= NP!)

How can we prove Conjecture 2? Let us come back to the parametrization

(x, y) =

(
1− t2

1 + t2
,

2t

1 + t2

)
. (2.8)

The values t = 0, 1, . . . , p− 1,∞ give birth to a complete list of p + 1 distinct solutions,

excepted when −1 is a square j2 modulo p. In the latter case, the denominator vanishes for

the two values t = j, −j, so these values are not admissible. Therefore, when p is odd,

Np =


p− 1 if −1 is a square modulo p,

p + 1 if −1 is not a square modulo p.
(2.9)

The condition that −1 be a square modulo p may a priori look subtle, but we are fortunate

to be able to count on the following theorem proved by Fermat.

Theorem 3 (Fermat). The integer −1 is a square modulo p if and only if p = 2 or

p ≡ 1 (mod 4).

Here is a proof, slightly different from that of Fermat. The multiplicative group F×
p is

cyclic of order p − 1, and the element −1 of order 2 has a square root if and only if F×
p

possesses some elements of order 4.

Theorem 3 (that we just proved) together with formula (2.9) provides a proof of Conjec-

ture 2 about the value of Np. What is the purpose of such an explicit formula for Np? Let

us consider, for instance, the following infinite product (taken over all the primes p):

∏
p

p

Np

=
∏
p

(
1− ap

p

)−1

(2.10)

“ = ”

 ∏
p≡1(4)

(
1− 1

p

)−1
 ·

 ∏
p≡−1(4)

(
1 +

1

p

)−1


“ = ”

 ∏
p≡1(4)

(
1 +

1

p
+

1

p2
+

1

p3
+ · · ·

) ·
 ∏

p≡−1(4)

(
1− 1

p
+

1

p2
− 1

p3
+ · · ·

)
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“ = ” 1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+

1

13
− · · · (2.11)

=
π

4
(by Leibniz’s formula), (2.12)

where the equality (2.11) is (formally) a consequence of the unique factorization of integers

as products of powers of primes. We then deduce

∏
p

Np

p
=

4

π
. (2.13)

To tell the truth, our proof of the equality (2.13) is a fallacy, because of the off-hand way

the convergence questions were dealt with (this contempt would give analysts the shivers).

This is why some equalities were used within inverted commas. Eighteenth century math-

ematicians like Euler were quite at ease with such formal series manipulations, guided by

their instinct to reach the right conclusion by avoiding traps. As a matter of fact, it is true

that ∏
p

Np

p
converges to

4

π
,

though the convergence is very slow.

Recalling that NR = 2π and that NZ = 4, we conclude that(∏
p

Np

p

)
·NR = 2NZ. (2.14)

This magical formula unveils a mysterious relation between the solutions of the equation

x2 + y2 = 1 on finite fields Fp, on the real numbers R, and on the ring Z of integers. In

particular, the numbers Np which depend only on the solutions of the equation x2+y2 = 1 on

Zp, “ know” the behaviour of the equation over the real numbers: thanks to these numbers

Np, we recover the number π, related to the circumference of the circle. Fundamentally, this

is only a simple reinterpretation of Leibniz’s formula, but in fact this is quite a fruitful one.

At the beginning of the twenty-first century, number theory had not yet digested the deep

meaning of this formula and of its generalizations, as will be seen later.

§3. The Fermat–Pell equation

In his abundant correspondence with his colleagues from Europe, Fermat liked to send

them mathematical challenges. By doing so, he invited the English mathematicians Wallis
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and Brouncker to find the integer solutions of the equation

x2 − 61y2 = 1 . (3.1)

This is a particular case of the so-called Fermat–Pell equation x2 −Dy2 = 1. Fermat had a

crush for this equation and had developed a general method to solve it, based on continued

fractions. When D = 61, the smallest non-trivial solution is

(x, y) = (1766319049, 226153980) . (3.2)

It is the odd size of this smallest solution that led Fermat to take D = 61, although he

pretended (with a bit of maliciousness) that this value of D was taken at random. This

Fermat–Pell equation, of degree 2, is a conic in the plane, as is Pythagoras’ equation. Let

us denote by Np the number of solutions modulo p, and let us give once more the list of the

numbers Np for some values of p.

p Np ap

2 2 0
3 2 1
5 4 1
7 8 −1
11 12 −1
13 12 1
17 18 −1
19 18 1
23 24 −1
29 30 −1
31 32 −1
37 38 −1
41 40 1
43 44 −1
47 46 1
53 54 −1
59 60 −1
61 122 −61
67 68 −1
71 72 −1
73 72 1
...

