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1. Introduction

Let A be an elliptic curve over the field Q of rational numbers, having semistable 
reduction at an odd prime p. Denote by

ζKato
A ∈ H1(Q, Vp(A))

the global p-adic Beilinson–Kato element associated in [24] to (a fixed modular parametri-
sation of) A (cf. Section 1.1 below). It lies at the “bottom layer” of Kato’s Euler 
system arising from p-adic families of Beilinson elements in the second K-group of a 
modular curve, associated to pairs of Eisenstein series. The relevance of this global 
class to the Birch and Swinnerton-Dyer conjecture stems from the close relationship 
it enjoys with the Hasse–Weil L-function L(A/Q, s) of A and its p-adic avatars. More 
precisely, Kato’s reciprocity law stated in equation (1) below implies that the image of 
resp

(
ζKato
A

)
∈ H1(Qp, Vp(A)) by the Bloch–Kato dual exponential is a non-zero multiple 

of the central critical value L(A/Q, 1). Of primary interest for this paper is the scenario 
where L(A/Q, 1) = 0, in which ζKato

A belongs to the p-adic Bloch–Kato Selmer group of 
A and therefore defines a local point in A(Qp) ⊗ Qp. In [45] Perrin-Riou predicts that 
this local point is a prescribed element in the natural image of the group of rational 
points A(Q) ⊗Qp. The main goal of this article is to prove the following theorem, which 
settles Perrin-Riou’s conjecture.

Theorem A. Let A be an elliptic curve over the field Q of rational numbers, having 
semistable reduction at an odd prime p. If the Hasse–Weil complex L-function L(A/Q, s)
of A vanishes at s = 1, then there exists a global point P in A(Q) satisfying the following 
properties.

1. The point P has infinite order if and only if L(A/Q, s) has a simple zero at s = 1.
2. The following equality holds in Qp up to multiplication by a non-zero rational number:

logωA

(
resp

(
ζKato
A

))
= log2

ωA
(P ).

Here ωA is the Néron differential of a global minimal Weierstraß equation for A and 
logω : A(Qp) −→ Qp is the corresponding p-adic Lie group logarithm.
A
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The reader is referred to Section 1.3 for a discussion of previous partial results and of 
related work.

In a more general setting, Theorem B below proves a natural generalisation of Perrin-
Riou’s conjecture for p-semistable elliptic newforms f of even weight ko � 2 and trivial 
Nebentype, which recasts Theorem A when f is the newform of weight two associated 
with A by the modularity theorem.

1.1. Statement of the main result

Fix a positive integer Nf , an odd prime p not dividing Nf , algebraic closures Q̄ and Q̄p

of Q and Qp respectively and field embeddings i∞ : Q̄ ↪−→ C and ip : Q̄ ↪−→ Q̄p. Denote 
by ordp the p-adic valuation on Q̄∗

p satisfying ordp(p) = 1 and by | ·|p the corresponding 
p-adic absolute value.

Let f =
∑

n�1 an(f) · qn be a newform of even weight ko � 2 and level Γ0(Nfp
r) for 

some r � 1. Let L be the finite extension of Qp generated by μNfpr and the (images 
under ip) of the Fourier coefficients an(f) of f . Let α = αf and β = βf be the roots 
of the Hecke polynomial X2 − ap(f) · X + 1pr (p) · pko−1, ordered in such a way that 
ordp(α) � ordp(β). (Here 1m is the trivial Hecke character modulo m.) We assume that 
the form f is p-regular, viz. the roots α and β are distinct. Let fα = f(q) − βf · f(qp) be 
the p-stabilisation of f with Up-eigenvalue α and let

Lp(fα) = Lα(f, s) ∈ O(W)

be the cyclotomic p-adic L-function associated with fα and the choice of complex Deligne 
periods Ω±

f , where O(W) is the ring of analytic functions on the p-adic weight space 
W = Homcont(Z∗

p, C∗
p) over Qp. We normalise Lp(fα) as in Theorem 16.2 of [24], so that 

Lp(fα, s − μ) is an explicit multiple of the algebraic number

L(f, μ, s)/(−2πi)s−1Ω±
f

for each integer 1 � s � ko − 1 and each finite order character μ : Z∗
p −→ Q̄∗

p satisfying 
(−1)s−1μ(−1) = ±1. (We use the additive notation for the product of characters in 
W(Q̄p), so that s − μ is a shorthand for the continuous character κs · μ−1 : Z∗

p −→ Q̄∗
p

with κ the inclusion of Z∗
p in Q̄∗

p.)
According to the work of Kato [24] (see in particular Theorem 16.6 and Part 2 of 

Theorem 12.4) there exists a unique global Iwasawa cohomology class

ζKato
f ∈ H1

Iw(Q(μp∞), V (f))

satisfying the explicit reciprocity law

〈
Logf

(
resp

(
ζKato
f

))
, ηαf

〉
= Lp(fα, 1 + s), (1)
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where the notations are as follows. Let Y = Y1(Nfp
r) be the affine modular curve of 

level Γ1(Nfp
r) over Q. Assume for simplicity Nfp

r � 4, so that Y represents the functor 
sending a Q-scheme S to the set of isomorphism classes of elliptic curves over S with a 
point of exact order Nfp

r. Consider the p-adic sheaves

Lko−2 = TSymko−2R1(E −→ Y )∗Zp(1) and Sko−2 = Symmko−2R1(E −→ Y )∗Zp

on Y , where E −→ Y is the universal elliptic curve, and TSymi· and Symmi· denote 
respectively the submodule of symmetric tensors and the symmetric quotient of the i-th 
tensor power of ·. Set YQ̄ = Y ⊗Q Q̄ and define

H1
ét(YQ̄,Lko−2)(1) ⊗Zp

L −� V (f)

to be the maximal L-quotient on which the dual Hecke operator T ′
n acts as multiplication 

by an(f) for each n � 1. Dually define

V ∗(f) ↪−→ H1
ét,c(YQ̄,Sko−2) ⊗Zp

L

to be the maximal L-submodule on which Tn acts as multiplication by an(f) for each 
positive integer n. (See [24, Section 2] or [17, Section 2] for detailed definitions.) The GQ-
representation V ∗(f) is the Deligne representation of f and Poincaré duality identifies 
V (f) with the dual of V ∗(f). The group H1

Iw(Q(μp∞), V (f)) is the global cyclotomic 
Iwasawa cohomology of V (f), viz. the Qp-linear extension of the inverse limit of the 
groups H1(Q(μpn), V(f)), for any GQ-invariant OL-lattice V(f) in V (f). The map resp
is restriction from the global Iwasawa cohomology to the similarly defined local Iwasawa 
cohomology H1

Iw(Qp(μp∞), V (f)). To define the Perrin-Riou logarithm Logf and the de 
Rham class ηαf , we distinguish two cases.

Assume first that p does not divide the conductor of f , so that V ·(f) (where · denotes 
either ∅ of ∗) is crystalline at p. Then

Logf : H1
Iw(Qp(μp∞), V (f)) −→ O(W) ⊗Qp

Vcris(f)

is the Perrin-Riou logarithm associated in [46] with the restriction (via ip) of V (f)
to the decomposition group GQp

. Here V ·
cris(f) is the crystalline Dieudonné module 

H0(Qp, Bcris ⊗Qp
V ·(f)) of V ·(f). The pairing

〈·, ·〉 : Vcris(f) ⊗L V ∗
cris(f) −→ L

is the one induced by Poincaré duality and we use again the same symbol for its O(W)-
linear extension. The Faltings comparison isomorphism between the étale and the de 
Rham cohomology of YQp

yields a canonical isomorphism between Fil0Vcris(f) and the 
f -isotypic component of the space of weight-ko modular forms of level Γ1(Nf ) defined 
over L. (See for example [17, Section 2.5] for more details.) The form f then corresponds 
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to a canonical generator ωf of Fil0Vcris(f), and one defines ηαf to be the unique element of 
V ∗

cris(f) such that ϕ(ηαf ) = α · ηαf and 〈ωf , ηαf 〉 = 1, where ϕ is the crystalline Frobenius. 
Here we use the assumptions α 	= β and ordp(α) � ordp(β) to guarantee the existence 
of ηαf .

Assume now that p divides the conductor Nfp of f . The representations V ·(f) (with 
· = ∅, ∗) are semi-stable at p and one defines as above the classes ωf in Fil0Vst(f) and 
ηαf in V ∗

st(f)ϕ=α satisfying 〈ωf , ηαf 〉 = 1, where V ·
st(f) = H0(Qp, V ·(f) ⊗Qp

Bst) and the 
pairing 〈·, ·〉 is induced by Poincaré duality. The maximal quotient V (f)− of V (f) on 
which the inertia subgroup IQp

of GQp
acts trivially is free of rank one over L and a 

Frobenius acts on it via multiplication by α. Set Vcris(f)− = H0(Qp, V (f)− ⊗Qp
Bcris). 

Then the linear form

〈·, ηαf 〉 : Vst(f) −→ L

factors through Vst(f) −→ Vcris(f)−, and one defines 〈Logf (·), ηαf 〉 by the composition

H1
Iw(Qp(μp∞), V (f)) −→ H1

Iw(Qp(μp∞), V (f)−) −→ Vcris(f)− ⊗Qp
O(W) −→ O(W),

where the first arrow is the natural one, the second is the Perrin-Riou logarithm asso-
ciated in [46] with the p-adic representation V (f)− and the third arises from the linear 
form 〈·, ηαf 〉 on the semi-stable module Vst(f).

Set G∞ = Gal(Q(μp∞)/Q) and Λ∞ = Zp�G∞�. The Shapiro isomorphism identifies 
H1

Iw(Q(μp∞), V (f)) with H1(Q, V (f) ⊗Zp
Λ∞(ε−1)), where ε : GQ −→ Λ∗

∞ is the tau-
tological character. The morphism of Zp-algebras χk0/2−1

cyc : Λ∞ −→ Zp arising from the 
(ko/2 − 1)-th power of the p-adic cyclotomic character χcyc : GQ −→ Z∗

p then induces 
a morphism (denoted by the same symbol) from H1

Iw(Q(μp∞), V (f)) to the cohomology 
H1(Q, V(f)) of the central critical twist V(f) = V (f)(1 − ko/2) of V (f). Define the 
p-adic Beilinson–Kato element of f by

ζKato
f = χko/2−1

cyc (ζKato
f ) ∈ H1(Q,V(f)).

In the statement of Theorem A, one defines ζKato
A = π∗(ζKato

fA
) in H1(Qp, Vp(A)) to be 

the image of ζKato
fA

under the isomorphism V (fA) −→ Vp(A) = H1
ét(A ⊗Q Q̄, Qp(1))

induced by a modular parametrisation π : Y −→ A. Here fA is the weight two newform 
associated with A by the modularity theorem of Wiles, Taylor–Wiles et alii.

Let K be a quadratic imaginary field of odd discriminant dK , satisfying the Heegner 
hypothesis relative to pNf , viz. each prime divisor of pNf splits in K/Q. As explained 
in Section 4.4 below, the p-adic Abel–Jacobi image of the Heegner cycle associated with 
f and K (cf. [37,9]) yields a class

zK(f) ∈ Sel(K,V(f))−εf
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in the Selmer group of V(f) over K, on which complex conjugation acts as minus the 
sign εf in the functional equation satisfied by L(f, s). If ko is equal to 2 then

prf : Tap(J) ⊗Zp
L −� V(f)

is naturally isomorphic to the maximal quotient of the p-adic Tate module of the Jacobian 
J of X1(Nfp

r) on which T ′
n = an(f) for each n � 1. In this case

zK(f) = TraceH/K

(
prf∗(zK)

)
,

where H is the Hilbert class field of K and zK in H1(H, Tap(J)) is the image under the 
global p-adic Kummer map of a Heegner divisor with trivial conductor in J(H).

Theorem B. Assume that the Hecke L-function L(f, s) vanishes at s = ko/2. Then ζKato
f

belongs to the Bloch–Kato Selmer group Sel(Q, V(f)) and the equality

L(f, εK , ko/2)alg · logωf

(
resp

(
ζKato
f

))
= log2

ωf

(
resp

(
zK(f)

))
holds in L up to multiplication by a non-zero scalar in the number field K((an(fα))n�1).

In the statement we denoted by L(f, εK , ko/2)alg the algebraic part of the central 
critical value of the Hecke L-function L(f, εK , s) of f twisted by the quadratic character 
εK of K. It is defined by

L(f, εK , ko/2)alg = (ko/2 − 1)! ·
√
dK

(−2πi)ko/2−1 · Ω−
f

· L(f, εK , ko/2)

and belongs to the number field Q(an(f), n � 1). Moreover we denoted by logωf
the 

linear form 〈logp(·), ωf 〉 on the finite subspace of H1(Qp, V(f)), where logp is the inverse 
of the Bloch–Kato exponential and ωf in Fil1V ∗

dR(f) is the class attached to f by the 
Faltings comparison isomorphism.

Theorem A follows from Theorem B, the Gross–Zagier formula [22] and Waldspurger’s 
theorem on non-vanishing of quadratic twist (cf. Théorème 5 of [56]).

