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Abstract

The quotient �\(H×Hp) of the product of a Poincaré and a Drinfeld upper half plane
by a discrete p-arithmetic subgroup � of SL2(R) × SL2(Qp) is equipped with an infinite
supply of closed geodesic cycles of real dimension one, which are indexed by ideals in
orders in real quadratic fields in which the prime p is non-split. This article lays the
foundations for an arithmetic intersection theory of such cycles by defining a p-adic
Green’s function generalising the “differences of real quadratic singular moduli”
explored in Darmon and Vonk (Duke Math J 170(1):23–93, 2021). When the second
cohomology group of � is trivial, the values of this p-adic Green’s function are
conjectured to be p-adic logarithms of algebraic numbers belonging to a suitable
compositum of ring class fields of real quadratic fields. For general �, they should
encode the analytic contribution to the p-adic height pairing between Stark–Heegner
points which are conjecturally defined over the same ring class fields.
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1 Introduction
Let� be a p-arithmetic subgroup of an indefinite quaternion algebraB overQ. After fixing
real and p-adic splittings of B, the group � acts on both the Poincaré upper half plane H
and the Drinfeld p-adic upper half-plane Hp by Möbius transformations, and its action
on the productH×Hp is discrete. The quotient topological space �\(H×Hp) is endowed
with a plentiful supply of closed cycles of real dimension one, which are indexed by the
set HRM

p of algebra embeddings into B of real quadratic fields in which the prime p is
non-split. These RM cycles are analogous to CM points on Shimura curves attached to
definite quaternion algebras, and seem to have similar arithmetic implications, notably,
for the construction of singular moduli contained in class fields of real quadratic fields [3]
and of rational points on elliptic curves defined over these class fields [2].
The presentwork lays the foundations for an arithmetic intersection theory of RMcycles

by defining a p-adic Green’s function

Gp : (�\HRM
p ) × (�\HRM

p ) -→ Cp

on pairs of distinct elements of �\HRM
p . When the cycle α1 ∈ �\HRM

p is principal, i.e.
arises as the divisor of a rigidmeromorphic cocycle Jα1 , the quantityGp(α1,α2) is thep-adic
logarithm of the special value Jα1 [α2] in the sense of [3], whose algebraicity is predicted by
the conjectures of loc.cit. and partially established in [6]. In the general case, Gp(α1,α2) is
expected to encode information about p-adic height pairings between the Stark–Heegner
points attached to α1 and α2.
Although the quotient �\(H×Hp) is not an algebraic variety in any meaningful sense,

it is suggestive to view it as “mock Hilbert modular surface” over Q, and more specifically
as the generic fiber of an arithmetic threefoldX ? fibered over Spec(Z). In this perspective,
RM cycles, which are of real dimension one, might be envisaged as “algebraic cycles of
dimension 1/2” on the generic fiber, extending to arithmetic cycles of middle dimension
3/2 on X ?. Such analogies are pure metaphysics in the sense of Weil’s essay [12], but the
concrete arithmetic intersection theory for RM cycles that emerges from them suggests
that the seemingly dubious notion ofmiddle dimensional cycles onmockHilbert modular
arithmetic threefolds deserves to be further examined and better understood.
The notion of a p-adic Green’s function on RM geodesic cycles supplies the conceptual

framework for understanding the calculations in [6],where certainheight pairingsbetween
RM cycles are realised as the Fourier coefficients of modular generating series, leading to
a p-adic Gross–Zagier formula for Stark–Heegner points and a proof of the algebraicity
of certain non-trivial expressions involving the RM values of rigid meromorphic cocycles.
The importance of the Green’s function lies in the fact that it represents the analytic
contribution to the p-adic height pairing between RM geodesic cycles.
This article concludes in Sect. 4.11 with an elementary formula for the trace to Qp of

Gp(α1,α2) under certain conditions on �, which include the case � = SL2(Z[1/p]). We
proceed to describe this formula in the latter scenario, when the RM cycles can also be
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indexed by primitive integral binary quadratic forms whose discriminant D satisfies

D > 0, and p is not split in K := Q(
√
D). (1)

In this bijection, the form F (x, y) = ax2 + bxy + cy2 corresponds to the embedding

K ↪→ M2(Q) ;
√
D �→

(
b −2c
2a −b

)
.

Let F1(x, y) := a1x2 + b1xy+ c1y2 and F2(x, y) := a2x2 + b2xy+ c2y2 be a pair of primitive
integral binary quadratic forms, whose discriminants D1 and D2 are coprime. The roots

τ1 = −b1 + √
D1

2a1
, τ2 = −b2 + √

D2
2a2

, (2)

are viewed as real numbers by choosing the positive square roots in the expression (2). The
oriented hyperbolic geodesic (αj) on H joining τj to its algebraic conjugate τ ′

j is preserved
by the stabiliser �j of τj in SL2(Z) acting naturally on H∪ R by Möbius transformations.
The choice of an orientation on H determines a topological intersection number on H:

(α1) � (α2) ∈ {−1, 0, 1}. (3)

After fixing embeddings of the fields Kj = Q(
√
Dj) into Qp, the roots τj and τ ′

j can also
be viewed as elements of Hp by condition (1) on their discriminants. Consider

g(τ1, τ2) := (τ1 − τ2)(τ ′
1 − τ ′

2)
(τ1 − τ ′

1)(τ2 − τ ′
2)

∈ Q̄p (4)

which is the cross-ratio of the roots τ1, τ2, τ ′
1 and τ ′

2, a point pair invariant for the action
of SL2(Qp) on Hp, and belongs to the field

F := Q

(√
D1D2

)
⊂ L := K1K2 = Q

(√
D1,
√
D2
)
.

Note that p splits in F when p � D1D2, and ramifies otherwise. Write Fp and Lp for the
completions of F and L in Q̄p. Let Mn be the set of 2 × 2 matrices with integer entries
and determinant p2n, a set that is preserved under both left and right multiplication by
SL2(Z). The expression

G
(n)
p (τ1, τ2) = logp

⎛
⎝ ∏

b∈ �1\Mn/�2

g(τ1, bτ2)(α1)�b(α2)

⎞
⎠

involves only finitely many non-trivial factors, and belongs to Fp, while the Green’s func-
tion value Gp(τ1, τ2) can be viewed as an element of Lp. The following is a special case of
the main result of Sect. 4.11.

Theorem The sequence G
(n)
p (τ1, τ2) converges to a p-adic limit as n tends to ∞, and

Gp(τ1, τ2) := lim
n -→ ∞ G

(n)
p (τ1, τ2) = TraceLpFp Gp(τ1, τ2).

Remark 1 It is natural to contemplate multiplicative refinements of this theorem. The
calculations of Sect. 4.11 show the existence of the limit

Jp(τ1, τ2) := lim
n→∞

⎛
⎝ ∏

b∈ �1\Mn/�2

g(τ1, bτ2)(α1)�b(α2)

⎞
⎠

12

. (5)
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It would be interesting to give a more direct proof of this convergence.
When p = 2, 3, 5, 7, or 13 is a prime for which the modular curve X0(p) has genus zero,

the expression (5) is the norm to Fp of the differences of real quadratic singular moduli
explored in [3], and is therefore expected to be algebraic, and to lie in the compositum
H1 H2 of the ring class fields attached to the orders of discriminants D1 and D2.
The significance of the finer multiplicative invariant (5) for general p remains to be

explored. It is expected to be transcendental, and its logarithm is expected to relate to the
non-archimedean Green’s functions (in the sense of Sect. 3) of the Stark–Heegner points
on quotients of J0(p) with multiplicative reduction, attached to α1 and α2. These points
are conjecturally defined over ring class fields of K1 and K2.

Remark 2 In spite of ostensible similarities, there is an important difference with the
infinite products of cross ratios studied in [4], which have the shape

∏
b∈ �1\Mn/�2

( (τ1 − bτ2)(τ ′
1 − bτ ′

2)
(τ1 − bτ ′

2)(τ
′
1 − bτ2)

)(α1)�b(α2)
=

∏
b∈ �1\Mn/�2

(
g(τ1, bτ2)

g(τ1, bτ2) − 1

)(α1)�b(α2)

=
∏

b∈ �1\Mn/�2

(
g(τ1, bτ2)
g(τ ′

1, bτ2)

)(α1)�b(α2)
.