...
...

10007 10006 1
10009 10008 1
...

...
...

Table 2: x2 − 61y2 = 1

Using the parametrization

(x, y) =

(
1 + 61t2

1− 61t2
,

2t

1− 61t2

)
, t ∈ Q ∪ {∞}, (3.3)
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of the conic (3.1), we find as before that N2 = 2, that Np = 2p if p = 61, and that otherwise

Np =


p− 1 if 61 is a square modulo p,

p + 1 if 61 is not a square modulo p.
(3.4)

Let us now use Gauss reciprocity law which for our purposes asserts that for p-odd, 61 is a

square modulo p if and only if p is a square modulo 61. So for p 6= 2, 61, we find

Np =


p− 1 if p is a square modulo 61,

p + 1 if p is not a square modulo 61.
(3.5)

This simple formula (which is periodic since it depends only on p modulo 61) for the

numbers Np allows to deduce, with formal calculations closely copied on those of equations

(2.10) to (2.12), the identity ∏
p

p

Np

“ = ”
1

2

∑
n

an

n
, (3.6)

where

an =


0 if 61|n, or if n is even,

+1 if n odd is a non-zero square modulo 61,
−1 if n odd is not a square modulo 61.

(3.7)

One verifies (with the help of Abel’s summation formula, for instance) that the infinite

sum in (3.6) converges (conditionally). Some kind of heroic calculations (which we invite the

readers to do) lead to an identity analoguous to the formula (2.12) of Leibniz,

∑
n

an

n
=

log(1766319049 + 226153980
√

61)

2
√

61
. (3.8)

One recognizes in this expression the coefficients which appeared in the solution (3.2) of (3.1).

In conclusion, the knowledge of the numbers Np allowed us to “ recover ” a (fundamental)

solution of a Fermat–Pell equation.

As a matter of fact, the identity (3.6) can be formally rewritten as(∏
p

Np

p

)
·NR “ = ” 4

√
61NZ. (3.9)

The quantities NR and NZ are both infinite, since the hyperbola defined by the equation

x2 − 61y2 = 1 has no finite length and the Fermat–Pell equation possesses an infinity of

integral solutions. It is all the same natural to define the quotient NR

NZ
as

NR

NZ

:= log(1766319049 + 226153980
√

61) , (3.10)
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namely, as the quantity appearing in the numerator of the right hand side of (3.8). As a

matter of fact, the set of integral solutions of (3.1) is an abelian group isomorphic to Z×Z/2Z

and the application

(x, y) 7→ log(|x + y
√

61|) (3.11)

sends this group into a discrete subgroup G of R which is isomorphic to R. It is therefore

natural to define NR/NZ as the volume of R , i.e., as in (3.10).

After a few months, Wallis and Brouncker gave an answer to Fermat’s question, sending

him the solution (3.2) of (3.1), together with a general method (essentially similar to the

method of Fermat based on continued fractions) to solve the Fermat–Pell equation x2−Dy2 =

1. We do not know what was the reaction of the Toulouse mathematician, but one can

imagine he felt some secret resentment. . . This shows that Wiles and Taylor are not the first

two English mathematicians to brilliantly take up Fermat’s challenges.

§4. The equation x3 + y3 = 1

Let us keep the same momentum, and after having dealt with conics let us switch to

equations of degree 3. As a tribute to Fermat, let us study for instance

x3 + y3 = 1 . (4.1)

Does there exist as before a simple formula for the number Np of solutions of this equation

modulo p? Once more, let us give a table.

p Np ap

2 2 0
3 3 0
5 5 0
7 6 1

11 11 0
13 6 7
17 17 0
19 24 −5
23 23 0
29 29 0
31 33 −2
37 24 13
41 41 0
43 10 33
47 47 0
53 53 0

.

..
.
..

.

..
10007 10007 0
10009 9825 184

Table 3: x3 + y3 = 1
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Contrary to the case of the degree 2 equations, the integers ap are not all 0 or ±1, and

seem to behave rather randomly. However, one may guess by inspection a few properties of

these integers ap. For example, it looks like ap always vanishes when 3 divides p + 1. But

what is going on when p ≡ 1 (mod 3)? Once more, it is Gauss himself who provided the

answer by proving the following theorem.