1.2. Outline of the proof

For simplicity we place ourselves in the setting of Theorem A, in which f is a new-
form of weight 2 with rational Fourier coefficients. The proof of Theorem A ultimately 
realises P as a Heegner point PK ∈ A(Q) associated to the imaginary quadratic field K
introduced in Section 1.1.

The comparison between the Beilinson–Kato element ζKato
A and the Heegner point PK

proceeds in two stages, in which the Beilinson-Flach elements defined in Section 2 play 
the role of a bridge between the two invariants. Roughly speaking, the Beilinson–Flach 
elements germane to our setting are obtained by replacing one of the families of Eisenstein 
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series underlying the construction of Kato’s Euler system with a family of theta-series 
attached to K. This family specialises in weight one to the Eisenstein series Eis1(εK), 
whose p-adic Galois representation is equal to the sum of the trivial representation and its 
twist by the Dirichlet character εK associated with the extension K/Q (see Section 4.2
for details). This fact suggests a relation between the Beilinson–Flach elements and 
the Beilinson–Kato elements attached to the family of Eisenstein series passing through 
Eis1(εK), formalised in Theorem 4.2 below as an equality of global classes in Iwasawa 
cohomology (and not just of their bottom layers over Q).

The second key comparison relates the Heegner point PK to the Beilinson–Flach 
elements. It is achieved in Theorem 4.3 by combining the 3-variable reciprocity law for 
the Beilinson–Flach elements of Kings–Loeffler–Zerbes [26,32] with the main result of 
[9], which describes the square of the formal group logarithm of PK as a value of a 
Hida–Rankin p-adic L-function outside the range of classical interpolation.

The comparison between the Beilinson–Kato element ζKato
A and the Heegner point 

PK is carried out in Section 4 in the case where p is not a prime of split multiplica-
tive reduction for A, while a discussion of the split multiplicative case is postponed to 
Section 5. The equality arising from our two-stage comparison of global classes involves 
the appearance of a ratio of p-adic periods, which is a priori a purely p-adic quantity. 
In order to show that this quantity is in fact a non-zero rational number, we reduce to 
the validity of Perrin-Riou’s conjecture for elliptic curves A with complex multiplication 
by K. This special setting is treated separately in Section 3, by exploiting the relation 
between Kato’s Euler system and the Euler system of elliptic units.

1.3. Remarks and relations with previous work on Theorem A

• When A has complex multiplication and p is a prime of good ordinary reduction, 
Theorem A follows from the work of Perrin-Riou, Rubin and Bertrand [45,44,51,14]. 
Here Perrin-Riou’s p-adic Gross–Zagier formula and Bertrand’s proof of the non-
triviality of the canonical p-adic height for CM elliptic curves play a fundamental 
role.
Section 3 below (cf. Theorem 3.1) presents a different proof of Theorem A in this 
setting, which generalises to the CM abelian varieties of GL2-type associated with p-
ordinary canonical Hecke characters (for which the non-triviality of the p-adic height 
is not known). This proof is based on two main ingredients: the comparison between 
the Euler system of Beilinson–Kato elements and that of elliptic units, studied by 
Kato in [24, Section 12.5], and the p-adic Gross–Zagier formula proved by the first 
two authors and Prasanna in [9,8], which links the Euler system of elliptic units and 
that of Heegner points. The proof of Theorem 3.1 is a simpler variant in the CM 
setting of that of Theorem B (cf. Section 1.2).

• When A has good supersingular reduction at p, Theorem A is equivalent to the 
main result of [27]. More precisely, in this setting (cf. the CM case) the canonical 
cyclotomic p-adic heights on A(Q) are non-trivial, hence the results of [45] show that 
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the p-adic Gross–Zagier formula proved by Kobayashi in [27] implies Theorem A and 
that, vice versa, the main result of [27] is a consequence of Theorem A when ζKato

A

is non-zero. On the other hand, the recent work of Skinner, Urban, X. Wan, W. 
Zhang et alii on the cyclotomic Main Conjecture and on the p-converses to the 
theorem of Gross–Zagier–Kolyvagin prove that the vanishing at s = 1 of the first 
derivative of L(A/Q, s) forces that of the first derivatives of the cyclotomic p-adic 
L-functions associated with A. In particular, in the special case ko = 2, our main 
result Theorem B gives a different proof of the main result of [27].

• Theorem A in the exceptional case (viz. when A has split multiplicative reduction at 
p) is proved in [55] using the main result of [5] as a crucial ingredient. Once again, 
the non-triviality of a suitable (central critical) p-adic height pairing is used in [55]
to deduce Theorem A from the p-adic Gross–Zagier formula of [5]. When ko = 2, our 
argument gives a different proof of the main results of [55] which does not use (and 
indeed easily recovers) the p-adic Gross–Zagier formula of [5].

• Our proof treats the supersingular and exceptional cases on the same footing as 
the good ordinary case. A central role is played by the p-adic Gross–Zagier formula 
proved in [9]. This formula relates the special value of an anticyclotomic Rankin–
Selberg p-adic L-function outside the range of classical interpolation to the p-adic 
logarithm of a Heegner point, which in the ordinary case is a much simpler invariant 
than its cyclotomic p-adic height (cf. [44]). Not surprisingly, the exceptional case is 
particularly intriguing and our argument requires a more delicate analysis in this 
setting.

• With the notations of Section 1.1, assume that f is p-old, let γ denote either α
or β, and let fγ be the p-stabilisation of f with Up-eigenvalue γ. When fγ has 
non-critical slope (i.e., ordp(γ) < ko − 1), S. Kobayashi [28] announced a proof of 
the p-adic Gross–Zagier formula for fγ, relating the derivative of Lp(fγ) at ko to 
hp,γ(zK(f)), where hp,γ is the cyclotomic p-adic height on Sel(Q, V(f)) attached to 
the γ-splitting Vcris(f) = Fil0Vcris(f) ⊕ Vcris(f)ϕ=γ·p−ko/2 of the Hodge filtration on 
Vcris(f) (cf. [38]). When zK(f) is non-zero, such a formula is a direct consequence of 
Theorem B and the p-adic height formalism developed by Nekovář and Benois (cf. the 
Rubin-style formula proved in Section 11.5.10 of [39], which readily generalises to the 
non-ordinary setting considered in [13]). Theorem B (and [13]) applies more generally 
when fγ is not θ-critical. The non-triviality of zK(f) is needed to guarantee that the 
p-adic logarithm of ζKato

f (which appears in the aforementioned Rubin’s formula) is 
non-zero. Thanks to the results of Cornut and Vatsal [19], this assumption can be 
removed by a slight extension of the results of Section 4 below (viz. by “enlarging” the 
Hida family g in order to include weight-one theta series associated with non-trivial 
ring class characters of K among its classical specialisations).
Grounding on Kobayashi’s announcement, the article [15] by Büyükboduk, Pollack 
and Sasaki also proves the p-adic Gross–Zagier (p-GZ) formula for fγ. More precisely, 
it extends Kobayashi’s announced result to non-θ-critical newforms via a p-adic vari-
ation argument, using the fact that the quantities in the p-GZ formula (for small 
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slope newforms) are known to vary in Coleman families. When f is the weight-two 
newform associated with a rational elliptic curve with good ordinary reduction at p
and the relevant Heegner point is assumed to be non-trivial, it then deduces Perrin-
Riou’s conjecture from the p-GZ formulas for fα and fβ , combined with previous 
computations of Perrin-Riou (cf. [45]).

Organisation of the paper. Section 2 develops the needed facts on Rankin–Selberg con-
volutions and the Euler system of Beilinson–Flach elements. The reader may skip this 
section at a first reading and come back to it only when needed. Section 3 proves Theo-
rem B in the special case of a weight-two theta series arising from a p-ordinary canonical 
Hecke character of a quadratic imaginary field. Section 4 proves Theorem B in the generic 
case, using Section 3 to handle a rationality question. Section 5 sketches the proof of 
Theorem B in the exceptional case.

2. Rankin–Selberg convolutions and Beilinson–Flach elements

2.1. Coleman families

Let f and g be two Coleman families of tame levels Nf and Ng and tame characters 
χf and χg, parametrised by connected affinoid discs Uf and Ug centred at integers ko � 1
and lo � 1 in the weight space WL = W ×Qp

L over a finite extension L of Qp. Let ξ
denote either f or g. By definition ξ =

∑
n�1 an(ξ) · qn is a formal q-expansion with 

coefficients in the ring Oξ = O(Uξ) of analytic functions on Uξ, such that the weight-u
specialisation ξu =

∑
n�1 an(ξ)(u) ·qn in L�q� is the q-expansion of a p-stabilised newform 

of weight u, level Γ1(Nξ) ∩Γ0(p) and character χξ : (Z/NξZ)∗ −→ L∗ for all integers u in 
a cofinite subset U cl

ξ of Uξ∩Z�uo
(with uo = ko, lo). If ξu is old at p, it is a p-stabilisation 

of a newform ξu of level Γ1(Nξ). If ξu is new at p, set ξu = ξu.

2.2. Deligne representations

Let u � 2 be a classical point in U cl
ξ . Define the representations V (ξu), V ∗(ξu), V (ξu)

and V ∗(ξu) similarly as V (f) and V ∗(f) in Section 1.1. For example, the Deligne repre-
sentation V ∗(ξu) of ξu is the maximal L-submodule of H1

ét,c(Y1(Nξ, p) ⊗QQ̄, Su−2) ⊗Zp
L

on which the Hecke operator Tn acts as multiplication by an(ξu) = an(ξ)(u) for each 
n � 1. Here Y1(Nξ, p) is the affine modular curve of level Γ1(Nξ) ∩ Γ0(p) over Q
and Su−2 is the (u − 2)-th symmetric power of the relative first p-adic cohomology 
R1(E −→ Y (Nξ, p))∗Zp of the universal elliptic curve E −→ Y1(Nξ, p). Here we assume 
for simplicity that Nξ + p is at most 5, so that Y1(Nξ, p) represents the appropriate 
moduli functor (cf. Section 2.1 of [24]). Similarly, when working with Y1(Nξ), we im-
plicitly assume Nξ � 4. The interested reader should have no difficulty in extending the 
constructions and the arguments below to the case of eigenforms of small level.
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For h = ξu, ξu, the morphism Lu−2 ⊗ Su−2 −→ Zp arising from the relative Weil 
pairing and Poincaré duality yield a perfect duality

〈·, ·〉h : V (h) ⊗L V ∗(h) −→ L.

Write pr1 and prp for the degeneracy maps Y1(Nξ, p) −→ Y1(Nξ) sending an elliptic 
curve (E, P, C) with Γ1(Nξ) ∩ Γ0(p)-level structure to (E, P ) and (E/C, P +C) respec-
tively. If ξu is p-old, the map

Πξu∗ = pr1∗ − χξ(p) · ap(ξu)−1 · prp∗ : H1
ét(Y1(Nξ, p),Lu−2) −→ H1

ét(Y1(Nξ),Lu−2)

induces an isomorphism between V (ξu) and V (ξu). Its adjoint

Π∗
ξu

= pr∗1 − χξ(p) · ap(ξu)−1 · pr∗p

with respect to the Poincaré dualities 〈·, ·〉ξu
and 〈·, ·〉ξu yields an isomorphism between 

V ∗(ξu) and V ∗(ξu). When p divides the conductor of ξu, so that by definition ξu = ξu, 
we define Πξu∗ to be the identity on V (ξu).

For • = cris, st, dR, · = ∅, ∗ and h = ξu, ξu set

V ·
• (h) = H0(Qp, V

·(h) ⊗Qp
B•).

Since V ·(h) is semistable at p, we often identify V ·
st(h) and V ·

dR(h), which equips the 
latter with the action a semistable Frobenius ϕ. We denote again by

〈·, ·〉h : V•(h) ⊗L V ∗
• (h) −→ L

the perfect pairing induced by the Poincaré duality in étale cohomology. Assuming that L
contains a primitive Nξ-th root of unit, the Faltings–Tsuji comparison isomorphism iden-
tifies canonically Fil0VdR(h) (resp., Fil1V ∗

dR(h)) with the hw-isotypic (resp., h-isotypic) 
component of Su(Γ1(Nξpr ), L). Here r = 1 if h = ξu, r = 0 if ξu is p-old and h = ξu, 
and hw = wNξpr(h) is the image of h under the Atkin–Lehner operator wNξpr . (We refer 
to Section 2.5 of [17] and the references therein for more details.) Write ωhw (resp., ωh) 
for the canonical basis of Fil0VdR(h) (resp., Fil1V ∗

dR(h)) corresponding to hw (resp., h) 
and define ηh in V ∗

dR(h)/Fil1 by the identity

〈ωhw , ηh〉h = 1.