The p-adic convergence of this expression as n → ∞, proved more elementarily in [4,
Section 3], follows immediately from the stronger results in the present paper, but is far
less subtle.

In defining the Green’s function on RM geodesic cycles, we strive to emphasise their
strong analogy with p-adic Green’s functions on Mumford curves, as described by Gross
andWerner [13]. This description is recalled in Sect. 3, with a narrative that foreshadows
the extension to the real quadratic case, contained in Sect. 4.

2 Preliminaries
LetHp denote theDrinfeldp-adic upper half-plane, a rigid analytic spacewhose underlying
set of Cp-valued points is identified with P1(Cp) − P1(Qp). The projective line P1(Cp) is
endowed with a p-adic metric by setting

d((x1 : y1), (x2 : y2)) =
∣∣∣∣∣det

(
x1 x2
y1 y2

)∣∣∣∣∣
p
,

where the homogenous coordinates are always chosen to be primitive vectors inO2
Cp
. The

space Hp can be expressed as an increasing union

Hp =
∞⋃
n=0

H(n)
p , H(0)

p ⊂ H(1)
p ⊂ H(2)

p ⊂ · · · ⊂ H(n)
p ⊂ · · · ⊂ Hp

of the affinoid subsets

H(n)
p := {z ∈ P1(Cp) s.t. d(z, a) ≥ p−n for all a ∈ P1(Qp)}.
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The region H(n)
p is somewhat analogous to a Siegel domain in the Poincaré upper half-

plane, but its cohomology is richer, since it is the complement in P1(Cp) of the (p+1)pn−1

disjoint mod pn residue discs with Qp-rational centers.
A formal divisor on Hp is a formal, possibly infinite Z-linear combination

D =
∑
z∈Hp

mz · [z], mz ∈ Z

of elements of Hp. It is called a divisor if its support is finite, and a locally finite divisor if
its support intersects each affinoid H(n)

p in a finite set. Given any subset X of Hp, write

D ∩X :=
∑
z∈X

mz · [z], D (n) := D ∩H(n)
p .

If D is locally finite and X is an affinoid subset of Hp (or simply, is contained in H(n)
p for

some n) thenD ∩X is a divisor with support on X . The groups of degree zero divisors on
Hp, (finite) divisors, and locally finite divisors, are respectively denoted by

Div0(Hp) ⊂ Div(Hp) ⊂ Div†(Hp).

Let T := V � E be (the combinatorial realisation of) the Bruhat-Tits tree of SL2(Qp),
consisting of a collection V of vertices indexed by homothety classes of Zp-lattices in Q

2
p,

and a collection E of edges joining vertices that correspond to pairs of lattices that are,
after suitable rescaling, contained one in the other with index p. The homothety class of
the lattice Z

2
p corresponds to a distinguished vertex v◦ ∈ V , and a vertex of T is said to be

even if its distance from this distinguished vertex is even, and is said to be odd otherwise.
The Drinfeld half plane is equipped with a natural reduction map

red : Hp -→ T .

The inverse images of a vertex v is called its standard affinoid, denotedWv . All standard
affinoids are identified with complements in P1(Cp) of theFp-rational mod p residue discs
relative to a suitable coordinate on P1/Qp . These affinoids are glued together along the
p-adic annuli which are the inverse image under the reduction map of the edges of T . Let
W+

v be the union of the affinoidWv with the (p + 1) annuli attached to the edges having
v as an endpoint; it is a connected “wide open space” in the terminology of R. Coleman.
The p-adic upper half plane can be expressed as a disjoint union

Hp =
⋃
v∈V

�v, where �v =
{
W+

v if v is even;
Wv if v is odd.

The group SL2(Qp) acts onHp byMöbius transformations, and induces a unique action
on T for which the reduction map is equivariant. The subgroup SL2(Zp) fixes a vertex
v◦ ∈ V , and the affinoid H(n)

p is the preimage under the reduction map of the induced
subgraph of T on the vertices of distance ≤ n from v◦. The subsets �v are permuted
under the action of SL2(Qp), which preserves the parity of vertices. (For more background
on T and its connection to the Drinfeld half plane, the reader is invited to consult [8].)
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Write Z
V for the group of Z-valued functions on V . The degree map

Deg : Div†(Hp) → Z
V (6)

sending a locally finite divisorD to the function

v �→ deg(D ∩ �v)

plays the role of the usual degree in the setting of locally finite divisors. A locally finite
divisor which is in the kernel of the degree map is said to be of strong degree zero, and the
group of such divisors is denoted Div†0(Hp).
LetQ

nr
p be themaximal unramified extension ofQp. It is worth noting that the reduction

map sendsHnr
p := P1(Qnr

p )− P1(Qp) to V , since the inverse image of any open edge under
the reduction map is a GL2(Qp)-translate of the standard annulus {z : 1/p < |z| < 1},
which contains only ramified points. A divisor that is supported on Hnr

p is said to be
unramified, and the group of divisors and locally finite divisors that are unramified are
denoted Div(Hnr

p ) and Div†(Hnr
p ) respectively. Likewise, Div0(Hnr

p ) and Div†0(H
nr
p ) are the

relevant subgroups of divisors of degree zero and locally finite divisors of strong degree
zero. These groups of divisors are related by two short exact sequences:

0 → Div0(Hp) -→Div(Hp) -→Z → 0, (7)

0 → Div†0(Hp) -→Div†(Hp) -→ Z
V → 0. (8)

The fieldM of rigid meromorphic functions onHp is a suitable p-adic completion of the
fieldR of rational functions on P1. More precisely, a subset of Hp is called a good affinoid
if it is the preimage under the reductionmap of a finite closed subgraph of T . ACp-valued
function on Hp is rigid analytic if its restriction to each good affinoid subset X ⊂ Hp is
a uniform limit with respect to the sup norm of elements of R (having poles outside X ).
Note that for f to be rigid analytic, it is enough to require that its restriction to each H(n)

p
be expressible as such a limit. The setA of rigid analytic functions on Hp is a ring and its
fraction field, denotedM , is the field of rigid meromorphic functions on Hp.
Given a pair (D1,D2) of degree zero divisors on P1(Cp) with disjoint supports, theWeil

symbol [D1;D2] ∈ C
×
p is defined as the value atD1 of any rational function having divisor

D2. The following lemma extends the Weil symbol to a canonical pairing

Div0(Hp) × Div†0(Hp) -→ C
×
p .

Lemma 1 Let D1 be a degree 0 divisor on Hp and let D2 ∈ Div†0 (Hp) be a locally finite
divisor of strong degree zero. Then the sequence [D1;D (n)

2 ] converges to a well-defined limit

[D1;D2] := lim
n -→∞[D1;D (n)

2 ].

This extended Weil symbol is equivariant, i.e.,

[γ D1; γ D2] = [D1;D2] for all γ ∈ SL2(Qp).
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Proof We need to show that the sequence [D1;D (n)
2 ] forms a multiplicative Cauchy

sequence in n. Of course, it is enough to show this for all large enough n, so assume
without loss of generality that the divisor D1 is supported in H(m)

p and that n > m. Then
we have

D (n)
2 −D (n−1)

2 =
∑

d(v,v◦)=n
D2(v), D2(v) := D2 ∩red−1(v), (9)

where the sum is taken over all the vertices of T whose distance from v◦ is equal to n.
SinceD2 is of strong degree 0, the divisorsD2(v) are of degree 0, and therefore∣∣ [D1;D2(v)] − 1

∣∣
p ≤ pm−n, for all v with d(v, v◦) = n. (10)

It follows from (9) and (10) that
∣∣∣ [D1,D (n)

2 −D (n−1)
2 ] − 1

∣∣∣
p

≤ pm−n, for all n > m,

and the convergence follows. In fact, upon replacing the affinoid cover {H(n)
p }n≥0 by an

arbitrary increasing union of good affinoid subsets

Hp =
∞⋃
n=1

X n, X 1 ⊂ X 2 ⊂ · · ·X n ⊂ · · ·

the same argument shows that

[D1;D2] = lim
n→∞[D1;D2 ∩X n]. (11)

The �-invariance of the extended Weil symbol now follows from the �-invariance prop-
erties of the original Weil symbol:

[γ D1; γ D2] = lim
n→∞[γ D1; (γ D2) ∩ H(n)

p ]

= lim
n→∞[D1;D2 ∩(γ −1 H(n)

p )]

= lim
n→∞[D1;D2 ∩X n] by (11)

= [D1;D2].