Theorem 4 (Gauss).

(1) If p ≡ −1 (mod 3), then ap = 0.

(2) If p ≡ 1 (mod 3), then the number 4p can be written as 4p = A2 +27B2 with A ≡ −1

(mod 3), which makes A unique, so we have ap = A + 2.

The following table allows us to verify this theorem for a few values of p:

p Np ap 4p = A2 + 27B2

2 2 0 −−−
3 3 0 −−−
5 5 0 −−−
7 6 1 28 = (−1)2 + 27 · 12

11 11 0 −−−
13 6 7 52 = 52 + 27 · 12

17 17 0 −−−
19 24 −5 76 = (−7)2 + 27 · 12

23 23 0 −−−
29 29 0 −−−
31 33 −2 124 = (−4)2 + 27 · 22

37 24 13 148 = 112 + 27 · 12

41 41 0 −−−
43 10 33 172 = 82 + 27 · 22

47 47 0 −−−
53 53 0 −−−

...
...

...
...

10007 10007 0 −−−
10009 9825 184 40036 = 1822 + 27 · 162

...
...

...
...

Table 4: x3 + y3 = 1 (sequel)

§5. Elliptic curves

An elliptic curve is a diophantine equation of degree 3 having at least one rational solution.

For example, the equation x3+y3 = 1. One can prove that any elliptic curve over the rational
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numbers Q may be written, after a proper change of variables, in the form

y2 = x3 + ax + b, (5.1)

where a, b are rational numbers.

As before, denote by Np the number of solutions of the equation (5.1) over the finite field

Fp of p elements.

Question 5. Is there an explicit formula for the numbers Np associated to an elliptic

curve like the equation x3 + y3 = 1?

Said otherwise, we would like to generalize the result of Gauss for the equation x3+y3 = 1

to the case of any given elliptic curve. This is exactly the scope of the Shimura–Taniyama

conjecture proved by Wiles for a very large class of elliptic curves.

Before giving explicit statements, let us see how the land lies by considering the elliptic

curve

y2 + y = x3 − x2 (5.2)

studied by Eichler. Here are some values of Np as calculated by a computer:

p Np ap

2 4 −2
3 4 −1
5 4 1
7 9 −2

11 10 1
13 9 4
17 19 −2
19 19 0
23 24 −1
29 29 0
31 24 7

...
...

...
10007 9989 18

.

..
.
..

.

..

Table 5: y2 + y = x3 − x2

This time, it is more difficult to guess a structure for the values of the integers ap which

again seem to behave rather randomly. Hasse proved the deep inequality

|ap| ≤ 2
√

p (5.3)
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(valid for all elliptic curves), but this is far from providing an exact formula for the numbers

Np.

Eichler, building on deep results of Hecke, was however successfull in obtaining an exact

formula. The starting point is to extend the definition of the coefficient ap (valid for the

prime index p) to any index n by setting

a1 = 1,

ap = p−Np,

apr = apapr−1 − papr−2 ,

an =
r∏

i=1
api

ei , where n =
r∏

i=1
pi

ei .

(5.4)

We notice that this extension is a rather natural one: if we denote by Npr the number of

solutions of the elliptic curve over the finite field Fpr of pr elements, then we have

apr = pr −Npr . (5.5)

Theorem 6 (Eichler). The formal series
∞∑

n=1

anq
n is given by the formula:

q
∞∏

n=1

(1− qn)2 · (1− q11n)2 = q−2q2 − q3 + 2q4+q5 + 2q6−2q7

−2q9 − 2q10+q11 − 2q12+4q13 + 4q14

−q15 − 4q16−2q17 + 4q18 + 2q20 + 2q21

−2q22−q23 − 4q25 − 8q26 + 5q27 − 4q28

+2q30+7q31 + . . . + 18q10007 + . . .

The reader can at leisure verify the truth of Eichler’s theorem for a few values of p, by

comparing the coefficients of qp written in boldface, with the values from Table 5.

The Shimura–Taniyama conjecture, proved by Wiles, is a direct generalization of Eichler’s

theorem, in the sense that Wiles gave a very precise description of the generating function∑
n

anq
n, where the integers an are the coefficients associated to any given elliptic curve.