One says that a classical point u � 2 in U cl
ξ is good if p does not divide the conductor 

of ξu, the p-th Hecke polynomial X2−ap(ξu) ·X+χξ(p)pu−1 of ξu has distinct roots and 
ξu is not θ-critical (viz. is not the image of an overconvergent modular form of weight 
2 −u and tame level Nξ under the (u −1)-th power of Serre’s theta operator θ = q d

dq , cf. 
[12]). The p-adic valuation of ap(ξ) is constant on Uξ, equal to the slope λξ in Q�0 of ξ, 
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and each classical point u in U cl
ξ satisfying 2λξ < u − 1 is good. For each good point u

and h = ξu, ξu, the de Rham module V ∗
dR(h) = V ∗

cris(h) is the direct sum of Fil1V ∗
dR(h)

and the ϕ-eigenspace VdR(h)ϕ=αh with eigenvalue αh = ap(ξu). In this case one defines

ηαh ∈ V ∗
dR(h)ϕ=αh

to be the unique element which lifts ηh.
Being semistable, the restriction to GQp

of the representations V ·(h) are triangu-
line, for h = ξu, ξu. Precisely, set RL = R ⊗Qp

L, where R = B†
rig,Qp

is the Robba 
ring over Qp, equipped with its natural Frobenius endomorphism ϕ and its natural con-
tinuous action of the group Γ = Gal(Qp(μp∞)/Qp). According to results of Fontaine, 
Cherbonnier–Colmez, Kedlaya et alii there is a fully faithful exact functor D†

rig,L from 
the category of L-adic representations of GQp

to that of (ϕ, Γ)-modules over RL, whose 
essential image is the category of étale (ϕ, Γ)-modules. (We refer to [43, Section 2] and 
the references quoted there for detailed definitions.) If

D(h) = D†
rig,L(V (h)),

then there exists a short exact sequence

0 −→ D(h)+α −→ D(h) −→ D(h)−α −→ 0 (2)

of (ϕ, Γ)-modules over RL, with D(h)±α isomorphic to the (ϕ, Γ)-modules RL(δ±h,α) as-
sociated with the characters δ±h,α : Q∗

p −→ L∗ defined by the formulae

δ+
h,α(prt) = χξ(p)−r · αr

h · tu−1 and δ−h,α(prt) = α−r
h

for each r in Z and t in Z∗
p. The (ϕ, Γ)-module D(h)+α is étale precisely if λξ = 0, i.e. if 

αh = ap(ξu) is a p-adic unit. Similarly

D∗(h) = D†
rig,L(V ∗(h))

admits a triangulation

0 −→ D∗(h)+α −→ D∗(h) −→ D∗(h)−α −→ 0,

with D∗(h)±α isomorphic to the (ϕ, Γ)-modules RL(γ±
h,α) associated with the characters 

γ±
h,α : Q∗

p −→ L∗ defined for each r in Z and t in Z∗
p by the formulae

γ+
h,α(prt) = αr

h and γ−
h,α(prt) = χξ(p)r · α−r

h · t1−u.

The perfect Poincaré duality 〈·, ·〉h induces a perfect duality

〈·, ·〉h : D(h) ⊗RL
D∗(h) −→ RL,

which entails perfect dualities between D(h)±α and D∗(h)∓α .
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2.3. Big Galois representations

Let Uξ ↪−→ WL be a connected open disc centred at uo. Assume that Uξ is contained 
in an affinoid disc in WL, and that Uξ is contained in Uξ. Denote by Λξ the ring of 
bounded analytic functions on Uξ. Set Γξ = Γ1(Nξ) ∩ Γ0(p) and let

Lξ = D′
Uξ,m

[1/p]

be the Λξ[Γξ]-module of locally m-analytic distributions on T′ = pZp × Z∗
p associated 

in [17, Section 4.1] with Uξ and a fixed sufficiently large integer m = m(Uξ). (See also 
[21] and [2], where slight variants of these distributions spaces were introduced.) The 
cohomology group H1(Γξ, Lξ) and its compactly supported counterpart H1

c (Γ, Lξ) (viz. 
the space of Γξ-invariant Lξ-valued modular symbols) carry natural commuting actions 
of the Galois group GQ and of a Hecke algebra generated by the dual Hecke operators 
T ′
n for n � 1 (cf. [2]). Denote by H1

par(Γξ, Lξ) the image of H1
c (Γξ, Lξ) in H1(Γξ, Lξ), 

and define

H1
par(Γξ,Lξ)(1) ⊗Λξ

Oξ −� V (ξ)

to be the maximal Oξ-quotient on which the dual Hecke operator T ′
n acts as multiplica-

tion by an(ξ) for each positive integer n. Dually define

V ∗(ξ) ↪−→ H1
par(Γξ,Sξ)(−κξ) ⊗Λξ

Oξ

to be the maximal Oξ-submodule on which the Hecke operator Tn acts as multiplication 
by an(ξ) for each n � 1, where Sξ = DUξ,m[1/p] is the Λξ[Γξ]-module of locally m-
analytic distributions on T = Z∗

p × Zp introduced in [17, Section 4.1], and where

κξ : GQ −→ Λ∗
ξ

is the composition of the p-adic cyclotomic character and the universal character Z∗
p −→

Λ∗
ξ. In the rest of this section we make the following crucial assumption. One says that 

a normalised eigenform ξ =
∑

n�0 an(ξ)qn of weight u, level Γ1(Nξ) and character χξ is 
p-regular if its p-th Hecke polynomial T 2 − ap(ξ)T + pu−1χξ(p) has distinct roots. One 
says that ξ has p-split real multiplication if it is the weight-one theta series attached to 
a ray class character of a real quadratic field in which p splits.

Assumption 2.1. Let ξ denote either f or g, and let uo � 1 be the centre of the affinoid 
disc Uξ. Then one of the following statements E1–E3 is satisfied.

E1. uo � 2 and ξuo
is a non-critical p-regular eigenform.

E2. uo = 1 and ξ1 is a p-stabilisation of a classical, p-regular cuspidal weight one newform 
of level Nξ without p-split real multiplication.
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E3. uo = 1 and ξ1 is the p-stabilisation of a p-irregular weight one Eisenstein series of 
conductor Nξ.

Assumption 2.1 guarantees that the eigenform ξuo
is an étale point of the cuspidal 

part

κcusp : C cusp(Nξ) −→ WL

of the Coleman–Mazur–Buzzard p-adic eigencurve κ : C (Nξ) −→ WL of tame level Nξ. 
More precisely, in case E1 the work of Hida and Coleman implies that κ is étale at ξuo

(cf. Proposition 2.11 of [12]). In case E2 the main result of [7] proves that κ is étale 
at ξ1. Finally in case E3 Theorem A of [10] proves that the map κcusp is étale at the 
cuspidal-overconvergent p-stabilised Eisenstein series ξ1.

Let V ·(ξ) denote either V (ξ) or V ∗(ξ). The étaleness of κcusp at ξuo
implies that 

V ·(ξ) is a free Oξ-module of rank two (cf. Sections 4.3 and 5 of [17]). For each good 
point u in U cl

ξ there are canonical specialisation isomorphisms

ρu : V ·(ξ) ⊗u L ∼= V ·(ξu),

where · ⊗u L denotes base change along evaluation at u on Oξ. We refer to Section 5 
of [17] for the definition of ρu and to [17, Proposition 4.2] and [47, Theorems 1.1 and 
1.2] for the proof that they are isomorphisms at good points. There exists a perfect 
GQ-equivariant pairing (cf. [17, Section 5])

〈·, ·〉ξ : V (ξ) ⊗Oξ
V ∗(ξ) −→ Oξ,

compatible with the dualities 〈·, ·〉ξu
under the specialisation maps ρu at good points.

2.3.1. Weight-one specialisations
Assume in this subsection uo = 1, so that either condition E2 or condition E3 in 

Assumption 2.1 is satisfied. Set

V ∗(ξ1) = V ∗(ξ) ⊗1 L and V (ξ1) = V (ξ) ⊗1 L,

where · ⊗1 L denotes the base change along evaluation at 1 on Oξ, and denote by 
ρ1 : V ·(ξ) −→ V ·(ξ1) the projection (also called specialisation) map. The weight-one 
specialisation of the pairing 〈·, ·〉ξ yields a canonical perfect duality

〈·, ·〉ξ1
: V (ξ1) ⊗L V ∗(ξ1) −→ L. (3)

The following proposition will be crucial for the proof of the main result of this paper.

Proposition 2.2. V ∗(ξ1) and V (ξ1) afford the Deligne–Serre Artin representation of GQ
associated with ξ1 and its dual respectively.
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Proof. It is sufficient to prove the statement for V (ξ1) (cf. Equation (3)). According to 
the results recalled above, for each prime � not dividing pNξ, a Frobenius at � in GQ acts 
on V (ξ1) with trace a	(ξ1). It follows that the semi-simplification V (ξ1)ss of V (ξ1) is 
isomorphic to the dual of the Deligne–Serre representation of ξ1. We have to show that 
V (ξ1) = V (ξ1)ss is semi-simple.

If condition E2 is satisfied, then ξ1 is a cuspidal eigenform, hence V (ξ1)ss is irre-
ducible. The equality V (ξ1) = V (ξ1)ss follows in this case.

Assume that condition E3 is satisfied, so that V (ξ1)ss = L ⊕ L(χ) is the direct sum 
of the trivial representation L of GQ and its twist L(χ) by an odd Dirichlet character of 
conductor coprime to pNξ such that χ(p) = 1. In this case V (ξ1) represents an element 
of H1(Q, L(ψ)) with ψ = χ or ψ = χ−1, and we have to show that this element is trivial. 
Since (H1(Q, L(ψ)) is 1-dimensional and) the restriction at p map H1(Q, L(ψ)) −→
H1(Qp, L(ψ)) is injective (cf. Sections 3.1 and 3.2 of [7]), it is sufficient to prove that 
GQp

acts trivially on V (ξ1), namely

V (ξ1) � L2 as GQp
-modules. (4)

We prove this statement using the results of [42] and [10].
Set V = H1(Γξ, Lξ)�0(1) ⊗Λξ

Oξ and Vpar = H1
par(Γξ, Lξ)�0(1) ⊗Λξ

Oξ, where � 0
refers to the slope zero part for the action of the dual Hecke operator U ′

p (cf. Section 
4.1.4 of [17]). Denote by V + the maximal submodule of V on which the inertia subgroup 
of GQp

acts via the character χu−1
cyc : GQp

−→ O∗
ξ whose composition with evaluation at 

u in Uξ ∩ Z is the u-th power of the p-adic cyclotomic character. Define similarly V +
par

and set V − = V /V + and V −
par = Vpar/V

+
par. The article [42] (together with Section 4.3 

of [17]) proves the following facts.

O1. The modules V ± and V ±
par are free of finite rank over Oξ, and V + = V +

par.
O2. The Galois group GQp

acts on V − via the unramified character sending an arith-
metic Frobenius to the dual Hecke operator U ′

p.
O3. Let M = Mord

Uξ
(Nξ) be the module of Oξ-adic Hida families of tame level Nξ and let 

S = Sord
Uξ

(Nξ) be its cuspidal subspace (cf. Section 5 of [17]). There are canonical 
isomorphisms of Oξ-modules

(
V −

par⊗̂Qp
Q̂nr

p

)GQp � S and
(
V −⊗̂Qp

Q̂nr
p

)GQp � M

(compatible with the inclusions S ↪−→ M and Vpar ↪−→ V and) intertwining the 
actions of the n-th Hecke operator Tn on the left hand sides with those of the dual 
Hecke operator T ′

n on the right hand sides, for each integer n � 1.

Define V (ξ)· (resp., Ṽ (ξ)·) to be the maximal quotient of V ·
par (resp., V ·) on which 

the dual Hecke operator U ′
n acts as multiplication by an(ξ), for each positive integer n. 

The étaleness of κcusp at ξ1 (cf. the discussion following Assumption 2.1), Property O2
and the identity χ(p) = 1 yield isomorphisms of Oξ[GQp

]-modules
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V (ξ)+ � Oξ(χu−1
cyc · ǎp(ξ)−1) and V (ξ)− � Oξ(ǎp(ξ)), (5)

where ǎp(ξ) : GQp
−→ O∗

ξ is the unramified character sending an arithmetic Frobenius 
to ap(ξ), and χu−1

cyc : GQp
−→ O∗

ξ satisfies χu−1
cyc (σ)(u) = χcyc(σ)u−1 for each σ in GQp

and each integer u in Uξ. One has the following exact and commutative diagram of 
Oξ[GQp

]-modules, where i·par : V (ξ)· −→ Ṽ (ξ)· (for · in {∅, +, −}) are the maps induced 
on the ξ-isotypic quotients by the inclusion of Vpar into V .

0 V (ξ)+ V (ξ)

ipar

V (ξ)−

i−par

0

0 Ṽ (ξ)+ Ṽ (ξ) Ṽ (ξ)− 0

(6)

Indeed, the exactness of the first row follows from the freeness of V (ξ)−, and Property 
O1 gives the equality V (ξ)+ = Ṽ (ξ)+. Since ξ is cuspidal, for each u in U ∩ Z�3 the 
base change of ipar along evaluation at u is an isomorphism, hence rankOξ

Ṽ (ξ) = 2
and rankOξ

Ṽ (ξ)± = 1. Because Ṽ (ξ)+ (resp., V (ξ)) is free over Oξ, one deduces that 
the second row is exact (resp., ipar and i−par are injective). In particular the projection 
Ṽ (ξ) −→ Ṽ (ξ)− induces an isomorphism of Oξ[GQp

]-modules

Ṽ (ξ)/V (ξ) � Ṽ (ξ)−/V (ξ)−,

where we identify V (ξ)· with a submodule of Ṽ (ξ)· under the injective map i·par.
Set V (ξ1)· = V (ξ)· ⊗1 L and Ṽ (ξ1)· = Ṽ (ξ)· ⊗1 L. Applying · ⊗1 L to Diagram (6)

yields the following exact and commutative diagram of L[GQp
]-module, where m1 is the 

ideal of functions in Oξ which vanish at u = 1.