��

The following corollary is the basis for our construction of p-adic Green functions, both
in the classical CM case discussed in Sect. 3 and the RM case discussed in Sect. 4.

Corollary 1 Let D ∈ Div†0 (Hp) be a locally finite divisor of strong degree zero, and let
ξp ∈ Hp be a base point which is disjoint fromD . The rational functions

f (n)D (z) := [(z) − (ξp);D (n)]

converge uniformly to a rigid meromorphic function fD with divisorD . For all b ∈ �,

fbD (bz) = fD (z) (mod C
×
p ).
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3 Green’s functions on CM points inHp

This section describes p-adic Green’s functions on Shimura curves, inspired by the treat-
ments in and [13]. The aimof this largely expository discussion is tomotivatewhat follows,
and to highlight the key aspects of the strong analogy with the Néron symbols for RM
geodesic cycles that will be defined in Sect. 4.

3.1 Shimura curves

We place ourselves in the arithmetic setup of Shimura curves associated to maximal
orders in quaternion algebras over Q. At primes p of bad reduction, these curves have
totally degenerate reduction, and admit an arithmetic uniformisation by Hp described by
Cerednik–Drinfeld [1,9].
Throughout this section 3, and this section only, it shall be assumed that R ⊂ B is a

maximal order in a definite quaternion algebra B of discriminant DB. Let p be a prime
that does not divide DB, and fix a p-adic splitting

B ⊗ Qp � M2(Qp) (12)

which identifies R ⊗ Zp with the standard maximal order M2(Zp) ⊂ M2(Qp). The group
(B ⊗ Qp)× acts on Hp by Möbius transformations, and on T , via the choice of splitting
(12). Let v◦ denote the unique vertex of T whose stabiliser in (B ⊗ Qp)× is (R ⊗ Zp)×.
The group� = R[1/p]×1 of norm one elements of R[1/p] can be expressed as an increas-

ing union of finite sets. Indeed, let R[d] be the set of elements in R of norm d, and define
�n := p−nR[p2n], then we have

� =
∞⋃
n=0

�n, �0 ⊂ �1 ⊂ · · · ⊂ �n ⊂ · · · ⊂ �. (13)

The finite subgroup �0 = R×
1 acts naturally on �n by left (or right) multiplication, and the

quotients �n/�0 are in bijection with the set of vertices of T at distance ≤ n from v◦.
The group � acts discretely on Hp by Möbius transformations. The theorem of

Cerednik–Drinfeld identifies the quotient �\Hp with the Cp-points of a Shimura curve
X , viewed as a rigid analytic space. We denote the resulting quotient map by

π : Hp -→ �\Hp = X(Cp).

3.2 Summary of the construction

Before delving into the details, a brief summary may be helpful. Given a CM divisor α on
X(Cp), i.e. a divisor supported on the images of fixed points of CM tori in �, there are
well-defined classes

Dα ∈ H0(�,Div(Hp)), D̂α ∈ H0(�,Div†(Hp)),

satisfying π∗(Dα) = α, and D̂α = π∗(α). The extended Weil symbol induces a pairing

[ , ] : H0(�,Div0(Hp)) × H0(�,Div†0(Hp)) -→ C
×
p .

The Néron symbol described below refines the logarithm of this pairing by allowing
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(1) H0(�,Div0(Hp)) to be replaced by its image in H0(�,Div(Hp)), denoted

H0(�,Div(Hp))0

and consisting of the divisors on Hp whose image on X has degree 0;
(2) H0(�,Div†0(Hp)) to be replaced by pullbacks of degree 0 divisors on X , denoted

H0(�,Div†(Hp))0

in what follows. It is the group of locally finite divisors on Hp whose restriction to
any fundamental region for the action of � on Hp is of degree 0.

This leads to a bi-additive function

[ , ]Neron : H0(�,Div(Hp))0 × H0(�,Div†(Hp))0 -→ Cp

satisfying

[D1, D̂2]Neron = logp([D1, D̂2])

whenever both sides are defined. The Green’s function is then defined on CM divisors α

and β on �\Hp by the rule

Gp(α,β) = [Dα , D̂β ]Neron.

3.3 The homology of divisors

Taking the�-homology of the short exact sequence in (7) leads to the long exact homology
sequence

· · · -→H1(�,Z)
δ-→ H0(�,Div0(Hp))

j
-→ H0(�,Div(Hp))

deg
-→ Z -→ 0. (14)

The kernel of the map deg in this sequence is the group H0(�,Div(Hp))0. The connecting
map δ sends b ∈ H1(�,Z) = �ab to the class of the degree zero divisor (bξp)− (ξp), where
ξp ∈ Hp is an arbitrarily chosen base point.
Let Snewk (D) be the space of newforms of weight k and level D.

Lemma 2 The groupH1(�,Z) = �ab is isomorphic modulo torsion to the character group
of the torus uniformising the Jacobian of X, and has rank g = genus(X). It is annihilated
by any Hecke operator that kills Snew2 (pDB).

Proof The p-adic period pairing recalled in Sect. 3.5 (cf. Remark 3) canonically identifies
the Cp-points of the Jacobian of X with the quotient of H1(�,C×

p ) by a lattice, , i.e. a
discrete (multiplicative) subgroup of maximal rank over Z (equal to g). The first assertion
follows from this. The second is a consequence of the Jacquet–Langlands correspondence
between forms on B× and on GL2,Q. ��

If the divisor α ∈ Div(�\Hp) is of degree zero, then Dα ∈ H0(�,Div(Hp)) can be
lifted to a class in H0(�,Div0(Hp)), but this lift is not unique: any two lifts differ by a
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class in δ(H1(�,Z)). An important ingredient in the definition of the Néron symbol is the
construction, after tensoring with Q, of a canonical right inverse of the surjective map

j : H0(�,Div0(Hp)) -→H0(�,Div(Hp))0

from (14), leading to a direct sum decomposition

H0(�,Div0(Hp)) ⊗ Q = δ(H1(�,Q)) ⊕ H0(�,Div(Hp))0 ⊗ Q .

Thismap is constructed in Sect. 3.6 using the non-degeneracy of the p-adic period pairing.

3.4 The cohomology of locally finite divisors

The �-cohomology of the short exact sequence in (8) gives rise to another long exact
sequence,

0 → H0(�,Div†0(Hp)) -→H0(�,Div†(Hp))
Deg
-→ H0(�,ZV ) -→· · · (15)

Lemma 3 The target of the mapDeg is isomorphic to two copies of the space of unramified
automorphic forms on B×. It is annihilated by any Hecke operator that kills Snew2 (DB).

Proof The setV is identifiedwith (B⊗Qp)×/(R⊗Zp)×. The group� preserves the subsets
Veven and Vodd of vertices that are at even and odd distance from v◦, respectively. The
quotient �\V is thus in natural bijection with two copies of

R[1/p]×\(B ⊗ Qp)×/(R ⊗ Zp)× = B×\(B ⊗ AQ)×/(R ⊗ Ẑ)×,

where the equality follows from strong approximation for R[1/p]×. The set of functions
on the rightmost double coset space is the space of automorphic forms on B× of level
1, so the first assertion follows. The second is a consequence of the Jacquet–Langlands
correspondence between forms on B× and on GL2,Q. ��

3.5 The p-adic period pairing

LetM× denote themultiplicative group of rigid meromorphic functions onHp. Consider
the natural maps

� : H0(�,Div0(Hp)) -→ H0(�,M×/C
×
p ),

�� : H0(�,Div(Hp)) -→ H0(�,Div†(Hp)),

defined by choosing a base point ξp ∈ Hp and setting

�(D)(z) =
∏
b∈�

[(z) − (ξp); bD], ��(D) =
∑
b∈�

bD . (16)

They fit into a commutative diagram with exact rows

H1(�,Z)

H0(�,A ×
/C×

p )

H0(�,Div0(Hp))

H0(�,M ×
/C×

p )

H0(�,Div(Hp))

H0(�,Div†(Hp))

Z 0

· · ·

· · ·

0

δ j deg

� � ��

(17)
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where the top row is (14) and the bottom row is the long exact sequence in cohomology
associated to the short exact sequence of �-modules

1 → A ×/C
×
p -→M×/C

×
p -→Div†(Hp) → 1.