More precisely, let

f(z) =
∞∑

n=1

ane
2πinz (5.6)

be a Fourier series with coefficients an ∈ R, and let N be a positive integer. We say that

f(z) is a modular form of level N if the following conditions are satisfied:
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(1) The series defining f converges for Im(z) > 0, i.e., when |e2πiz| < 1. The series f

then represents a holomorphic function on the Poincaré upper half plane of complex

numbers having a strictly positive imaginary part.

(2) For all

(
a b
Nc d

)
∈ SL2(Z), we have

f

(
az + b

Ncz + d

)
= (Ncz + d)2f(z), (5.7)

where SL2(Z) is the group of 2× 2 matrices of determinant 1 with coefficients in Z.

Here is at last the famous Shimura–Taniyama conjecture.

Conjecture 7 (Shimura–Taniyama). Let y2 = x3 + ax + b be an elliptic curve over

the rational numbers Q, and let an (n = 1, 2, . . .) be the integers defined for this curve by the

equations of (5.4). Then the generating function

f(z) =
∞∑

n=1

ane
2πinz (5.8)

is a modular form.

In fact, the conjecture is more precise:

(1) It predicts the value of the level N of the modular form associated to the elliptic curve.

This level would be equal to the arithmetic conductor of the curve, which depends only

on the primes having “ bad reduction ”. The exact definition of N will not be used in

our treatment.

(2) The space of modular forms of a given level N is a vector space over R whose dimension,

a finite number, can easily be calculated out of the value of N . This space is equipped

with certain natural linear operators defined by Hecke. The conjecture also states

that the modular form f is an eigenform (i.e., a characteristic vector) for all Hecke

operators.

One shows that there is but a finite number of modular forms of level N which are

eigenforms for all Hecke operators, and whose first Fourier coefficient a1 is equal to 1. So

once the conductor N of an elliptic curve has been calculated, we are led to a finite list

of possibilities for the sequence {an}n∈N associated to this curve. From this point of view,
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the Shimura–Taniyama conjecture gives an explicit formula for the numbers Np of rational

points on the elliptic curve modulo p.

Thanks to the works of Wiles and Taylor–Wiles, we now know that the Shimura–

Taniyama conjecture is true for a very large class of elliptic curves. As a matter of fact,

Diamond proved, improving upon the results of Wiles and Taylor-Wiles, that it suffices that

the elliptic curve has good reduction, or in the worst case has only one double point modulo

3 or 5.

The formula of Wiles for the integers Np associated to an elliptic curve looks at first

less explicit than that of Fermat (Conjecture 2) for the equation x2 + y2 = 1, or than that

of Theorem 4 of Gauss for the equation x3 + y3 = 1. Nevertheless it allows one to give a

meaning to the expression
∏
p

p
Np

, or to be more precise2, to the quantities

∏
p

p

Np + 1
.

This is achieved by introducing the L-series associated to the elliptic curve E:

L(E, s) =
∏
p

(
1− ap

ps
+

1

p2s−1

)−1

=
∑
n

an

ns
. (5.9)

One notes that formally,

L(E, 1) “ = ”
∏
p

p

Np + 1
, (5.10)

though the series defining L(E, s) converges only for Re(s) > 3
2
. In order to make L(E, 1)

meaningfull, one needs to know that the series defining L(E, s) admits an analytic continu-

ation at least up to the value s = 1.

The following fundamental result of Hecke will then prove useful.

Theorem 8 (Hecke). If the sequence {an}n∈N comes from a modular form, then the

function L(E, s) admits an analytic continuation to the whole complex plane, and in partic-

ular, the value of L(E, 1) is well defined.

If one knows that the elliptic curve E is modular, then the result of Hecke allows one to

define ∏
p

p

Np + 1
:= L(E, 1). (5.11)

2In our näıve definition of Np, we systematically omitted to count the solution which corresponds to the
“ point at infinity ” and which naturally comes into play when one considers an equation of the elliptic curve
in the Desargues projective plane. It is therefore natural to replace Np by Np + 1.
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As in the previous example, one may expect some useful pieces of arithmetic information

about the curve E from the value of L(E, 1) (or more generally, from the behaviour of L(E, s)

at the neighbourhood of s = 1).