Ṽ (ξ)−/V (ξ)−[m1]

δ

0 V (ξ1)+ V (ξ1)

ipar⊗1L

V (ξ1)−

i−par⊗1L

0

Ṽ (ξ1)+ Ṽ (ξ1) Ṽ (ξ1)− 0

(7)

We claim that the map i−par takes values in m1 · Ṽ (ξ)−, i.e.

i−par ⊗1 L = 0. (8)

Assuming the claim, we conclude the proof as follows. As ap(ξ) − 1 = ap(ξ) − ap(ξ1)
belongs to m1, Property O2 and Equation (5) imply that GQp

acts trivially on V (ξ1)+, 
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V (ξ1)− and Ṽ (ξ)−/V (ξ)−[m1]. Fix an L-basis {v+, v−} of V (ξ1) with v+ in the image 
of V (ξ1)+ ↪−→ V (ξ1). By Equation (8) and Diagram (7) v−−q ·v+ belongs to the image 
of δ for some q in L, hence GQp

acts trivially on v−, thus proving (4).
We now prove the claim (8). Define S(ξ) and M(ξ) to be the maximal quotients of S

and M respectively on which the n-th Hecke operator acts as multiplication by an(ξ), for 
each integer n � 1. According to Property O3, it is sufficient to prove that the image of 
the map S(ξ) −→ M(ξ) (induced by the inclusion S ↪−→ M) takes values in m1 ·M(ξ). 
Shrinking Uξ if necessary, Theorem A.(i) of [10] shows that S(ξ) = Oξ · ξ is the free 
rank-one Oξ-module generated by ξ. We are then reduced to prove that the image of ξ
under the projection [·] : M −→ M(ξ) belongs to m1 ·M(ξ):

[ξ] belongs to m1 ·M(ξ). (9)

Let E be the normalised Eisenstein eigenfamily in M specialising to ξ1 in weight one 
and having T	-eigenvalues 1 + χ(�) · �u−1 for each prime � different from p. Define

e = ξ −E

π
,

where π is a fixed generator of m1. One has

(Up − ap(ξ)) · e = a′p(ξ) ·E with π · a′p(ξ) = ap(ξ) − 1.

Propositions 2.6 and 5.7 of [10] prove that a′p(g) does not vanish at u = 1. Shrinking 
the disc Uξ further if necessary, we can then assume that a′p(ξ) is a unit in Oξ, hence 
[E] = 0 and [ξ] = π · [e] in M(ξ). This proves the claim (9) and concludes the proof of 
the proposition. �
2.3.2. Triangulations

Set Rξ = R⊗̂Qp
Oξ. A construction of Berger and Colmez [3] associates with the 

restriction of V ·(ξ) to GQp
a (ϕ, Γ)-module

D·(ξ) = D†
rig,Oξ

(V ·(ξ))

over Rξ, together with specialisation isomorphisms

ρu : D·(ξ) ⊗u L ∼= D·(ξu) (10)

for each good point u in U cl
ξ . (See [43, Theorem 2.2] and the references therein for the 

definition of the functor D†
rig,· with · an affinoid L-algebra.)

There are exact sequences

0 −→ D·(ξ)+ −→ D·(ξ) −→ D·(ξ)− −→ 0 (11)
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of (ϕ, Γ)-modules over Rξ, which recast the triangulations on D·(ξu) described in Section
2.2 after base change along evaluation at a good point u in U cl

ξ . If condition E1 (cf. 
Assumption 2.1) is satisfied, this follows from the results of Kisin and Liu [25,30]. If 
either condition E2 or condition E3 is satisfied, then ξ is ordinary and the restriction of 
V (ξ) to GQp

is nearly-ordinary: there exists a short exact sequence

Δξ : V (ξ)+ ↪−→ V (ξ) −� V (ξ)−

of Oξ[GQp
]-modules, where V (ξ)+ is the submodule on which GQp

acts via the character

χξ · χu−1
cyc · ǎp(ξ)−1 : GQp

−→ O∗
ξ

(see the proof of Proposition 2.2 for the notation), and V (ξ)− = V (ξ)/V (ξ)+ is unrami-
fied. The étaleness of the cuspidal eigencurve C cusp(Nξ) −→ WL at ξ1 (cf. the discussion 
following Assumption 2.1) guarantees that the GQp

-modules V (ξ)± are free of rank one 
over Oξ. The sought for triangulation (11) is obtained by applying the Berger–Colmez 
functor D†

rig,Oξ
to the short exact sequence Δξ.

The duality 〈·, ·〉ξ between V (ξ) and V ∗(ξ) induces a perfect duality

〈·, ·〉ξ : D(ξ) ⊗Rξ
D∗(ξ) −→ Rξ

on the associated (ϕ, Γ)-modules, which in turn induces perfect dualities (denoted again 
by 〈·, ·〉ξ) between D(ξ)± and D∗(ξ)∓. The base change of 〈·, ·〉ξ along evaluation at a 
good point u corresponds to the pairing 〈·, ·〉ξu

defined in Section 2.2 via the specialisation 
isomorphism ρu.

2.3.3. Overconvergent Eichler–Shimura isomorphisms
Let μξ : Z∗

p −→ O∗
ξ be the character sending t in Z∗

p to the analytic function μξ(t)
which on x in Uξ takes the value x(t) · t−1. Then the rank-one (ϕ, Γ)-modules D∗(ξ)+
and D∗(ξ)−(μξ) are unramified, and the Oξ-modules

Fil1V ∗
dR(ξ) =

(
D∗(ξ)−(μξ)

)Γ=1 and gr∗dR(ξ) =
(
D∗(ξ)+

)Γ=1

are free of rank one. For each good point u in U cl
ξ , the specialisation map ρu induces 

natural isomorphisms of L-vector spaces

Fil1V ∗
dR(ξ) ⊗u L ∼= Fil1V ∗

dR(ξu) and gr∗dR(ξ) ⊗u L ∼= V ∗
dR(ξu)/Fil1,

thus justifying the notation. The overconvergent Eichler–Shimura isomorphisms men-
tioned in the title of this subsection yield canonical generators

ωξ ∈ Fil1V ∗
dR(ξ) and ηξ ∈ gr∗dR(ξ),

which specialise to ωξu
and ηξu

respectively at each good classical point u in U cl
ξ . When 

condition E1 in Assumption 2.1 is satisfied, this follows from the main result of [2] (cf. 
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[32, Section 6.4]). When either condition E2 or condition E3 is satisfied, this follows 
from Ohta’s Eichler–Shimura isomorphism [42] (cf. Property O3 in the proof of Proposi-
tion 2.2) and its compatibility with the Faltings–Tsuji comparison isomorphism proved 
in Theorem 9.5.2 of [26]. We refer the reader to Section 5 of [17] for more details in the 
ordinary setting.

Similarly one defines

Fil0VdR(ξ) =
(
D(ξ)−

)Γ=1 and tgdR(ξ) =
(
D(ξ)+(μ−1

ξ )
)Γ=1

,

which are in perfect duality with gr∗dR(ξ) and Fil1V ∗
dR(ξ) respectively under 〈·, ·〉ξ.

2.3.3.1. Weight-one differentials If uo = 1, i.e. if either E1 or E2 in Assumption 2.1
is satisfied, we define ωξ1 and ηξ1 in V ∗

dR(ξ1) = DdR(V ∗(ξ1)) to be the weight-one 
specialisations of ωξ and ηξ respectively. In this case we set ηαξ1

= ηξ1 .

2.4. Perrin-Riou logarithms

For · = ∅, ∗ set

V ·(f , g) = V ·(f)⊗̂LV
·(g) and Ofg = Of ⊗̂LOg.

Denote by

D·(f , g) = D†
rig,Ofg

(V ·(f , g))

the (ϕ, Γ)-module over Rfg = R⊗̂Qp
Ofg associated by Berger–Colmez with the restric-

tion of V ·(f , g) to GQp
. This is naturally isomorphic to D·(f)⊗̂RL

D·(g) and for each 
symbol a and b in {∅, +, −} one writes F abD·(f , g) for the completed tensor product 
over RL of D·(f)a and D·(g)b, where D·(ξ)∅ = D·(ξ). Define

H1
Iw,bal(Qp(μp∞), V (f , g)) ↪−→ H1

Iw(Qp(μp∞), V (f , g)) ⊗Λ∞ O(W)

to be the submodule of classes which map to zero under the morphism

H1
Iw(Qp(μp∞), V (f , g)) ⊗Λ∞ O(W) = H1

Iw(Qp(μp∞), D(f , g))

H1
Iw(Qp(μ∞

p ),F−−D(f , g))

induced by the projection D(f , g) −→ F−−D(f , g). Here H1
Iw(Qp(μp∞), V (f , g)) is 

defined as in Section 1.1. One equips O(W) with the structure of Λ∞-algebra via the 
continuous character [·] : G∞ −→ O(W)∗ defined by [g](x) = x(χcyc(g)) for g in G∞ and 
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x in W. For each affinoid Qp-algebra B and each (ϕ, Γ)-module D over RB = R⊗̂Qp
B, 

one writes H1
Iw(Qp(μ), D) = Dψ=1 for the analytic Iwasawa cohomology of D, which is 

canonically isomorphic to H1
Iw(Qp(μp∞), V ) ⊗Λ∞ O(W) if D = D†

rig,B(V ) arises from 
a B-adic representation V of GQp

via the Berger–Colmez functor. (We refer to [29] for 
more details on the analytic Iwasawa cohomology.)

Since the map induced by the inclusion F−+D(f , g) −→ F−∅D(f , g) in Iwasawa 
cohomology is injective, the projection

p−f : D(f , g) −→ F−∅D(f , g)

induces a morphism of Ofg⊗̂Qp
O(W)-modules (denoted by the same symbol)

p−f : H1
Iw,bal(Qp(μp∞), V (f , g)) −→ H1

Iw(Qp(μp∞),F−+D(f , g)).

Similarly one defines a morphism

p−g : H1
Iw,bal(Qp(μp∞), V (f , g)) −→ H1

Iw(Qp(μp∞),F+−D(f , g)).

As explained in Theorem 7.1.4 of [32], the work of Nakamura [36] yields a Perrin-Riou 
logarithm map

L−+ : H1
Iw(Qp(μp∞),F−+D(f , g)) −→ Fil0VdR(f)⊗̂LtgdR(g)⊗̂Qp

O(W),

which is an injective morphism of O(Uf ⊗ Ug × W)-modules. (We refer to Sections 6 
and 7 of [32] for the precise definition and the interpolation property which characterises 
L−+, denoted L there.) Define

Lf =
〈
L−+ ◦ p−f (·), ηf ⊗ ωg

〉
fg

: H1
Iw,bal(Qp(μp∞), V (f , g)) −→ Ofg⊗̂Qp

O(W).

Switching the roles of f and g, one similarly defines

Lg =
〈
L+− ◦ p−g (·), ωf ⊗ ηg

〉
fg

: H1
Iw,bal(Qp(μp∞), V (f , g)) −→ Ofg⊗̂Qp

O(W).

2.5. Beilinson–Flach elements and reciprocity laws

The proof of the main result of this paper grounds on the following result, which 
extends and refines the explicit reciprocity laws for Beilinson–Flach elements of Bertolini–
Darmon–Rotger and Kings–Loeffler–Zerbes [11,26,32] to the case where one of the 
Coleman families f and g specialises to a p-irregular weight-one Eisenstein series (i.e., 
satisfies condition E3 in Assumption 2.1). Denote by

Lp(f , g) = Lp(f , g, s) and Lp(g,f) = Lp(g,f , s)
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the three-variable p-adic Rankin–Selberg convolutions associated by Hida, Panchishkin 
and Urban to the ordered pairs of Coleman families (f , g) and (g, f) respectively. We 
refer to [54] and [1, Appendix II] by Urban for the construction of these p-adic L-
functions. (See also Theorem 2.7.4 of [26] for a description of the interpolation properties 
which characterise them.) Let

H1
Iw,bal(Q(μp∞), V (f , g)) ↪−→ H1

Iw(Q(μp∞), V (f , g)) ⊗Λ∞ O(W)

be the submodule of global Iwasawa classes whose restriction at p belong to the balanced 
local condition H1

Iw,bal(Qp(μp∞), V (f , g)) and which are unramified at each rational 
prime not dividing pN , where N is the least common multiple of Nf and Ng.

Proposition 2.3. Assume that the following conditions are satisfied.