Let

per : H0(�,A ×/C
×
p ) -→H1(�,C×

p )

be the connecting homomorphism in the cohomology of the short exact sequence

1 → C
×
p -→A × -→A ×/C

×
p → 1.

Composing the leftmost map � in (17) with this injective period homomorphism yields
a map

η� := per ◦ � : H1(�,Z) -→H1(�,C×
p )

which induces pairings

〈 , 〉� : H1(�,Z) × H1(�,Z) -→ C
×
p . (18)

This is the p-adic period pairing that arises in the Mumford–Schottky theory of p-adic
uniformisation of X(Cp). The following theorem is well-known.

Proposition 1 The Z-valued pairing ordp(〈 , 〉�) is positive definite and hence non-
degenerate.

Proof See [10, §4] for example. ��

Remark 3 It follows that η�(�ab) is a lattice in H1(�,C×
p ). The p-adic torus

JacX (Cp) := H1(�,C×
p )/η�(�ab)

is identified with (the Cp-points of) the Jacobian of X , and the map

H0(�,Div(Hp))0 -→H1(�,C×
p )/η�(�ab)

sending a divisor D to the periods of the rigid analytic function �(D̃) on Hp (where D̃
is any lift ofD to H0(�,Div0(Hp))) realises the p-adic Abel–Jacobi map.

3.6 Unitary divisors

A natural Q-vector space complement of

δ(H1(�,Z))Q := δ(H1(�,Z)) ⊗ Q

in H0(�,Div0(Hp)) can be defined by exploiting the map

ordp ◦ per ◦ � : H0(�,Div0(Hp)) -→H1(�,Z).
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Proposition 1 implies that the kernel

H0(�,Div0(Hp))�Q := ker
(
ordp ◦ per ◦ � : H0(�,Div0(Hp))Q -→H1(�,Q)

)
(19)

is complementary to δ(�ab) ⊗ Q. Following the terminology in [§10], a class in
H0(�,Div0(Hp))�Q is said to be unitary. GivenD ∈ H0(�,Div(Hp))0⊗Q, its unique unitary
lift shall be denoted

D� ∈ H0(�,Div0(Hp))�Q.

While explicit unitary lifts are not usually apparent, Lemma 4 provides a useful excep-
tion. Let

Div00(Hnr
p ) := Div(Hnr

p ) ∩ Div†0(Hp) ⊂ Div0(Hnr
p ).

The 0-cycles in Div00(Hnr
p ) admit a natural geometric interpretation: their pushforwards

to the Shimura curve X are unramified divisors whose restriction to each irreducible
component of the special fiber of X at p is of degree zero.

Lemma 4 The image of the natural map

H0(�,Div00(Hnr
p ))Q -→H0(�,Div0(Hp))Q

is contained in H0(�,Div0(Hp))�Q.

Proof This follows from the fact that if D is represented by a divisor in Div00(Hnr
p ), the

quantities

[D ; (bγ ξp) − (bξp)], b ∈ �

are p-adic units, as can be seen by reducing to the case whereD is supported on red−1(v)
for a single vertex v of T , and choosing the base point ξp to reduce to a vertex that is not
�-equivalent to v. (The latter is always possible since there are always at least two distinct
�-orbits for the action of � on V .) ��

3.7 Rigid meromorphic functions and principal divisors

LetM× denote the multiplicative group of rigid meromorphic functions onHp. A locally
finite divisor in the image of the natural divisor map

H0(�,M×) -→H0(�,Div†(Hp)) (20)

is called a principal divisor, and the group of such divisors is denoted P0(�,Div†(Hp)).
Any principal divisor on Hp is the pullback under π of an element in the group P(X) of
principal divisors onX(Cp) = �\Hp. LetP0(�,Div†(Hnr

p )) denote the group ofunramified
principal divisors on �\Hp.
Note H0(�,Div†0(Hp)) and P0(�,Div†(Hnr

p )) are both contained in H0(�,Div†(Hp))0.
The following lemma plays an important role in the definition of the Néron symbol.

Lemma 5 The groups H0(�,Div†0 (Hp)) and P0(�,Div†(Hnr
p )) together generate a finite

index subgroup of H0(�,Div†(Hp))0.
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Proof Let � denote the natural image of the group P0(�,Div†(Hnr
p )) in Z

�\V under the
map Deg of (15). By Cerednik–Drinfeld Sect. 3.1, the quotient group

H0(�,Div†(Hnr
p ))

P0(�,Div†(Hnr
p ))

= Div0(X(Qnr
p ))

P(X(Qnr
p ))

is annihilated by any Hecke operator that kills Snew2 (pDB), whereas the target Z
�\V of the

degree map is annihilated by any Hecke operator that kills Snew2 (DB). Since the spectra
of these two spaces of newforms are disjoint, one can choose a Hecke operator T that
annihilates Div0(X)/P(X) while acting invertibly on Q

�\V . The quotient Z
�\V/� is then

annihilated by T , since it is a homomorphic image of Div0(X)/P(X), and therefore it must
be finite. The lemma follows. ��

Remark 4 The proof of Lemma 5 may strike the reader as being somewhat overwrought,
invoking the theory of Cerednik-Drinfeld and of automorphic forms on definite quater-
nion algebras to prove what is in fine a general fact about rigid meromorphic functions
on Mumford curves. It is presented here to motivate the almost identical proof of the
analogous Lemma 12 in the setting of indefinite quaternion algebras, where the geometry
of Mumford curves is ostensibly inapplicable.

Given an unramified principal divisor that also lies in H0(�,Div†0(Hp)), the following
lemma recovers a function with that divisor in terms of the multiplicative Weil symbol.

Lemma 6 Suppose that

D ∈ H0(�,Div†0 (H
nr
p )) ∩ P0(�,Div†(Hnr

p ))

is an unramified principal divisor of strong degree zero. Then the rigid meromorphic func-
tion

fD (z) := [(z) − (ξp);D]

is a �-invariant rigid meromorphic function having D as its divisor. Its natural image in
H0(�,M×)/C

×
p does not depend on the choice of ξp ∈ Hp.

Proof The rigid meromorphic function fD on Hp is �-invariant up to multiplicative con-
stants, by Corollary 1. To compute its periods, let D0 ∈ H0(�,Div00(Hnr

p )) be any divisor
satisfying

D = π∗π∗(D0).

Lemma 4 implies that the periods

fD (γ z)/fD (z) = [(ξp) − (γ ξp);D] =
∏
b∈�

[(ξp) − (γ ξp); bD0]

=
∏
b∈�

[D0; (bξp) − (bγ ξp)]

are p-adic units, for all γ ∈ �. Let FD be a �-invariant function having D as its divisor.
Then the ratio FD /fD is a rigid analytic function on Hp whose periods are p-adic units.
They must therefore be trivial, since the image of the connecting homomorphism

H0(�,A × /C
×
p ) -→H1(�,C×

p ) � (C×
p )g
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is a lattice in H1(�,C×
p ). The ratio FD /fD is therefore �-invariant and hence constant by

Liouville’s theorem. ��

3.8 p-adic Néron symbols and Green’s functions

The Néron symbol can now be defined. Denote the set of pairs of divisors with disjoint
supports by

H0(�,Div(Hp))0 ×̂ H0(�,Div†(Hp))0 ⊂ H0(�,Div(Hp))0 × H0(�,Div†(Hp))0.

Theorem 1 There is a unique bi-additive function

[ , ]Neron : H0(�,Div(Hp))0 ×̂ H0(�,Div†(Hp))0 -→ Cp

satisfying, for all (D1, D̂2) in its domain, that

(1) if D̂2 is of strong degree zero,

[D1, D̂2]Neron = logp[D
�
1; D̂2];

(2) if D̂2 = (f ) is unramified and principal,

[D1, D̂2]Neron = logp f (D1).