This is exactly the content of the Birch–Swinnerton-Dyer conjecture, of which a particular

case is the following.

Weak Birch–Sinnerton-Dyer conjecture. The elliptic curve E possesses a finite

number of rational points if and only if L(E, 1) 6= 0.

This conjecture is far from being proved, and is still one of the most important open

questions in the theory of elliptic curves. One can count although on some partial results, for

instance, the following one, which is a consequence of the works of Gross–Zagier, Kolyvagin,

together with an analytic result due to Bump–Friedberg–Hoffstein and Murty–Murty.

Theorem 9 (Gross–Zagier, Kolyvagin). Let E be a modular elliptic curve. If the

function L(E, s) possesses a zero of order 0 or 1 at s = 1, then the weak Birch–Swinnerton-

Dyer conjecture is true for E.

The case where the function L(E, s) has a zero of order > 1 still remains very mysterious.

One expects in this case that the equation of the curve E has always rational solutions, but

we still ignore how to find (or build) them in a systematic way, or even whether or not there

is an algorithm to determine in all cases the set of all rational solutions. Despite spectacular

progresses over the past few years, several number theorists, in love with elliptic curves, will

be kept very busy.
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Appendix: The t-shirt of the Boston University Conference

On the front of the above-mentioned t-shirt, one can read the following.

FERMAT’S LAST THEOREM: Let n, a, b, c ∈ Z with n > 2. If an + bn = cn then

abc = 0.

Proof. The proof follows a program formulated around 1985 by Frey and Serre [F,S].

By classical results of Fermat, Euler, Dirichlet, Legendre and Lamé, we may assume that

n = p, an odd prime ≥ 11. Suppose that a, b, c ∈ Z, abc 6= 0, and ap + bp = cp. Without

loss of generality we may assume 2|a and b ≡ 1 (mod 4). Frey [F] observed that the elliptic

curve E : y2 = x(x− ap)(x + bp) has the following “remarkable” properties:

(1) E is semistable with conductor NE =
∏

`|abc
`; and

(2) ρ̄E,p is unramified outside 2p and is flat at p.

By the modularity theorem of Wiles and Taylor–Wiles [W,T–W], there is an eigenform

f ∈ S2(Γ0(NE)) such that ρf,p = ρ̄E,p. A theorem of Mazur implies that ρ̄E,p is irreducible,

so Ribet’s theorem [R] produces a Hecke eigenform g ∈ S2(Γ0(2)) such that ρg,p ≡ ρf,p (mod

P) for some P|p. But X0(2) has genus zero, so S2(Γ0(2)) = 0. This is a contradiction and

Fermat’s Last Theorem follows. Q.E.D.

On the back of the t-shirt, one finds the following bibliography.

[F] Frey, G: Links between stable elliptic curves and certain Diophantine equations. Ann.

Univ. Sarav. 1 (1986), 1-40.

[R] Ribet, K: On modular representations of Gal(Q̄/Q)) arising from modular forms.

Invent. Math. 100 (1990), 431-476.

[S] Serre, J.-P.: Sur les représentations modulaires de degré 2 de Gal(Q̄/Q), Duke Math.

J. 54 (1987), 179-230.

[T–W] Taylor, R.L., Wiles, A.: Ring-theoretic properties of certain Hecke algebras.

Annals of Math. 141 (1995), 553-572.

[W] Wiles, A.: Modular elliptic curves and Fermat’s Last Theorem. Annals of Math.

141 (1995), 443-551.
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Annoted bibliography

The references appear under seven headings, each one dealing with a given theme. Read-

ers interested only by easily understood survey papers will appreciate references 1 to 4, 8 to

11, 14 to 18 of Section B.

(A) Fermat’s last theorem

The following references provide historic informations about Fermat’s last theorem or

about methods not dealing with elliptic curves

1. E.T. Bell, The Last Problem, 2e édition, MAA Spectrum, Mathematical Association

of America, Washington, DC, 1990, 326 pages.

2. H.M. Edwards, Fermat’s Last Theorem: A Genetic Introduction to Algebraic Number

Theory, Graduate Texts in Math. 50, Springer–Verlag, New York, Berlin, Heidelberg,

1977, 410 pages.