1. The family f satisfies condition E1 in Assumption 2.1.
2. The family g satisfies condition E3 in Assumption 2.1.

Then, for each integer c � 2 coprime to 6Np, there exists a Beilinson–Flach element

cBF(f ⊗ g) ∈ H1
Iw,bal(Q(μp∞), V (f , g))

satisfying the explicit reciprocity laws

Lξ

(
resp

(
cBF(f ⊗ g)

))
= Nξ,c · Lp(ξ, ξ′, 1 + s).

Here (ξ, ξ′) is equal to either (f , g) or (g, f) and

Nξ,c = (−1)1+s · wξ ·
(
c2 − c2s−k−l+4 · χf (c)−1χg(c)−1),

where wξ a unit in O∗
ξ satisfying wξ(u)2 = (−Nξ)2−u for each u in Uξ.

Proof. Shrinking Uf if necessary, assume that the composition of ap(f) with the p-adic 
valuation (normalised by ordp(p) = 1) is constant with value λ = λξ � 0. Let (ξ, λξ)
denote one of the pairs (f , λ) or (g, 0). For each integer s � 3, let Y1(s) be the affine 
modular curve of level Γ1(s) over Z[1/sp], and let πs : E1(s) −→ Y1(s) be the universal 
elliptic curve over it. For each u � λξ in Uξ ∩ Z�2 set

V (u)�λξ = H1
par(Yξ,Lu−2)�λξ ⊗Zp

L(1),

where Yξ = Y1(Nξp) ⊗Z[1/Nξp] Q̄, Lu−2 = TSymu−2R1πNξpZp(1), H1
par = H1

ét,par and 
·�λξ is the subspace of · on which the dual Hecke operator U ′

p acts with slope less or 
equal to λξ. Moreover, with the notation introduced in Section 2.3, set

V (Uξ)�λξ = H1
par(Γξ,Lξ)�λξ(1) ⊗Λξ

Oξ,
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where � λξ refers to the slope decomposition with respect to U ′
p (cf. Proposition 4.2 of 

[17]). By construction there is a natural ξ-isotypic projection

prξ : V (Uξ)�λξ −� V (ξ).

Evaluation at u on Oξ then induces natural isomorphisms of L[GQ]-modules

ρu : V (Uξ)�λξ ⊗u L � V (u)�λξ and ρu : V (ξ) ⊗u L � V (ξu), (12)

where prξu
: V (u)�hξ −� V (ξu) is the maximal quotient on which T ′

n acts as multi-
plication by an(ξu) = an(ξ)(u) for each n � 1. (See Sections 4.1.3 and 4.1.4 of [17] for 
more details.) Define similarly

prξ : Ṽ (Uξ)�λξ −� Ṽ (ξ) and prξu
: Ṽ (u)�λξ −� Ṽ (ξu)

after replacing the parabolic cohomology groups H1
par(Γξ, ·) and H1

par(Yξ, ·) with the full 
cohomology groups H1(Γξ, ·) and H1(Yξ, ·) in the definitions of V (Uξ)�λξ and V (u)�λξ

respectively. The specialisation maps ρu extend to isomorphisms

ρu : Ṽ (Uξ)�λξ ⊗u L � Ṽ (u)�λξ and ρu : Ṽ (ξ) ⊗u L � Ṽ (ξu). (13)

By assumption 1 in the statement, the inclusion V (Uf )�λ ↪−→ Ṽ (Uf )�λ induces on the 
f -isotypic quotients an isomorphism of Of [GQ]-modules

V (f) � Ṽ (f), (14)

which we consider as equality. As ξu (for ξ and u as above) is cuspidal, the inclusion 
V (u)�λξ ↪−→ Ṽ (u)�λξ similarly yields an isomorphism of L[GQ]-modules

V (ξu) � Ṽ (ξu). (15)

Let X geom be the set of triples of integers (k, l, m) in Uf × Ug ×W such that

k � 2, l � 3 and 0 � m � min{k − 2, l − 2}.

For each x = (k, l, m) in X geom and each positive integer r � 0, denote by

Eis(x) ∈ H3(Y (pr, Npr+1)2,Lk−2 � Ll−2(2 −m))

the pull-black of the étale Rankin–Eisenstein class Eis[k,l,m]
ét,1,Npr+1 introduced in [26, Defi-

nition 3.3.1] to the affine modular curve Y (pr, Npr+1) over Z[1/Np] classifying elliptic 
curves E with embeddings iE : Z/prZ ×Z/Npr+1Z ↪−→ E. Following Kato [24, Equation 
(5.1.2)], denote by tr : Y (pr, Npr+1) −→ Y1(Np) ⊗Z Z[μpr ] the map sending (E, iE) to 
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(
(E/Z ·P, Q +Z ·P ), 〈P,Np ·Q〉E[pr]), where P = iE(1, 0), Q = iE(0, 1) and 〈·, ·〉E[pr] is 

the Weil pairing on E[pr]. The push-forward of Eis(x) along tr × tr, together with the 
Hochschild–Serre spectral sequence, the Künneth decomposition and the natural projec-
tion Y1(Np)2 −→ Yf×Yg (sending (E, P ) ×(E′, P ′) to (E, (N/Nf ) ·P ) ×(E′, (N/Ng) ·P ′)), 
yields a Beilinson–Flach element

B̃Fr(x) ∈ H1(Gr, Ṽ (k)�λ ⊗Qp
Ṽ (l)�0(−m)),

where Gr = GQ(μpr ),Np is the Galois group of the maximal algebraic extension of Q(μpr)
unramified outside Np∞. For each integer c � 2 coprime to 6Np set

cB̃Fr(x) =
(
c2 − c2m−k−l+4 · 〈c〉f⊗ 〈c〉g

)
· B̃Fr(x),

where 〈c〉ξ is the diamond operator acting on Ṽ (u)�λξ .
Let m � 0 be a nonnegative integer and let X geom

m be the set of triples in X geom

having m as third component. The work of Kings–Loeffler–Zerbes yields a class

cB̃Fm,r(f ⊗ Ug) ∈ H1(Gr, V (f)⊗̂Qp
Ṽ (Ug)�0(−m))

such that, for each triple x = (k, l, m) in X geom
m , one has

(
k − 2
m

)(
l − 2
m

)
· �k,l

(
cB̃Fm,r(f ⊗ Ug)

)
= cB̃Fr(fk, l,m), (16)

where �k,l is the morphism induced by �k⊗̂�l (cf. Equations (12) and (13)) and

cB̃Fr(fk, l,m) = (prfk
⊗ id)

(
cB̃Fr(x)

)
∈ H1(Gr, V (fk) ⊗ Ṽ (l)�0(−m))

is the image of cB̃Fr(x) under the map induced in cohomology by the fk-isotypic pro-
jection prfk : Ṽ (k)�λ −� Ṽ (fk) � V (fk) (cf. Equation (14)). With the notations of [32, 
Section 5.3] (and identifying V (f) with Ṽ (f)) one has

(prf ⊗ pr�0)∗
(
cBF [Uf ,Ug,m]

pr,Nf ,Ng,1
)

=
(
∇f

m

)(
∇g

m

)
· cB̃Fm,r(f ⊗ Ug),

where (∇f and ∇g are the functions denoted by ∇1 and ∇2 in [32] and)

pr�0 : H1(Γg,Lg)(1) ⊗Λg
Og −→ Ṽ (Ug)�0

is the projection onto the ordinary part. (Cf. [32, Proposition 5.3.4].)
The proof of the proposition rests on the following

Lemma 2.4. The class cB̃Fm,r(f ⊗ Ug) admits a unique lift

cBFm,r(f ⊗ Ug) ∈ H1(GQ(μpr ),N , V (f)⊗̂LV (Ug)�0(−m)).
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Proof. Set E = Ṽ (Ug)�0/V (Ug)�0. It is a free Og-module of finite rank (cf. [42]), and 
the absolute Galois group GK of the cyclotomic field K = Q(μNp) acts trivially on it. 
Indeed its base change El = E ⊗l L along evaluation at l in Ug ∩ Z�3 is isomorphic to 
the ordinary part of H0(Cg ⊗Q Q̄, Qp), where Cg is the set of cusps of Xg = X1(Ngp)Q. 
(Cf. [53, Theorem 1.2.1] and the discussion preceding it.) Since Cg is the union of a finite 
number of Q(μNgp)-rational points of Xg, it follows that GK acts trivially on El for each 
l in Ug∩Z�2. As E is free over Og, this implies that GK acts trivially on E. One deduces 
the equalities

Hi(Gr, V (f)⊗̂LE(−m)) =
(
Hi(GK,r, V (f)(−m))⊗̂LE

)Gal(K(μpr )/Q(μpr ))

for i � 0, where GK,r is the Galois group of the maximal algebraic extension of K(μpr)
unramified outside Np∞. Because V (fko

)(−m) = V (f)(−m) ⊗ko
L has no nontrivial 

GK,r-invariant, the modules H0(GK,r, V (f)(−m)) and H1(GK,r, V (f)(−m))[mko
] van-

ish, where mko
is the kernel of evaluation at ko on Of and ·[mko

] is the mko
-torsion 

submodule of ·. Shrinking Uf if necessary, one deduces by the previous equation that 
H1(Gr, V (f)⊗̂E(−m)) is a torsion-free Ofg-module and that the natural map

H1(Gr, V (f)⊗̂V (Ug)�0(−m)) −→ H1(Gr, V (f)⊗̂Ṽ (Ug)�0(−m))

is injective. To prove the lemma it is then sufficient to show that

�k,l(cB̃Fm,r(f ⊗ Ug))

belongs to the image of

H1(Gr, V (fk) ⊗Qp
V (l)�0(−m)) −→ H1(Gr, V (fk) ⊗ Ṽ (l)�0(−m))

for each triple x = (k, l, m) in the Zariski-dense subset X geom
m of Uf ×Ug ×{m}. In light 

of Equation (16), this follows from Section 9 of [4] and Theorem 1.2.1 of [53], which 
prove that the Beilinson–Flach element

B̃Fr(x) ∈ H1(Q(μpr ), Ṽ (k)�λ ⊗Qp
Ṽ (l)�0(−m))

admits a (canonical) lift to H1(Q(μpr ), V (k)�λ ⊗Qp
V (l)�0(−m)). �

Resuming the proof of the proposition, for each m � 0 and r � 1 define

cBFm,r(f ⊗ g) ∈ H1(Gr, V (f , g)(−m))

to be the image of cBFm,r(f ⊗ Ug) under the map induced in cohomology by the pro-
jection prg : V (Ug)�0 −→ V (g) onto the g-isotypic component. The proof of Theorem 
5.4.2 of [32] shows that there exists a unique Iwasawa class
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cBF(f ⊗ g) ∈ H1
Iw(Q(μp∞), V (f , g)) ⊗Λ∞ O(W)

interpolating the elements (ap(f) · ap(g))−r · m!−1 · cBFm,r(f ⊗ g) for all m � 0 and 
r � 1. Moreover, for each x = (k, l, m) in X geom one has the equality

�x
(
cBF(f ⊗ g)

)
= 1

m!
(
k−2
m

)(
l−2
m

) (1 − pm

ap(fk) · ap(gl)

)
· cBF(fk, gl,m)

in H1(Q, V (fk, gl)(−m)), where the specialisation map

�x : H1
Iw(Q(μp∞), V (f , g)) ⊗Λ∞ O(W) −→ H1(Q, V (fk, gl)(−m))

arises from �k⊗̂�l : V (f , g) −→ V (fk, gl) and evaluation at m on O(W), and where

cBF(fk, gl,m) ∈ H1(Q, V (fk, gl)(−m))

is the image of cB̃F0(x) under the map induced by the projection (cf. Equation (15))

prfk ⊗ prgl
: Ṽ (k)�h ⊗ Ṽ (l)�0 −→ Ṽ (fk) ⊗ Ṽ (gl) � V (fk, gl)

onto the fk ⊗ gl-isotypic component. The proofs of Theorems 7.12 and 7.15 of [32] show 
respectively that the Beilinson–Flach element cBF(f⊗g) belongs to the balanced Selmer 
group H1

Iw,bal(Q(μp∞), V (f , g)) and satisfies the reciprocity laws

Lξ(resp(cBF(f ⊗ g))) = Nξ,c · Lp(ξ, ξ′, 1 + s)

for (ξ, ξ′) = (f , g) and (ξ, ξ′) = (g, f), concluding the proof of the proposition. �
3. Proof of Theorem B: p-ordinary canonical Hecke characters

Let K be a quadratic imaginary extension of Q with discriminant dK congruent to 
five modulo eight:

dK ≡ 5 (mod 8).

Let χ be a canonical Hecke character of K in the sense of [48], viz. χ · χc = N, the 
values of χ on principal ideals lie in K and the conductor of χ is equal to 

√
dK · OK . 