Proof The uniqueness of a symbol with these two properties follows from Lemma 5 since
Cp is uniquely divisible. To check existence, note that if D̂2 ∈ H0(�,Div†(Hp))0 then there
is a pair (P , D̂0

2) satisfying

P ∈ P0(�,Div†(Hnr
p )), D̂

0
2 ∈ H0(�,Div†0(Hp)), D̂2 = P +D̂

0
2

which is well defined up to replacing (P , D̂0
2) with (P +δ, D̂0

2 − δ), where

δ ∈ H0(�,Div†0(Hp)) ∩ P0(�,Div†(Hnr
p ))

is the divisor of a �-invariant rigid meromorphic function f . The resulting Néron symbol
[D1, D̂2]Neron is then changed by

logp f (D1) − logp[D
�
1; δ] = logp f (D1) − logp fδ(D

�
1)

= logp f (D1) − logp fδ(D1) = 0,

where

(1) fδ(D) is the rigid meromorphic function constructed in Lemma 6;
(2) the second equality follows from the fact that fδ(D) depends only on the image ofD

in H0(�,Div(Hp))0;
(3) the penultimate expression vanishes because f and fδ have the samedivisor andhence

differ by an element of H0(�,A ×) = C
×
p , and therefore these functions coincide on

degree zero divisors.

��
With the Néron symbol in hand, the Green’s function Gp can now be defined:
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Definition 1 The Green’s function

Gp : Div0(�\Hp) ×̂ Div0(�\Hp) -→ Cp

is defined by setting

Gp(α1,α2) = [Dα1 , D̂α2 ]Neron.

4 Green’s functions on RM cycles inH×Hp

4.1 The set-up

It will be assumed throughout Sect. 4 that R is the (unique, up to conjugation) maximal
order in an indefinite quaternion algebra B of discriminant DB, and that � = R[1/p]×1 .
Because (B ⊗ R)×1 � SL2(R) is non compact, the group � no longer acts discretely on
Hp. It can be expressed as an increasing union of sets just as in (13), but the subgroup
�0 = R×

1 is now an infinite arithmetic subgroup of �, acting discretely on H by Möbius
transformations. The quotient�0\H (suitably compactifiedwhenB is the split quaternion
algebra M2(Q)) is identified with the complex points of a Shimura curve, whose space of
regular differentials is isomorphic to Snew2 (DB) as a Hecke module.
On the other hand, the quotients �0\Hp or �\Hp ostensibly lack a clear connection to

geometric objects like Shimura curves, and H0(�0,Div†(Hp)) is trivial. The group � does
act discretely on H×Hp, and it is suggestive to view the quotient �\(H×Hp) as a “mock
Hilbert modular surface” endowed with a supply of closed cycles of real dimension one
which will now be described.
Let K be a real quadratic field in which all the primes dividing pDB are non-split, let O

be a (not necessarily maximal) order in K , and let α : K -→B be an algebra embedding,
satisfying α(K ) ∩ R = α(O). Let τα ∈ Hp denote the fixed point of α(K×) acting on Hp,
normalised by requiring that K× act on the tangent space of τα via the chosen embedding
of K into Cp. The stabiliser of α in � or �0 is a group of rank one, generated up to torsion
by the automorph

γα ∈ �α := Stab�(α).

Choose a base point ξ∞ ∈ H and let Zα denote the image of the one-chain

D̃α := [ξ∞, γαξ∞] × {τα} ⊂ H×Hp (21)

in the quotient space �\(H×Hp), where [z1, z2] represents the hyperbolic geodesic seg-
ment on H joining z1 to z2. The RM point τα ∈ �\HRM

p thus corresponds to the closed
cycle Zα of real dimension one in the quotient space �\(H×Hp). Let Z1(�\(H×Hp))
denote the free abelian group generated by these cycles, as α varies over all embeddings
into R of real quadratic orders in which all primes dividing pDB are non-split.
Theorem 1will be generalised to the indefinite setting by passing to higher cohomology,

in order to define a Green’s function on Z1(�\(H×Hp)) that mixes topological intersec-
tions at the archimedean place with rigid analytic function theory at p.

4.2 Cohomological preliminaries

Recall that, ifM is any �-module, then

H1(�,M) := Z1(�,M)/B1(�,M), H1(�,M) := Z1(�,M)/B1(�,M),
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where the groups appearing in the definition of H1(�,M) are

Z1(�,M) =
{∑

σi ⊗ mi ∈ Z[�] ⊗ M :
∑

mi − σ−1
i mi = 0

}
,

∪
B1(�,M) =

〈
στ ⊗ m − σ ⊗ m − τ ⊗ σ−1m

〉
,

and those appearing in the definition of H1(�,M) are

Z1(�,M) = {
f : � → M : f (στ ) = f (σ ) + σ f (τ ) for all σ , τ ∈ �

}
,

∪
B1(�,M) = {f : � → M : f (σ ) = σm − m, for somem ∈ M}.

If D and D
′ are two left �-modules equipped with a �-equivariant pairing

[ , ] : D × D
′ -→ C

×
p ,

then there is an induced pairing

[ , ] : H1(�,D) × H1(�,D′) -→ C
×
p ;

[∑
σi ⊗ δi, f

]
=
∑

[δi, f (σi)].

Applying this general fact to the extendedWeil symbol [ , ] on themodulesD = Div0(Hp)
and D

′ = Div†0(Hp), one obtains from the extended Weil symbol an induced pairing

[ , ] : H1(�,Div0(Hp)) × H1(�,Div†0(Hp)) -→ C
×
p

denoted in the same way by a slight abuse of notation. The idea will be to upgrade the
p-adic logarithm of this pairing to a Néron symbol

[ , ]Neron : H1(�,Div(Hp)) ×̂ H1(�,Div†(Hp)) -→ Cp,

and, analogous to Definition 1, to parlay this symbol into a Green’s function

Gp : Z1(�\(H×Hp)) ×̂ Z1(�\(H×Hp)) -→ Cp.

4.3 RM cycles and divisor-valued homology classes

This section and the next explain how an RM cycle Zα ∈ Z1(�\(H×Hp)) attached to an
embedding α of a real quadratic order into R gives rise to natural classes

Dα ∈ H1(�,Div(Hp)), D̂α ∈ H1(�,Div†(Hp)).

Definition 2 The class in H1(�,Div(Hp)) associated to α is defined by

Dα = γα ⊗ [τα].

The assignment α �→ Dα extends by linearity to a map

Z1(�\(H×Hp)) -→H1(�,Div(Hp)).

It will sometimes be useful to attach toDα a finite linear combination D̃α of (non-closed)
geodesic segments in H×Hp satisfying π∗(D̃α) = Zα . This is done by choosing a base
point ξ∞ ∈ H, and defining D̃α as in (21).
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4.4 RM cycles and divisor-valued cohomology classes

The construction of the class

D̂α ∈ H1(�,Div†(Hp))

attached to α ∈ �\HRM
p , which we now describe, is slightly more involved.

Recall that (α) ⊂ H denotes the oriented open geodesic on H attached to α. For each
b ∈ �/�α , we obtain a well-defined point and open geodesic

bτα ∈ Hp, b(α) ⊂ H .

Choose a base point ξ∞ ∈ H in the complement of the �-translates of all the geodesics
in � · (α). The choice of ξ∞ ensures that the open geodesics b(α) in H intersect properly
with the closed geodesic segment [ξ∞, γ ξ∞]. After choosing an orientation on H, which
is fixed henceforth, we obtain a well-defined intersection number

[ξ∞, γ ξ∞] � b(α) ∈ {−1, 0, 1}.

For any γ ∈ �, consider the formal divisor defined by

D̂α(γ ) :=
∑

b∈�/�α

([ξ∞, γ ξ∞] � b(α)) · [bτα]. (22)

Lemma 7 The formal divisor D̂α(γ ) is locally finite. The assignment γ �→ D̂α(γ ) defines a
one-cocycle on � with values inDiv†(Hp)whose image inH1(�,Div†(Hp)) does not depend
on the choice of base point ξ∞ that was made to define it.