3. C. Houzel, De Diophante à Fermat, in Pour la Science 220, January 1996, 88–96.

4. P. Ribenboim, 13 Lectures on Fermat’s Last Theorem, Springer–Verlag, New York,

Berlin, Heidelberg, 1979, 302 pages.

5. L.C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math. 83,

Springer–Verlag, New York Berlin 1982, 389 pages.

(B) Elliptic curves and Fermat’s last theorem

To learn more on the links between Fermat’s last theorem and elliptic curves, we suggest

the following references.

1. N. Boston, A Taylor-made Plug for Wiles’ Proof, College Math. J. 26, No. 2, 1995,

100–105.

2. B. Cipra, “A Truly Remarkable Proof”, in What’s happening in the Mathematical

Sciences, AMS Volume 2, 1994, 3–7.

3. J. Coates, Wiles Receives NAS Award in Mathematics, Notices of the AMS 43, 7,

1994, 760–763.
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4. D.A. Cox, Introduction to Fermat’s Last Theorem, Amer. Math. Monthly 101, No. 1,

1994, 3–14.

5. B. Edixoven, Le rôle de la conjecture de Serre dans la preuve du théorème de Fermat,

Gazette des mathématiciens 66, Oct. 1995, 25–41. Addendum: idem 67, Jan. 1996,

19.

6. G. Faltings, The Proof of Fermat’s Last Theorem by R. Taylor and A. Wiles, Notices

AMS 42, No. 7, 743–746.

7. G. Frey, Links Between Stable Elliptic Curves and Certain Diophantine Equations,

Ann. Univ. Sarav. 1, 1986, 1–40.

8. G. Frey, Links Between Elliptic Curves and Solutions of A − B = C, Indian Math.

Soc. 51, 1987, 117–145.

9. G. Frey, Links Between Solutions of A − B = C and Elliptic Curves, dans Number

Theory, Ulm, 1987, Proceedings, Lecture Notes in Math. 1380, Springer–Verlag, New

York, 1989, 31–62.

10. D. Goldfeld, Beyond the last theorem, in The Sciences 1996, March/April, 34–40.

11. C. Goldstein, Le théorème de Fermat, La Recherche 263, Mars 1994, 268–275.

12. C. Goldstein, Un théorème de Fermat et ses lecteurs, Presses Universitaires de Vin-

cennes, 1995.

13. F.Q. Gouvêa, A Marvelous Proof, Amer. Math. Monthly 101, No. 3,1994, 203–222.

14. B. Hayes and K. Ribet, Fermat’s Last Theorem and Modern Arithmetic, Amer. Scien-

tist 82, 1994, 144–156.

15. Y. Hellegouarch, Points d’ordre 2ph sur les courbes elliptiques, Acta Arith. 26, 1974/75,

253–263.

16. Y. Hellegouarch, Fermat enfin démontré, in Pour la Science 220, February 1996, 92–97.

17. S. Lang, Old and New Conjectured Diophantine Inequalities, Bull. AMS (New Series)

23, No. 1, 1990, 37–75.

18. B. Mazur, Number Theory as Gadfly, Amer. Math. Monthly 98, No. 7, 1991, 593–610.

18



19. B. Mazur, Questions about Number, in New Directions in Mathematics, Cambridge

Univ. Press, Cambridge, à parâıtre.

20. M.R. Murty, Fermat’s Last Theorem: an Outline, Gazette Sc. Math. Québec, Vol.

XVI, No. 1, 1993, 4–13.

21. M.R. Murty, Reflections on Fermat’s Last Theorem, Elem. Math. 50 (1995) no. 1,

3–11.

22. J. Oesterlé, Nouvelles approches du “théorème” de Fermat”, Séminaire Bourbaki No.

694 (1987-88), Astérisque 161–162, 1988, 165–186.

23. K. Ribet, On Modular Representations of Gal(Q̄/Q) Arising from Modular Forms,

Invent. Math. 100, 1990, 431–476.

24. K. Ribet, From the Taniyama–Shimura Conjecture to Fermat’s Last Theorem, Ann.

Fac. Sci. Toulouse (5) 11 (1990) no. 1, 116–139.

25. K. Ribet, Wiles Proves Taniyama’s Conjecture; Fermat’s Last Theorem Follows, No-

tices Amer. Math. Soc. 40, 1993, 575–576.