Here χc is the conjugate of χ by the non-trivial element c of Gal(K /Q) and N = NK is 
the norm character (so that χc(a) = χ(c(a)) and N(a) = |OK /a| for each non-zero ideal 
a of OK ). The Hecke L-function L(χ, s) of χ is equal to that L(ϑχ, s) of the weight-two 
newform

ϑχ =
∑

χ(a) · qNa ∈ S2(Γ0(d 2
K ))
a
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(where a runs over the non-zero ideals of OK coprime to dK ). The congruence condition 
imposed on dK implies that L(ϑχ, s) has sign −1 in its functional equation. Lying deeper, 
Theorem 1.1 of [35] yields

ords=1L(ϑχ, s) = 1. (17)

Let Aχ be the modular abelian variety of GL2-type associated with ϑχ, viz. the quotient 
of the Jacobian of X1(d 2

K ) on which the Hecke operator Tn acts as multiplication by 
an(ϑχ) for each positive integer n. It is an abelian variety defined over Q of dimension 
the class number hK of K . The totally real number field

Fχ = Q(χ(a) + χ(ā); a non-zero ideal of OK )

generated by the Fourier coefficients of ϑχ has degree hK and the endomorphism ring 
EndQ(Aχ) is naturally isomorphic to an order Oχ in Fχ. In particular, the Mordell–Weil 
group Aχ(Q) ⊗Z Q is equipped with a natural structure of Fχ-vector space. Equation
(17) and the theorem of Gross–Zagier–Kolyvagin imply that Aχ(Q) ⊗Z Q has dimension 
one over Fχ and that the Shafarevich–Tate group of Aχ over Q is finite.

The p-adic representation V (Aχ) = Tap(Aχ) ⊗Oχ⊗ZZp
L (where L = ip(Fχ) · Qp) is 

canonically isomorphic to V (ϑχ), hence the p-adic Beilinson–Kato element ζKato
ϑχ

associ-
ated with ϑχ yields an element

ζKato
Aχ

∈ H1(Q, V (Aχ)).

Write logωχ
as a shorthand for 〈logp(·), ωϑχ

〉, where logp is the Bloch–Kato p-adic loga-
rithm on the finite subspace of H1(Qp, V (Aχ)). For each global point P in Aχ(Q) ⊗Z Q
denote by logωχ

(P ) the value of logωχ
at the image of ip(P ) under the composition 

Aχ(Qp)⊗̂Zp
Qp −→ H1(Qp, Vp(Aχ)) −→ H1(Qp, V (Aχ)). Here Vp(Aχ) = Tap(Aχ) ⊗Zp

Qp is the p-adic Tate module of Aχ with Qp-coefficients, the first arrow is the local 
Kummer map and the second arrow is induced by the natural projection of GQ-modules 
Vp(Aχ) −→ V (Aχ). Set finally Eχ = K · Fχ.

The following result verifies Theorem B for f = ϑχ, under the assumption that p
splits in K . Its proof heavily relies on the work of Kato, Perrin-Riou and Bertolini–
Darmon–Prasanna [24,45,8].

Theorem 3.1. Assume that p splits in K /Q. Then the Beilinson–Kato element ζKato
Aχ

belongs to the Selmer group Sel(Q, V (Aχ)) and there exists a generator Pχ of the Eχ-
vector space Aχ(Q) ⊗Z K such that

logωχ

(
resp

(
ζKato
Aχ

))
= log2

ωχ
(Pχ).

In particular the Selmer group Sel(Q, V (Aχ)) is generated over L by the Beilinson–Kato 
element ζKato

A .

χ
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The proof of Theorem 3.1 occupies the rest of this section. Write p · OK = ℘ · ℘̄ with 
(℘ 	= ℘̄ and) ℘ the prime corresponding to the fixed embedding ip. Set f = ϑχ, so that 
the p-th Hecke polynomial of f has roots αf = χ(℘̄) in O∗

L and βf = χ(℘) = p/αf . Let 
fα = ϑχ(q) − χ(℘) · ϑχ(qp) be the ordinary p-stabilisation of f .

Recall that the global Iwasawa class ζKato
f (and then ζKato

Aχ
) depends on the choice of 

complex Shimura periods Ω±
f . In the present weight-two CM setting we can, and will, 

assume that Ω+
f and Ω−

f are both equal to the complex CM period Ω(χc) associated with 
the Hecke character χc in Section 2C of [8].

3.1. Let L℘(K ) = L℘,
√
dK ·OK

(K , ·) be the Katz p-adic L-function associated with 
(K, ℘, 

√
dK · OK ) and normalised as in Theorem 3.1 of [8] (where it is denoted by 

Lp,
√
dK ·OK

.) It is an element of the completed group ring Ẑun
p �G(fp∞)�, where Ẑun

p is 
the ring of Witt vectors of F̄p, f =

√
dK · OK and G(fp∞) is the Galois group of the 

union of the ray class fields of K of conductors fpn for n � 1. For χ· = χ, χc and σ in 
W define

L℘(χ·, σ) = L℘(K , χ̂·σK),

where σK is the restriction to GK of σ ◦ χcyc and χ̂· is the p-adic character of GK

corresponding to χ· via class field theory. Then L℘(χ·) = L(χ·, ·) is a bounded analytic 
function in O(W)⊗̂Qp

Q̂nr
p , where Q̂nr

p is the maximal unramified extension of Qp. Since 
Lp(fα) is also a bounded analytic function on W, a direct comparison between the 
interpolation formulae satisfied by L℘(χ) and Lp(fα, 1 + s) at finite order characters 
yields the identity

aχ · Lp(fα, 1 + s) = Ωp(χc)−1 · L℘(χ)

for a non-zero algebraic constant aχ in E∗
χ, where Ωp(χc) in Ẑnr

p is the non-zero p-adic 
period associated with χc in Section 2D of [8]. The main result of [49] implies that L℘(χ)
is non-zero.

The previous equation and Kato’s explicit reciprocity law Equation (1) yield

aχ ·
〈
Logf

(
resp

(
ζKato
f

))
, ηαf

〉
f

= Ωp(χc)−1 · L℘(χ). (18)

3.2. A direct comparison between Beilinson–Kato elements and the Euler system of 
elliptic units, carried out by Kato in [24, Section 12.5] and further exploited by Lei et 
al. in [31], gives

bχ ·
〈
Logf

(
resp

(
ζKato
f

))
, ωf

〉
f

= Ωp(χc) · �o · L℘(χc), (19)

for a non-zero algebraic constant bχ in E∗
χ, where �o(σ) = logp(σ(1 + p))/ logp(1 + p) for 

each σ in W. The rest of this section explains how to deduce Equation (19) above from 
the results of [31] and [24, Section 15].
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Denote by VEχ
(f) the maximal Eχ-quotient of the Betti cohomology group

H1(Y1(d 2
K )(C), Z) ⊗Z Eχ on which the dual Hecke operator T ′

n acts as multiplication 
by an(f) for each positive integer n. The comparison isomorphism between Betti and 
étale cohomology gives a natural isomorphism VEχ

(f) ⊗Eχ,ip L ∼= V (f), under which we 
consider VEχ

(f) as an Eχ-structure on V (f). Theorem 3.2 of [31] (cf. [24, Section 15.16]) 
proves that the identity

Logf
(
resp

(
ζKato
f

))
= L℘(χ) · 1 ⊗ ξ + �o · L℘(χc) · t−1 ⊗ c(ξ) (20)

holds in Q̂nr
p ⊗Qp

Vcris(f) ⊗Qp
O(W) for an element ξ in VEχ

(f) satisfying the identity 
g(ξ) = χc(g) · ξ for each g in GK . Note that the elements 1 ⊗ ξ and t−1 ⊗ c(ξ) of 
Bcris⊗Qp

V (f) = Bcris⊗Qp
Vcris(f) are invariant under the action of the inertia subgroup 

IQp
of GQp

, hence can naturally be viewed as elements of Q̂nr
p ⊗Qp

Vcris(f).

Remark 3.2. The statement of Theorem 3.2 of [31], which applies more generally to CM 
modular forms ϑψ associated with Hecke characters ψ of infinity type (k − 1, 0) with 
k � 2, requires the choice of isomorphisms between the Betti, de Rham and p-adic 
étale realisations of the motives of ϑψ and ψ (cf. Lemma 2.26 of [31]). For k � 3, these 
motives are not known to be isomorphic and it is unclear how to choose the isomorphisms 
compatibly with the comparison isomorphisms. By contrast, when k = 2, the motives of 
f and χ are naturally isomorphic (cf. [52, Chapter V]), making Equation (20) a direct 
consequence of [31, Theorem 3.2]. Here the crucial point is to guarantee that the element 
ξ, satisfying Equation (20) and g(ξ) = χc(g) · ξ for each g in GK , belongs to the Betti 
Eχ-structure VEχ

(f) on the p-adic étale realisation V (f) of the motive of f .

In the present weight-two setting, V (f) is equal to V ∗(f)(1) and the elements

ωf (1) = ωf ⊗ t−1 ⊗ ζp∞ and ηαf (1) = ηαf ⊗ t−1 ⊗ ζp∞

give the dual basis of ηαf and −ωf under the duality 〈·, ·〉f (cf. Section 2.2). Write

1 ⊗ ξ = �p ⊗ ωf (1) and t−1 ⊗ c(ξ) = Ωp ⊗ ηαf (1)

with �p and Ωp in Q̂nr
p . Because (as recalled above) L℘(χ) is non-zero, Equations (18)

and (20) give

�p ∼E∗
χ

Ωp(χc)−1,

where ∼E∗
χ

denotes equality up to multiplication by a non-zero element of Eχ. Moreover 
by construction

�p · Ωp ∼E∗ 1 ⊗ 〈c(ξ), ξ(−1)〉f
χ
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in Bcris ⊗Qp
L, with ξ = ξ(−1) ⊗ ζp∞ (and 〈·, ·〉f the Poincaré duality pairing). As ξ

belongs to the Eχ-structure VEχ
(f) of V (f), so do c(ξ) and ξ(−1). Since 〈·, ·〉f maps 

VEχ
(f)⊗2 into Eχ, the previous two equations yield

Ωp ∼E∗
χ

Ωp(χc).

Together with Equation (20), this yields Equation (19).

3.3. We conclude the proof of Theorem 3.1. To ease notation set

Lf = Logf
(
resp

(
ζKato
f

))
.

The point s = 0 lies in the interpolation domain of L℘(χ), hence

L℘(χ, 0) = L℘(K , χ)

is a non-zero multiple of the complex value L(χ−1, 0) = L(ϑχ, 1). Equations (17) and
(18) then imply that ζKato

Aχ
is crystalline at p, hence belongs to the Bloch–Kato Selmer 

group Sel(Q, V (Aχ)). Proposition 2.2.2 of [45] then yields

logωχ

(
resp

(
ζKato
Aχ

))
=

(
1 − p−1χ(℘)−1) (1 − χ(℘)−1)−1 ·

〈
L′
f (0), ωf

〉
f
.

On the other hand, Equation (19) (and the identities �o(0) = 0 and � ′o(0) = 1) give

bχ ·
〈
L′
f (0), ωf

〉
f

= Ωp(χc) · L℘(χc, 0).

Finally, according to Theorem 2 of [8, Theorem 2] one has

Ωp(χc) · L℘(χc, 0) = dχ · log2
ωχ

(Pχ)

for a non-zero algebraic constant dχ in E∗
χ and a generator Pχ of the Eχ-vector space 

Aχ(Q) ⊗Z K . Theorem 3.1 is a direct consequence of the previous three equations.

4. Proof of Theorem B: the p-non-exceptional case

Let f and K/Q be as in Section 1.1. This section proves Theorem B stated in [8] under 
the assumption that f is not p-exceptional (cf. [34]), viz. its p-th Fourier coefficient ap(f)
is different from pko/2−1.

4.1. The Coleman family f = fα

The assumptions ordp(α) < ko − 1 and α 	= β guarantee that fα is an étale point 
of the Coleman–Mazur eigencurve (cf. the discussion following Assumption 2.1). As a 
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consequence, if Uf is a sufficiently small connected affinoid disc in WL centred at ko, 
there exists a unique (up to conjugation) Coleman family f =

∑
n�1 an(f) · qn in Of �q�

of tame level Nf , trivial tame character and slope λf = ordp(α) which specialises to 
fko

= fα at weight ko.
The formal q-expansion f ⊗ εK =

∑
n�1 εK(n)an(f) · qn in Of �q� defines a primitive 

Coleman family of tame level Nfd
2
K , trivial tame character and slope λf .

4.2. Theta series and the Hida family g

To prove Theorem B, we apply the results described in Section 2 to a pair of Coleman 
families (f , g), where f = fα is the Coleman family introduced in Section 4.1 and g is 
an auxiliary ordinary CM family associated with K. This section defines g and discusses 
its main properties.

Consider the weight-one Eisenstein series

Eis1(εK) = 1
2L(εK , 0) +

∑
n�1

qn
∑
d|n

εK(d) ∈ M1(−dK , εK),

of level Γ1(−dK) and character εK . Because p splits in K/Q, the eigenform Eis1(εK) is 
p-irregular, viz. its p-th Hecke polynomial X2−ap(Eis1(εK)) ·X + εK(p) = (X−1)2 has 
a double root (cf. Assumption 2.1.3). Define

g = Eis1(εK)(q) − Eis1(εK)(qp) ∈ M1(−pdK , εK)

to be its unique p-stabilisation. As recalled in Section 2.3, the article [10] proves that g is 
an étale point of the cuspidal Coleman–Mazur eigencurve. In particular, if the local field 
L is large enough and Ug is a sufficiently small connected affinoid disc in WL centred at 
lo = 1, there exists a unique (up to conjugation) Hida family

g =
∑
n�1

an(g) · qn ∈ Og�q�

of tame level −dK and tame character χg = εK which specialises to g1 = g at weight 
one, and thus satisfies condition E3 in Assumption 2.1. In the present setting the family 
g has complex multiplication by K and can be explicitly described as follows.