Proof To prove the first assertion it suffices to show that for each n ≥ 0, the divisor

D̂
(n)
α (γ ) := D̂α(γ ) ∩ H(n)

p =
∑

b∈�n/�α

([ξ∞, γ ξ∞] � b(α)) · [bτα]

has finite support. But the union of geodesic cycles
∑

b∈�n/�α

b(α)

onH is invariant under �0, and is the pull-back toH of a finite union, indexed by elements
of the finite set �0\�n/�α , of geodesics on �0\H under the natural projection π : H →
�0\H. Let ξ denote this closed geodesic on �0\H, satisfying

π∗(ξ ) =
∑

b∈�n/�α

b(α). (23)

The support of D̂ (n)
α (γ ) is contained in the intersection of π∗(ξ ) with the closed geodesic

segment [ξ∞, γ ξ∞]. But π induces a bijection between this set and the intersection of the
closed geodesic ξ and π∗([ξ∞, γ ξ∞]) in �0\H. Since the latter intersection is finite, the
first assertion follows. The second assertion is the result of a standard calculation verifying
that D̂α satisfies the cocycle relation, and is left to the reader. ��
The assignment α �→ D̂α in (22) extends by linearity to a homomorphism

Z1(�\(H×Hp)) -→H1(�,Div†(Hp)).
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4.5 The homology of divisors

The �-homology of the short exact sequence in (7) leads to the long exact sequence

· · · -→H2(�,Z)
δ-→ H1(�,Div0(Hp))

j
-→ H1(�,Div(Hp)) -→H1(�,Z) -→· · · (24)

Since H1(�,Z) is finite, one has, after tensoring with Q,

· · · -→H2(�,Q) δ-→ H1(�,Div0(Hp))Q
j

-→H1(�,Div(Hp))Q → 0, (25)

which is formally similar to (14), with the notable difference that the cohomological
degrees have increased by 1.
Just like the group H1(�,Z) arising in (14), the group H2(�,Z) is intimately connected

to Snew2 (pDB). More precisely, let R0(p) be an Eichler order of level p in the quaternionic
order R and let �

(p)
0 := R0(p)×1 . The following lemma is analogous to Lemma 2.

Lemma 8 The group H2(�,Q) is isomorphic to the p-new part of H1(�
(p)
0 \H,Q). In par-

ticular, it is annihilated by any Hecke operator that kills Snew2 (pDB).

Proof Let
→
E be the set of ordered edges of T , and let Z[

→
E ] and Z[V] be the set of finite

linear combinations of elements of
→
E and V respectively. The Z-linear map d : Z[

→
E

] -→ Z[V] satisfying d([v1, v2]) = [v2] − [v1] fits into a short exact sequence

0 → Z[
→
E ] d-→ Z[V] deg

-→ Z → 0

of �-modules. Taking its homology and invoking Shapiro’s lemma shows that H2(�,Z)
maps to the p-new part of H1(�

(p)
0 ,Z) with finite kernel and co-kernel. Since the group

�
(p)
0 gives the (complex!) uniformisation of the Shimura curve Xp,DB attached to DB and

auxiliary Eichler level structure at p, the result follows. ��
In conclusion, any classDα ∈ H1(�,Div(Hp))Q attached to an RM cycle Zα can be lifted

to a class in H1(�,Div0(Hp))Q, but this lift is not unique: any two lifts differ by a class in
δ(H2(�,Z)). An important ingredient in the definition of the Néron symbol on RM cycles
is the construction of a canonical right inverse of the surjective map j in (25), leading to a
direct sum decomposition

H1(�,Div0(Hp))Q = δ(H2(�,Q)) ⊕ H1(�,Div(Hp))Q.

This shall be carried out in Sect. 4.8.

4.6 The cohomology of locally finite divisors

The �-cohomology of the short exact sequence (8) leads to the long exact sequence,
analogous to (15):

0 → H1(�,Div†0(Hp)) -→H1(�,Div†(Hp))
Deg
-→ H1(�,ZV ) -→ · · · (26)

The following is the counterpart of Lemma 3 for indefinite quaternion algebras:

Lemma 9 The target of the degree map Deg is equal to

H1(�,ZV ) � H1(XDB (C),Z)2,

where XDB is the Shimura curve that is uniformised by �0 over C. In particular, this target
is annihilated by any Hecke operator that kills Snew2 (DB).
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Proof By Shapiro’s lemma, the group H1(�,ZV ) is identified with H1(�0,Z)2, since there
are precisely two �-orbits in V and the vertex stabilisers are isomorphic to �0. Since
�0 is the group that uniformises the Shimura curve XDB (C), there is an isomorphism
H1(�0,Z) � H1(XDB (C),Z). The last assertion is a consequence of the Jacquet–Langlands
correspondence. ��

4.7 The p-adic period pairing

The goal of this section is to define a period pairing

〈 , 〉� : H2(�,Z) × H2(�,Z) -→ C
×
p (27)

playing the role of (18) in the setting of indefinite quaternion algebras.
Two base points η∞ and ξ∞ ∈ H are said to be in generic position (relative to the group

�) if η∞ does not lie on any geodesic segments of the form [γ1ξ∞, γ2ξ∞] with γ1, γ2 ∈ �,
and likewise ξ∞ lies on no geodesic segment of the form [γ1η∞, γ2η∞]. This implies that,
for any r, s ∈ �η∞ and any t, u ∈ �ξ∞, the geodesic segments [r, s] and [t, u] must always
intersect transversally (if at all).

Lemma 10 A pair (ξ∞, η∞) of base points in H in generic position relative to � exists.

Proof Let QB be the quadric over Q whose points over a field E are given by

QB(E) := {x ∈ B ⊗ E such that Trace(x) = Nrd(x) = 0}/E×.

Identifying H with QB(C) − QB(R), the action of B× on H becomes independent of the
choice of a real splitting ofB, andwe canwriteH(E) := QB(E)−QB(R) for any subfield E of
C. Let E1, E2 ⊂ C be two linearly disjoint abelian CM extensions ofQ. Choose ξ∞ ∈ H(E1)
in such a way that its Galois conjugates in H do not all lie on a common geodesic. Such a
property is readily achieved once the degree of E1 is large enough. Make a similar choice
for η∞, withE1 replaced byE2. Given any γ1, γ2 ∈ �, the defining equation for the geodesic
through γ1η∞ and γ2η∞ involves only addition, multiplication, and complex conjugation,
which commutes with the automorphisms of E1E2. It follows that

ξ∞ ∈ [γ1η∞, γ2η∞] ⇒ ξσ∞ ∈ [γ1ησ∞, γ2ησ∞], for all σ ∈ Gal(E1E2/ Q).

In particular, if ξ∞ lies on a geodesic segment of the form [γ1η∞, γ2η∞], then the same has
to be true of all of its conjugates by Gal(E1E2/E2) = Gal(E1/ Q), contradicting the choice
of ξ∞. The same argument applied to η∞, with E1 replaced by E2, leads to the conclusion
that (ξ∞, η∞) are in general position. ��
Recall thatA × andM× denote themultiplicative group of rigid analytic andmeromor-

phic functions on Hp. Fix a pair (η∞, ξ∞) of base points in H in generic position relative
to �, and choose a base point ξp ∈ Hp. These choices will be used to define natural maps,
in analogy with (16),

� : H1(�,Div0(Hp)) -→ H1(�,M× /C
×
p ),

�� : H1(�,Div(Hp)) -→ H1(�,Div†(Hp)).
(28)

The map � sends the elementD =∑i γi ⊗ D i ∈ H1(�,Div0(Hp)) to the cocycle

�(D)(γ )(z) =
∏
i

∏
b∈�

[(z) − (ξp); bD i][η∞ ,γ η∞]�[bξ∞,bγiξ∞]. (29)
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The infinite product defining�(D)(γ ) as a function of z converges uniformly on affinoid
subsets to a rigid meromorphic function and is independent of the choice of base point
ξp ∈ Hp, up to multiplication by C

×
p . Furthermore, the assignment γ �→ �(D)(γ )

defines a one-cocycle on � with values inM× /C
×
p whose image in H1(�,M× /C

×
p ) does

not depend on the choices of complex base points η∞ and ξ∞ that were made to define
the cocycle �(D).
Themap�� sends the elementD (where theD i are no longer assumed to be necessarily

of degree zero) to the cocycle

��(D)(γ ) =
∑
i

∑
b∈�

([η∞, γ η∞] � [bξ∞, bγiξ∞]) · bD i .

These maps fit into the commutative diagram with exact rows, analogous to (17),

H2(�,Z)

H1(�,A ×/C
×
p )

H1(�,Div0(Hp))

H1(�,M×/C
×
p )

H1(�,Div(Hp))

H1(�,Div†(Hp))

· · ·

· · ·

· · ·

0

δ j

� � ��
(30)

where the top row is (24) and the second row arises from the cohomology of the short
exact sequence

1 → A × /C
×
p -→M× /C

×
p -→Div†(Hp) → 1.