26. K. Ribet, Galois Representations and Modular Forms, Bull. AMS (New Series) 32,

No. 4, 1995, 375–402.

27. M. Rosen, New Results on the Arithmetic of Elliptic Curves, Gazette Sc. Math.

Québec, Vol. XIV, No. 1, 1993, 30–43.

28. K. Rubin and A. Silverberg, A Report on Wiles’ Cambridge Lectures, Bull Amer. Math.

Soc. (New Series) 31, 1994, 15–38.

29. R. Schoof, Proof of Taniyama–Weil Conjecture for Semi-stable Elliptic Curves over

Q, Duke Math. J. 54, 1987, 179–230.

30. J-P. Serre, Sur les représentations modulaires de degré 2 de Gal(Q̄/Q), Duke Math.

J. 54, 1987, 179–230.

31. J-P. Serre, Lettre à J.-F. Mestre, in Current Trends in Arithmetical Algebraic Geom-

etry, ed. by K. Ribet, Contemporary Mathematics 67, AMS, 1987.

32. A. van der Poorten, Notes on Fermat’s Last Theorem, Canadian Math. Society Series

of Monographs and Advanced Texts, Wiley Interscience, Jan. 1996.
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33. A. Wiles, Modular Forms, Elliptic Curves, and Fermat’s Last Theorem, Proc. Inter-

national Congress of Math., 1994, Birkhauser Verlag, Basel, 1995, 243–245.

(C) About the works of Wiles and Taylor

The following references concentrate on the work of Wiles and his per se proof of the

Shimura–Taniyama conjecture.

1. J. Coates and S.T. Yau, Elliptic Curves and Modular Forms, in Proceedings of a

conference in Hong Kong in 1993, International Press, Cambridge (MA) and Hong

Kong, 1995.

2. H. Darmon, F. Diamond et R. Taylor, Fermat’s Last Theorem, Current Developments

in Math. 1, International Press, 1995, 1–154.

3. H. Darmon, The Shimura–Taniyama Conjecture, (d’après Wiles), (en Russe) Uspekhi

Mat. Nauk 50 (1995), no. 3(303), pages 33–82. (Version anglaise à parâıtre dans

Russian Math Surveys).

4. V.K. Murty, ed., Elliptic Curves, Galois Representations and Modular Forms, CMS

Conference Proc., AMS, Providence RI, 1996.

5. J. Oesterlé, Travaux de Wiles (et Taylor...), Partie II, Séminaire Bourbaki 1994-95,

exposé No. 804, 20 pages.

6. K. Ribet, Galois Representations and Modular Forms, Bull. AMS (New Series) 32,

1995, No. 4, 375–402.

7. J-P. Serre, Travaux de Wiles (et Taylor...), Partie I, Séminaire Bourbaki 1994–95,

exposé No. 803, 13 pages.

8. R.L. Taylor and A. Wiles, Ring Theoretic Properties of Certain Hecke Algebras, Annals

of Math. 141, 1995, 553–572.

9. A. Wiles, Modular Elliptic Curves and Fermat’s Last Theorem, Annals of Math. 141,

1995, 443–551.

(D) Videos

Some readers may enjoy the numerous videos dealing with Fermat’s last theorem and its

proof.
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1. Fermat Fest, Fermat’s Last Theorem. The Theorem and Its Proof: an Exploration of

Issues and Ideas. Shown on the occasion of a “Fermat Fest” in San Francisco, CA, on

July 28, 1993, Video, Selected Lectures in Mathematics, AMS, Providence, RI, 1994,
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2. B. Mazur, Modular Elliptic Curves and Fermat’s Last Theorem, CMS meeting in Van-
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3. K. Ribet, Modular Elliptic Curves and Fermat’s Last Theorem, Lecture given at George
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(E) Fermat and Gauss
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1. L.E. Dickson, History of the Theory of Numbers, Vol. II, Chelsea Publ. Co., New York,

1971.
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3. W. Scharlau et H. Opolka, From Fermat to Minkowski. Lectures on the Theory of

Numbers and Its Historical Development, Translated from the german by Walter K.

Bühler and G. Cornell, Undergraduate Texts in Math., Springer–Verlag, New York-
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endre, Birkhauser Boston Inc., Boston, MA, 1984, 375 pages.
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in Math. 41, Springer–Verlag, New York, 1976, 248 pages.
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