Write p ·OK = p · p̄ with p the prime of OK of norm p corresponding to the embedding 
ip : Q̄ ↪−→ Q̄p fixed at the outset. Let A∗

K be the group of idèles of K and set Up =
K∗ · C∗ ·

∏
q	=p

O∗
q · μp, where Oq is the ring of integers of the completion of K at the 

prime ideal q and μp = μp−1 is the torsion subgroup of O∗
p. The kernel of the ideal map 

Gp = A∗
K/Up −→ Pic(OK) is equal to the group 1 + pOp = 1 + pZp of principal units of 

Kp ↪−→ Q̄∗
p. Fix an extension

ϕp : A∗
K/K∗ −� Gp −→ Q̄∗

p
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of the character 1 + pOp −→ Q̄∗
p sending the principal unit u to its inverse u−1. By 

construction ϕp is an algebraic p-adic Hecke character of weights (1, 0), conductor p and 
central character the Teichmüller lift ω : F∗

p � μp−1. The character

ψp : A∗
K/K∗ −→ C∗

which on the class of the idèle x = (xv)v takes the value

ψp(x) = i∞ ◦ i−1
p

(
ϕp(x) · xp

)
· x−1

∞

(where i∞ : Q̄ ↪−→ C and ip : Q̄ ↪−→ Q̄p are the field embeddings fixed at the outset) is 
then an algebraic Hecke character of infinity type (1, 0) and conductor p. Let IK (resp., 
IK(p)) be the group of fractional ideals of K (resp., coprime with p). With a slight abuse 
of notation, we denote again by ψp : IK(p) −→ Q̄∗ the character sending a to (the image 
under i−1

∞ of) 
∏

q|a ψp(πq)ordq(a), where πq is a uniformiser of the completion of K at the 
prime q. Enlarging L if necessary, assume it contains the values of (the composition of 
ip with) ψp and write 〈ψp〉 for the composition of ψp with projection onto the group of 
principal units of OL. For Ug as above, let

ψ : IK(p) −→ O∗
g

be the unique character satisfying ψ(a)(l) = 〈ψp〉 (a)l−1 for each a in IK and each l in 
Ug ∩ Z�1. The sought for Hida family g is then given by

g =
∑

ψ(a) · qNa,

where the sum is over the non-zero ideals a of OK coprime to p and Na = |OK/a|. In 
particular, for m in (p − 1) · Z�1, extend the m-th power of ψp to a Hecke character

ψm : IK −→ Q̄∗ (21)

of weights (m, 0) and trivial conductor by setting ψm(p) = ψp(p̄)−m · pm, so that the 
theta series (cf. Theorem 4.8.3 of [33])

ϑ(ψm) =
∑

a non-zero ideal ofOK

ψm(a) · qNa ∈ Sm+1(−dK , εK)

is a cuspidal primitive form of weight m + 1, level Γ1(−dK) and character εK . Then 
for each integer l in Ug ∩ Z>1 which is congruent to one modulo qL − 1, with qL the 
cardinality of the residue field of L, the weight-l specialisation of g is equal to the ordinary 
p-stabilisation of ϑ(ψl−1), viz. gl = ϑ(ψl−1)(q) − ψl−1(p) · ϑ(ψl−1)(qp).

For each m in (p − 1) · Z write ϕm : GK −→ Q̄∗
p for the p-adic Galois character 

corresponding to ψm by global class field theory, so that the dual Deligne representation 
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V (ϑ(ψm)) associated with ϑ(ψm) (cf. Section 2.2) is isomorphic to the induced IndQ
Kϕm

from GK to GQ of L(ϕm). As above, there exists a unique character

ϕ : GK −→ O∗
g

specialising to ϕl−1 at each integer l in Ug which is congruent to one modulo qL − 1. 
Denote by IndQ

Kϕ the induced from GK to GQ of ϕ, viz. the free rank-two Og-module 
of maps ξ : GQ −→ Og satisfying ξ(τσ) = ϕ(τ) · ξ(σ) for each τ in GK and each σ
in GQ, equipped with the GQ-action defined by (σ · ξ)(σ′) = ξ(σ′σ) for each σ and σ′

in GQ. The Og-adic representations V (g) (cf. Section 2.3) and IndQ
Kϕ are irreducible 

and unramified outside dKp. Moreover, for each prime � not dividing dKp, an arithmetic 
Frobenius at � acts on them with trace a	(g). It follows that V (g) and IndQ

Kϕ become 
isomorphic after base change to the fraction field of Og. Shrinking Ug if necessary this 
implies the existence of an isomorphism of Og[π−1][GQ]-modules

V (g)[π−1] � IndQ
Kϕ[π−1], (22)

where π is a generator of the ideal of functions in Og which vanish at l = 1. Actually 
one has the following consequence of Proposition 2.2.

Proposition 4.1. The Og[GQ]-modules V (g) and IndQ
Kϕ are isomorphic.

Proof. Let c in GQ denote complex conjugation, and let ϕc be the conjugate of ϕ by c
(so that ϕc(σ) = ϕ(c · σ · c) for each σ in GK).

It is sufficient to prove that the restriction of V (g) to GK is isomorphic to the direct 
sum of Og(ϕ) and Og(ϕc). (Indeed, if this the case, c maps V (g)GK=ϕ isomorphically 
onto V (g)GK=ϕc , i.e. V (g) = Og ·v⊕Og · c(v) for any Og-basis v of V (g)GK=ϕ.) This in 
turn follows from the existence of an isomorphism of Og[GQp

]-modules between V (g) and 
V (g)+⊕V (g)−. Indeed, assume that V (g) is equal to Og ·v+⊕Og ·v−, with GQp

acting 
on v+ and v− via the characters χl−1

cyc · ǎp(g)−1 and ǎp(g) respectively (cf. Equation (5)). 
For each integer l � 3 in Ug congruent to 1 modulo qL − 1, the weight-l specialisation 
of Og · v− is the maximal GQp

-unramified quotient of the representation V (gl), which 
is isomorphic to IndQ

Kϕl as an L[GQ]-module. It follows that the specialisation at l of 
Og ·v− is isomorphic to the GK -invariant line L(ϕc

l ) of IndQ
Kϕl. As a consequence Og ·v−

is a GK-invariant direct summand of V (g) isomorphic to Og(ϕc). Similarly one shows 
that Og · v+ is a GK-invariant submodule of V (g) isomorphic to Og(ϕ).

For · = ∅, ±, set W · = V (g)· ⊗Og HomOg(V (g)−, Og), so that W− is naturally 
isomorphic to Og. The short exact sequence V (g)+ ↪−→ V (g) −� V (g)− yields a short 
exact sequence W+ ↪−→ W −� Og, which corresponds to an element

w ∈ H1(Qp,W
+)[π∞]

by Equation (22), where ·[π∞] is the set of elements of the Og-module · which are killed 
by a power of π. We have to prove that w is zero.
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Set W+
1 = W+ ⊗1 L and consider the composition

∂ : W+
1 = H0(Qp,W

+
1 ) � H1(Qp,W

+)[π] −→ H1(Qp,Qp) ⊗Qp
W+

1 ,

where the isomorphism is the connecting morphism arising from multiplication by π on 
W+ and the arrow is induced by specialisation at weight one (i.e. reduction modulo π). 
Identify H1(Qp, Qp) with the group of continuous Qp-valued morphisms on Q∗

p via the 
local Artin map sending p−1 to an arithmetic Frobenius. A direct computation shows 
that for each x in W+

1 , the restriction of ∂(x) to Z∗
p is equal to logp ⊗x. In particular 

the map ∂ is non-zero, so that

H1(Qp,W
+)[π∞] = H1(Qp,W

+)[π] � W+
1

is killed by π, and w is zero precisely if its weight one specialisation w(1) in H1(Qp, W
+
1 )

is. On the other hand, Proposition 2.2 proves that GQp
acts trivially on W ⊗1L � V (g), 

i.e. w(1) is zero, thus concluding the proof of the proposition. �
Fix an isomorphism of Og[GQ]-modules

γ : V (g) ∼= IndQ
Kϕ. (23)

Since p splits in K, the restrictions of IndQ
Kϕ to GK and GQp

both decompose as the 
direct sum of ϕ and its complex conjugate ϕc, with ϕc|GQp

unramified and mapping an 
arithmetic Frobenius to the p-th Fourier coefficient ap(g) = ψ(p̄) of g. Accordingly the 
restriction of V (g) to GQp

decomposes as the direct sum (cf. the previous proof)

V (g) = V (g)+ ⊕ V (g)−, with γ(V (g)+) = ϕ|GQp
and γ(V (g)−) = ϕc|GQp

.

With the notations of Section 2.3, the rank-one (ϕ, Γ)-modules D(g)± over the ring 
Rg = R⊗̂Qp

Og are the images of the Og-adic representations V (g)± under the Berger–
Colmez functor D†

rig,Og
.

Write V (g) = V (g) ⊗1 Qp for the base change of V (g) along evaluation at l = 1 on 
Og. Similarly define the GQp

-submodules

V (g)+ = V (g)+ ⊗1 Qp and V (g)− = V (g)− ⊗1 Qp

of V (g) = V (g)+ ⊕ V (g)−. The isomorphism (23) specialises to an isomorphism of GQ-
modules (denoted by the same symbol)

γ : V (g) ∼=
(
1 ⊕ εK

)
⊗Q L,

where 1 and εK are shorthands for the trivial GQ-representation Q and its twist by 
εK respectively. Let v+ and v− be the canonical Og-bases of the GK-submodules ϕ
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and ϕc of IndQ
Kϕ, viz. maps v± : GQ −→ Og defined by (v+(1), v+(c)) = (1, 0) and 

(v−(1), v−(c)) = (0, 1), where c is complex conjugation. Set v±
g = γ−1(v±) in V (g)±, 

let v±g in V (g)± be their weight-one specialisations and define

vg,1 = v+
g + v−g and vg,εK = v+

g − v−g . (24)

By construction c exchanges the vectors v+ and v−, hence the elements γ(vg,1) and 
γ(vg,εK ) give Q-bases of the GQ-representations 1 and εK respectively.

4.3. Comparison between Beilinson–Kato and Beilinson–Flach elements

Let

ζKato
f ∈ H1

Iw(Q(μp∞), V (f)) and ζKato
f⊗εK ∈ H1

Iw(Q(μp∞), V (f ⊗ εK))

be the global Beilinson–Kato elements associated with f and its twist by εK respectively. 
They are characterised by Kato’s explicit reciprocity law (1) and its analogue for f ⊗ εK
respectively (with (f⊗εK)α = fα⊗εK). Note that the global representation V (f⊗εK) is 
isomorphic to the twist V (f) ⊗ εK of V (f) by εK . Since p splits in K/Q, the restriction 
to GQp

of V (f) ⊗ εK is equal to that of V (f). An isomorphism of L[GQ]-modules 
ı : V (f ⊗εK) −→ V (f) ⊗εK then induces an isomorphism of filtered ϕ-modules between 
VdR(f ⊗ εK) = Vst(f ⊗ εK) and VdR(f), which maps the canonical generator ω(f⊗εK)w

of Fil0VdR(f ⊗ εK) to a non-zero multiple uı · ωfw of the generator ωfw of Fil0VdR(f)
(cf. Section 2.2). Set

ζKato
f,εK = u−1

ı · ı∗
(
ζKato
f⊗εK

)
,

where

ı∗ : H1
Iw(Q(μp∞), V (f ⊗ εK)) −→ H1

Iw(Q(μp∞), V (f) ⊗ εK)

is the isomorphism induced by ı, set V (f, g) = V (f) ⊗L V (g) and define

BKα
f⊗g = Lp(fα ⊗ εK , 1 + s) · ζKato

f ⊗ vg,1 + Lp(fα, 1 + s) · ζKato
f,εK ⊗ vg,εK

in H1
Iw(K(μp∞), V (f, g)) ⊗Λ∞O(W). Since complex conjugation acts trivially on BKα

f⊗g, 
it descends to a class in H1

Iw(Q(μp∞), V (f, g)) ⊗Λ∞ O(W).
Define the balanced Iwasawa Selmer group

H1
Iw,bal(Q(μp∞), V (f, g)) ↪−→ H1

Iw(Q(μp∞), V (f, g)) ⊗Λ∞ O(W)

as in Section 2.4, after replacing V (f , g) and F abD(f , g) with V (f, g) and

F abD(f, g) = D(f)aα ⊗L V (g)b
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respectively in the definition of the local condition H1
Iw,bal(Qp(μp∞), V (f , g)) (with 

D(f)∅α = D(f) and V (g)∅ = V (g)). Write

� = �f,g : V (f , g) −→ V (f, g)

for the composition of the specialisation isomorphism (cf. Section 2.3)

ρko
⊗̂ρ1 : V (f , g) ⊗ko,1 L −→ V (fα, g)

and the p-stabilisation isomorphism (cf. Section 2.2)

Πfα∗ : V (fα) −→ V (f).