Composing the leftmost map � in (30) with the period homomorphism

per : H1(�,A × /C
×
p ) -→H2(�,C×

p ) (31)

arising from cohomology of the short exact sequence 1 → C
×
p -→A × -→A × /C

×
p → 1

yields a homomorphism

η� := per ◦ � : H2(�,Z) -→H2(�,C×
p )

which induces the period pairing in (27) . This pairing is entirely analogous to the p-adic
period pairing (18) arising in the Mumford-Schottky theory of p-adic uniformisation of
Shimura curves when B is a definite quaternion algebras. The following extends Proposi-
tion 1 to the setting of indefinite quaternion algebras.

Proposition 2 The Z-valued pairing ordp(〈 , 〉�) is non-degenerate.
Proof The appendix of [5] explains that the natural image ofH1(�,A × /C

×
p ) inH2(�,C×

p )
is a lattice in this p-adic torus, and the proposition follows from this. ��
Remark 5 As is explained in the appendix of [5], the quotient

H2(�,C×
p )/η�(H2(�,Z))

appears to uniformise an abelian variety which is isogenous to (two copies of) the new part
of J0(pDB). This assertion can be viewed as a suggestive reformulation of the “exceptional
zero conjecture” of Mazur, Tate, and Teitelbaum.
The reader is invited to consult [7] where the lattice per(H1(�,A × /C

×
p )) is studied in

greater depth.
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4.8 Unitary classes

As in Sect. 3.6, a natural Q-vector space complement of j(H2(�,Q)) in H1(�,Div0(Hp))Q
can now be produced, by exploiting the map

η� := ordp ◦ per ◦ � : H1(�,Div0(Hp)) -→H2(�,Z),

and setting

H1(�,Div0(Hp))�Q := ker(η�) ⊂ H1(�,Div0(Hp))Q. (32)

Proposition 2 implies that H1(�,Div0(Hp))�Q is complementary to δ(H2(�,Q)). Any class
D ∈ H1(�,Div(Hp))Q therefore admits a unique unitary lift, denoted

D� ∈ H1(�,Div0(Hp))�Q.

The following analogue of Lemma 4 provides an explicit construction of unitary classes
in some cases:

Lemma 11 Let Div00(Hnr
p ) be defined as in Lemma 4. The natural image of the map

H1(�,Div00(Hnr
p ))Q -→H1(�,Div0(Hp))Q

is contained in H1(�,Div0(Hp))�Q.

Proof This follows from the same reasoning as in the proof of Lemma 4. Namely, if D
belongs to Div00(Hnr

p ) then theWeil symbol [D ; (bγ ξp)− (bξp)] is always a p-adic unit for
any b ∈ �, as can be seen by reducing to the case where D is supported on red−1(v) for a
single vertex v of the tree, and choosing the base point ξp to reduce to a vertex that is not
�-equivalent to v. Hence the same holds for

(per ◦ �(D))(γ ) =
∏
b∈�

[D ; (bγ ξp) − (bξp)],

and the lemma follows. ��

4.9 Rigid meromorphic cocycles and principal classes

A rigid meromorphic cocycle for � is a one-cocycle on � with values inM×. They play the
same role in the indefinite setting as rigid meromorphic functions on the Shimura curve
X in the definite setting.
A rigid meromorphic or analytic theta-cocycle for � is a one-cocycle on � with values in

M× /C
×
p orA × /C

×
p respectively. Recall the homomorphism

per : H1(�,M×/C
×
p ) -→H2(�,C×

p ) (33)

whose restriction to H1(�,A × /C×
p ) is the period map of (31).

A class in the image of the natural map

Div : H1(�,M×) -→H1(�,Div†(Hp)). (34)

is called a principal divisor, and the group of such objects is denoted P1(�,Div†(Hp)). The
following lemma is the analogue in the indefinite setup of Lemma 5.
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Lemma 12 The groups H1(�,Div†0 (Hp)) and P1(�,Div†(Hnr
p )) together generate a finite

index subgroup of H1(�,Div†(Hp)).

Proof Let � denote the image of the group P1(�,Div†(Hnr
p )) in H1(�,ZV ) under the

map induced by the degree Deg : Div†(Hp) -→ Z
V . Any prime-to-p Hecke operator that

annihilates Snew2 (pDB) sends H1(�,Div†(Hnr
p )) to P1(�,Div†(Hnr

p )), and therefore kills the
quotient H1(�,ZV )/�. On the other hand, the target H1(�,Z∨) of the degree map is
annihilated by any Hecke operator that kills Snew2 (DB), by Lemma 9. Since the spectra of
the Hecke operators on the spaces of newforms of levels DB and pDB are disjoint, one
can choose a Hecke operator T that annihilates H1(�,ZV )/� while acting invertibly on
H1(�,Q�\V ). The quotient H1(�,ZV ))/� is annihilated by such a T , and is therefore
finite. ��

Given a principal class in P1(�,Div†(Hnr
p )) that also lies in H1(�,Div†0(Hp)), the fol-

lowing lemma recovers a rigid meromorphic cocycle with that divisor in terms of the
multiplicative Weil symbol.

Lemma 13 Consider an unramified class

D ∈ H1(�,Div†0 (Hp)) ∩ P1(�,Div†(Hnr
p ))

which is principal and of strong degree zero. Then the rigid meromorphic functions

JD (γ )(z) := [(z) − (ξp);D(γ )]

indexed by γ ∈ �, define a rigid meromorphic cocycle on � having D as its divisor. Its
cohomology class in H1(�,M×) does not depend on the choice of ξp ∈ Hp up to torsion.

Proof The rigid meromorphic functions JD (γ ) onHp satisfy the cocycle relation for � up
to multiplicative constants, by Corollary 1. The same reasoning as in the proof of Lemma
4 shows that the image of JD in H2(�,C×

p ) under the period map per of (33) is contained
inH2(�,O×

Cp
). Let J ∈ H1(�,M×) be a rigidmeromorphic cocycle havingD as its divisor.

Then the ratio JD /J gives rise to a class in H1(�,A × /C
×
p ) whose image in H2(�,C×

p ) is
contained in H2(�,O×

Cp
). Because

per(H1(�,A × /C
×
p )) ⊂ H2(�,C×

p )

is a lattice, it follows that JD /J lifts to a class in H1(�,A ×), and therefore that JD belongs
toH1(�,M×), as was to be shown.Note that a change of base point ξp changes the cocycle
by an element of H1(�,C×

p ), a group of order at most 12. ��

4.10 p-adic Néron symbols and Green’s functions for RM cycles

Note that the extended Weil symbol gives a natural pairing

[ , ] : H1(�,Div0(Hp)) × H1(�,Div†0(Hp)) -→ C
×
p .

The following theorem is the indefinite counterpart of Theorem 1.
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Theorem 2 There is a unique bi-additive function

[ , ]Neron : H1(�,Div(Hp)) × H1(�,Div†(Hp)) -→ Cp

satisfying, for allD1 ∈ H1(�,Div(Hp)) and D̂2 ∈ H1(�,Div†(Hp)),

(1) if D̂2 ∈ H1(�,Div†0 (Hp)) is of strong degree zero,

[D1, D̂2]Neron = logp([D
�
1; D̂2]);

(2) if D̂2 is the divisor of the rigid meromorphic cocycle J2 and is unramified, then

[D1, D̂2]Neron = logp(J2[D1]).

Proof Theproof proceeds along the same lines as the proof of Theorem1.The uniqueness
follows from Lemma 12 since Cp is uniquely divisible. To check existence, let us define
[D1, D̂2]Neron by writing D̂2 = P +D̂

0
2 with

P := Div(JP ) ∈ P1(�,Div†(Hnr
p ))Q, D̂

0
2 ∈ H1(�,Div†0(Hp))Q,

and setting

[D1, D̂2]Neron := logp JP [D1] + logp[D
�
1; D̂

0
2]. (35)

The pair (P , D̂0
2) is well-defined up to replacing it with (P +δ, D̂0

2 − δ), where

δ ∈ H1(�,Div†0(Hp)) ∩ P1(�,Div†(Hnr
p ))

is the divisor of a �-invariant rigid meromorphic cocycle J . The resulting expression (35)
for the Néron symbol [D1, D̂2]Neron is then changed by

logp J [D1] − logp[D
�
1; δ] = logp J [D1] − logp Jδ[D

�
1]

= logp J [D1] − logp Jδ[D1] = 0,

where

(1) Jδ is the rigid meromorphic cocycle constructed in Lemma 13;
(2) the second equality follows from the fact that Jδ[D] depends only on the image ofD

in H1(�,Div(Hp));
(3) the vanishing follows since the rigid meromorphic cocycles J and Jδ have the same

divisor and hence differ by an element of the finite group H1(�,A ×), and therefore
the logarithms of the values J [D1] and Jδ[D1] are equal.

��
Let α1 and α2 be non �-conjugate embeddings of real quadratic Z[1/p]-orders into

R[1/p]. After possibly interchanging α1 and α2, it can be assumed that p � D2. The
following defines the p-adic Green’s function on the pair (α1,α2) of RM divisors on Hp:

Definition 3 The p-adic Green’s function Gp(α1,α2) is equal to

Gp(α1,α2) = [Dα1 , D̂α2 ]Neron.
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4.11 The local trace of Gp(α1,α2)

In this section, let us assume further that

α1 : O1 -→R, α2 : O2 -→R

are embeddings of real quadratic orders of relatively prime discriminants D1 and D2
respectively, and that the prime p does not divide D1D2, and therefore is inert in both
K1 = Q(

√
D1) and K2 = Q(

√
D2). As in the introduction, let

F = Q(
√
D1D2), L = Q(

√
D1,
√
D2),

viewed as subfields of Q̄p, and that Fp = Qp and Lp denote their respective completions in
this p-adic field. As an application of the general theory of the p-adic Green’s function, we
will give an explicit formula for the trace to Fp of the Green’s function Gp(α1,α2), in the
special case where the group �0 of (13) has finite abelianisation, and hence uniformises a
curve over C of genus zero. This assumption is satisfied in the following two cases:

(1) The algebra B is the split quaternion algebra M2(Q), and hence R = M2(Z) and
�0 = SL2(Z). In that case,

H1(�0,Z) = Z /12Z, H1(�0,Z) = 0

and

H1(�,Z) =

⎧⎪⎨
⎪⎩

Z /3Z if p = 2;
Z /4Z if p = 3;
Z /12Z otherwise,

H1(�,Z) = 0,

cf. Serre [11]. This corresponds to the setting considered in [3].
(2) The algebra B is a non-split indefinite quaternion algebra of discriminant DB, and

there are no weight two cuspidal newforms of weight two and levelDB. This happens
precisely when DB = 6, 10, or 22.

Let τ1 and τ2 be the fixed points of α1(K×
1 ) and α2(K×

2 ) on Hp, let �1 and �2 be the
associated stabiliser groups, and let γ1 and γ2 be the associated automorphs.
The classD1 := γ1 ⊗ [τ1] ∈ H1(�,Div(Hp)) is the image of a class in H1(�0,Div0(H(0)

p ))
under the natural map from the latter to the former. Let D�

1 be the unique lift of D1
to the group H1(�,Div0(Hp))� of unitary one-cycles. The following lemma describes this
element in terms of the cohomology of the subgroup �0:

Lemma 14 The class D�
1 can be represented by an element in the image of the natural

map

H1(�0,Div0(H(0)
p )) -→H1(�,Div0(Hp)).

Proof That the class D1 admits a representative in H1(�0,Div0(H(0)
p )) follows from the

fact that �0 has finite abelianisation and hence the natural map

H1(�0,Div0(H(0)
p )) -→H1(�0,Div(H(0)

p ))

has finite cokernel. This representative agrees with D�
1, since all classes in the group

H1(�0,Div0(H(0)
p ))Q belong to H1(�0,Div0(Hp))�Q, by Lemma 11. ��
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Now letD (n)
2 ∈ H1(�0,Div(H(n)

p )) be the image of the one-cocycle D̂2 under the map

H1(�,Div(Hp)) -→H1(�0,Div(H(n)
p ))

obtained by restricting to �0 and applying the �0-equivariant map D �→ D (n) to the
coefficients. Explicitly, having choosen a generic base point ξ∞ ∈ H, one has

D (n)
2 (γ ) =

∑
b∈R[p2n]/�2

([ξ∞, γ ξ∞] � b(α2)) · [bτ2]. (36)

It is apparent that D (n)
2 satisfies a one-cocycle relation for �0. Furthermore, the triviality

of H1(�0,Z) shows that the cocycle D (n)
2 takes values in Div0(H(n)

p ), and therefore gives
rise to a class in H1(�0,Div0(H(n)

p )). Let R×
n denote the �0-module of rational functions

on P1(Cp) whose divisor is supported in H(n)
p . Taking the cohomology of the short exact

sequence of �0-modules

1 → C
×
p -→R×

n -→Div0(H(n)
p ) → 1,

and observing that H2(�0,C×
p ) = 1, the classes D (n)

2 should admit lifts to H1(�0,R×
n ).

Lemma 15 produces a partial lift toR×
n /εZ2 , where ε2 is the fundamental unit of norm 1

of the real quadratic field K2. To formulate it, we remark that for any b ∈ R, the function

det
((

z
1

)
, b
(

τ2
1

))

is a linear polynomial in z with a zero at bτ2, and that its image in R×
n /εZ2 depends only

on the class of b in R[p2n]/γ Z
2 , since replacing b by bγ t

2 has the effect of multiplying this
function by εt2.

Lemma 15 TheR×
n /εZ2 -valued function J (n)2 on �0 defined by

J (n)2 (γ )(z) =
∏

b∈R[p2n]/γ Z

2

det
(( z

1
)
, b
( τ2
1
))[η∞ ,γ η∞]�b(α2) (mod εZ2 ) (37)

represents a lift ofD (n)
2 to H1(�0,R×

n /εZ2 ).

Proof The rational function on the right hand side of (37) has divisor equal to D (n)
2 (γ )

in (36). It therefore suffices to show that J (n)2 satisfies the relations of a one-cocycle on �0
with values inR×

n /εZ2 . This is readily checked by a direct calculation. ��
We are now ready to state the main result. Recall that, for any two quadratic elements

τ1 and τ2 of Hp, having τ ′
1 and τ ′

2 as their conjugates, we have set

g(τ1, τ2) = (τ1 − τ2)(τ ′
1 − τ ′

2)
(τ1 − τ ′

1)(τ2 − τ ′
2)
,

and Gp(α1,α2) = TraceLpFp Gp(α1,α2).

Theorem 3 Assume that �0 has genus zero. Then

Gp(α1,α2) = lim
n→∞ logp

( ∏
b∈�1\R[p2n]/�2

g(τ1, bτ2)(α1)�b(α2)
)
.
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Proof By definition,

Gp(α1,α2) = [D�
1, D̂2]Neron = lim

n→∞ logp[D
�
1;D

(n)
2 ]. (38)

Because the class D�
1 is not readily described explicitly, we shall content ourselves with

the evaluation of [D�
1;D

(n)
2 ] modulo εZ2 , invoking Lemma 15 to rewrite

[D�
1;D

(n)
2 ] = J (n)2 [D�

1] = J (n)2 [D1] (mod εZ2 ). (39)

But the quantity J (n)2 [D1] equals

J (n)2 (γ1)(τ1) =
∏

b∈R[p2n]/�2

det
(( τ1

1
)
, b
( τ2
1
))[η∞ ,γ1η∞]�b(α2) (mod εZ2 )

=
∏

b∈�1\R[p2n]/�2

∞∏
j=−∞

det
(( τ1

1
)
, γ j

1b
( τ2
1
))[η∞ ,γ1η∞]�γ

j
1b(α2) (mod εZ2 )

=
∏

b∈�1\R[p2n]/�2

det
(( τ1

1
)
, b
( τ2
1
))(α1)�b(α2) (mod εZ1 εZ2 ).

Taking the norm of this identity to F×
p has the pleasant feature that it eliminates the

ambiguity by the units of K1 and K2. One finds

NormLp
Fp (J

(n)
2 [D1]) =

∏
b∈γ Z

1 \R[p2n]/γ Z

2

g(τ1, bτ2)(α1)�b(α2). (40)

The theorem now follows from combining (38), (39), and (40). ��
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