This induces a specialisation map

�∗ : H1
Iw,bal(Q(μp∞), V (f , g)) −→ H1

Iw,bal(Q(μp∞), V (f, g)).

For each integer c � 2 coprime to 6NfdKp, one defines the global Selmer class

cBFα
f⊗g ∈ H1

Iw,bal(Q(μp∞), V (f, g))

by the identity (cf. Proposition 2.3)

�∗
(
cBF(f ⊗ g)

)
= α(p− 1)

(
1 − 1pr (p) · pko−2

α2

)(
1 − 1pr (p) · pko−3

α2

)
· cBFα

f⊗g.

Define finally the non-zero p-adic number Ωg,γ in L∗ (depending on the isomorphism γ
fixed in Equation (23)) by the identity (cf. Equation (3))

Ωg,γ = 2 ·
〈
v+
g , ωg

〉
g
. (25)

The aim of this section is to prove the following result.

Theorem 4.2. The equality

Ωg,γ · cBFα
f⊗g = Ac · BKα

f⊗g

holds in the balanced Iwasawa Selmer group H1
Iw,bal(Q(μp∞), V (f, g)) for an explicit 

element Ac = Ac,fα,K in O(W) such that Ac(j) belongs to K(α)∗ for each integer j.

Proof. If χ denotes either εK or the trivial Dirichler character 1 and one sets

ζKato
f,1 = ζKato

f ,

Kato’s explicit reciprocity law (1) yields
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〈
Logf

(
resp

(
ζKato
f,χ

))
, ηαf

〉
f

= Lp(fα ⊗ χ, 1 + s). (26)

By definition (cf. Equation (24)) the image of resp(BKα
f⊗g) under the map

H1
Iw(Qp(μp∞), V (f, g)) ⊗Λ∞ O(W) −→ H1

Iw(Qp(μp∞), V (f) ⊗L V (g)−) ⊗Λ∞ O(W)

induced by the projection V (g) −→ V (g)− is equal to the product of v−g and

Lp(fα ⊗ εK , 1 + s) · resp
(
ζKato
f

)
− Lp(fα, 1 + s) · resp

(
ζKato
f,εK

)
,

which according to Equation (26) belongs to the kernel of the composition

〈
Logf , ηαf

〉
f

: H1
Iw(Qp(μp∞), V (f)) ⊗Λ∞ O(W) −→ O(W)

of the Perrin-Riou logarithm Logf and the O(W)-linear extension of the functional 〈·, ηαf 〉
on Vst(f). This composition factors through the morphism induced in cohomology by 
the projection D(f) −→ D(f)−α , and the resulting map

Log−f : H1
Iw(Qp(μp∞), D(f)−α ) −→ O(W)

is injective under the non-exceptionality assumption ap(f) 	= pko/2−1. (Indeed the kernel 
of Log−f equals the submodule of D(f)−α on which ϕ acts as multiplication by α−1

f , 
which is zero unless αf is a power of p. When p does not divide the conductor of f , this 
possibility is excluded by the Ramanujan–Petersson conjecture; when f is new at p one 
has αf = ap(f) = ±pko/2−1, hence αf = −pko/2−1 by assumption.) As a consequence 
the image of resp(BKα

f⊗g) in H1
Iw(Qp(μp∞), D(f)−α ) ⊗L V (g)− is zero. In other words 

(cf. Equation (24))

p−f,α
(
resp

(
BKα

f⊗g

))
∈ H1

Iw(Qp(μp∞), D(f)−α ) ⊗L V (g)+

is equal to

p−α

(
Lp(fα ⊗ εK , 1 + s) · resp

(
ζKato
f

)
+ Lp(fα, 1 + s) · resp

(
ζKato
f,εK

))
⊗ v+

g , (27)

where p−f,α and p−α are the maps induced by the projections D(f, g) −→ D(f)−α ⊗L V (g)
and D(f) −→ D(f)−α respectively. (Note that, since GQp

acts trivially on V (g), the 
(ϕ, Γ)-module D(f, g) = D(f) ⊗RL

D(g) is canonically isomorphic to D(f) ⊗L V (g).)
Let

Log−+
f⊗g : H1

Iw(Qp(μp∞), D(f)−α ) ⊗L V (g)+ −→ O(W)

be the morphism defined by the formulae

Log−+
f⊗g(z ⊗ v) = 〈v, ωg〉 · Log−f (z)
g
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for each z in H1
Iw(Qp(μp∞), D(f)−α ) and v in V (g)+. Equations (26) and (27) yield

Log−+
f⊗g ◦ p−f,α ◦ resp

(
BKα

f⊗g

)
= Ωg,γ · Lp(fα, 1 + s) · Lp(fα ⊗ εK , 1 + s). (28)

As above denote by

�∗ : H1
Iw(Qp(μp∞),F−+D(f , g)) −→ H1

Iw(Qp(μp∞),F−+D(f, g))

the map induced by the specialisation map ρko
⊗̂ρ1 and the p-stabilisation isomorphism 

Πfα∗. Lemma 8.4 of [17] and a direct comparison of the interpolation properties satisfied 
by Logf and L−+ (cf. Section 2.4) show that the map

Log−+
f⊗g ◦ �∗ : H1

Iw(Qp(μp∞),F−+D(f , g)) −→ O(W)

is equal to

(p− 1)α
(

1 − 1pr (p)pko−2

α2

)(
1 − 1pr (p)pko−3

α2

)
· evko,1 ◦

〈
L−+, ηf ⊗ ωg

〉
fg

,

where evko,1 is evaluation at weights (ko, 1) on Ofg. (Recall that Nfp
r is the conductor 

of f and note that the Euler factors in the previous equation are non-zero.) The explicit 
reciprocity law Proposition 2.3 then gives

Log−+
f⊗g ◦ p−f,α ◦ resp

(
cBFα

f⊗g

)
= Mf,c · Lp(fα, g, 1 + s), (29)

where Lp(fα, g) is the specialisation of Lp(f , g) at weights (ko, 1) and

±Mf,c = N
1−ko/2
f ·

(
c2 − c2s−ko+3 · εK(c)

)
.

(Since ko is even, Mf,c(j) is a non-zero rational number for each integer j.)
We claim that one has the factorisation

Lp(fα, g) = A · Lp(fα) · Lp(fα ⊗ εK) (30)

in O(W), where A = Afα,K is an explicit unit in O(W)∗ such that A (j) belongs to 
K(α)∗ for each j in Z. Indeed, for χ equal to either 1 or εK , let Lp(f ⊗χ) in O(Uf ×W)
be the two-variable Mazur–Kitagawa p-adic L-function attached to f (cf. [12]). For each 
good classical point k in Uf , each j in Z�0 and each finite order character σ : Z∗

p −→ Q̄∗, 
one has Lp(f ⊗ χ)(k, σ + j) = λ±

k · Lp(fk ⊗ χ)(σ + j) with χσ(−1) = ±1, where λ±
k are 

non-zero elements in L∗ such that λ±
ko

= 1. These properties characterise Lp(f ⊗ χ) up 
to multiplication by a unit in O(Uf ) taking the value one at k = ko. Define Lp(f , g) to 
be the restriction of Lp(f , g) to the plane l = 1. Then the set X of pairs (k, j) in U cl

f ×Z
with k good and 1 � j � k − 1 is dense in Uf ×W and contained in the interpolation 
domains of Lp(f , g) and Lp(f ⊗ χ). For each (k, j) in X one has
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Lp(f , g)(k, j) = aK(k, j)
λ+
k λ

−
k

(
1 − βk

αk

)(
1 − βk

pαk

) · L(f)(k, j) · L(f ⊗ εK)(k, j),

where aK is a simple explicit unit in O(Uf ×W)∗ with aK(x) in K∗ for x in U cl
f ×Z and 

where one sets αk = ap(fk) and βk = pko−1/αk. According to Theorem 3.4 of [6] and 
Section 5 of [16], the p-adic periods

Perp(k) = λ+
k λ

−
k (1 − βk/αk)(1 − βk/pαk)

are interpolated by a unit in O(Uf )∗, whose value at ko is equal to Perp(ko), respectively 
belongs to Q∗, if p does not divide the conductor of f , respectively f is p-new. (In [16] f
is assumed to be ordinary, but the arguments readily generalise to the present setting.) 
One deduces that Lp(f , g) factors as the product of Lp(f) · Lp(f ⊗ εK) and an explicit 
unit which takes values in K(α)∗ on classical points. The weight-ko specialisation of this 
factorisation yields Equation (30).

Set Ac = A · Mf,c. Equations (28)–(30) show that the difference between the classes 
Ωg,γ · cBFα

f⊗g and Ac ·BKα
f⊗g is killed by the linear form Log−+

f⊗g ◦ p−f,α ◦ resp, hence by 
p−f,α◦resp (since as observed above Log−f , and then Log−+

f⊗g, is injective in the present non-
exceptional setting). In other words this difference defines an element of the trianguline 
Selmer group SelIw(K(μp∞), V (f)) of classes in H1

Iw(K(μp∞), V (f)) ⊗Λ∞ O(W) which 
are unramified at each prime different from p and which map to zero in the semi-local 
cohomology group H1

Iw(Kp(μp∞), D(f)−α ). For each finite order character μ of G∞, the 
base change of the finite torsion-free module SelIw(K(μp∞), V (f)) along the morphism 
μ · χ1−ko/2

cyc : Λ∞ −→ Qp(μ) is isomorphic to a submodule of the Bloch–Kato Selmer 
group Sel(K, V(f ⊗ μ−1)) of V(f ⊗ μ−1) = V (f)(1 − ko/2) ⊗ μ−1 over K. According to 
the main results of [49,50], for each 0 � i � p − 1 there exists μ such that the complex 
L-values L(f ⊗ μ, ko/2) and L(f ⊗ μεK , ko/2) are non-zero and μ|F∗

p
= ωi, where we 

identify G∞ with Z∗
p via χcyc and ω : F∗

p −→ Z∗
p is the Teichmüller character. For 

such characters, Kato’s theorem [24, Introduction] implies that the Bloch–Kato Selmer 
group Sel(K, V(f⊗μ−1)) vanishes. As a consequence SelIw(K(μp∞), V (f)) is trivial, thus 
concluding the proof of the theorem. �
4.4. Heegner classes

Let n � 4 be an integer such that (K, n) satisfies the Heegner condition, let n be an 
ideal of K of norm n and let H be the Hilbert class field of K. Fix an elliptic curve E
over H with complex multiplication by the maximal order OK of K and good reduction 
at the prime of H associated with the embedding ip : Q̄ ↪−→ Q̄p fixed at the outset. 
We identify OK with EndH(E) via the isomorphism [·] satisfying [λ]∗ω = λ · ω for each 
ω in Γ(E, Ω1

E/H). Choose a generator tn of the n-torsion subgroup En of E. Then the 
isomorphism class of the pair (E, tn) defines a closed point iE : Spec(F ) −→ Y1(n)F of 
the modular curve Y1(n)F = Y1(n) ⊗Z[1/n]F of level Γ1(n) over a finite abelian extension 
F of H.
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For each positive integer r define the p-adic étale sheaves

Sr = Symmr
Zp

R1(E1(n) −→ Y1(n))∗Zp and Hr(E) = Symmr
Zp

H1
ét(EQ̄,Zp)

on Y1(n) and Spec(H) respectively, where E1(n) −→ Y1(n) is the universal elliptic curve. 
Then (the restriction to Spec(F ) of) Hr(E) is canonically isomorphic to the pull-back 
i∗E(Sr) of (the restriction to Y1(n)F of) Sr along the closed immersion iE. This yields 
a push-forward

iE∗ : H0
ét
(
F,H2r(E)(r)

)
−→ H2

ét
(
Y1(n)F ,S2r(r + 1)

)
.

The p-adic Tate module Tp(E) = H1
ét(EQ̄, Zp(1)) of E decomposes as the direct 

sum of the one-dimensional p-adic representations χE and χ̄E for a Hecke character 
χE : GH −→ Z∗

p. Let xE and yE be any generators of the lines χE(−1) and χ̄E(−1) of 
H1(E) respectively, which pair to one under the Weil pairing. Then

H0
ét(H,Hr(E)(r)) = Zp · xr

Ey
r
E ,

where the canonical invariant xr
Ey

r
E is the image of x⊗r

E ⊗ y⊗r
E in H1(E)⊗2r in the 

symmetric quotient Hr(E).
Let ξ =

∑
n�1 an(ξ) · qn in S2r+2(Γ0(n))L be a normalised cuspidal eigenform of 

weight 2r + 2, level Γ0(n) and Fourier coefficients in L. Recall the p-adic sheaf Li =
Tsymi(E1(n) −→ Y1(n))∗Zp(1), so that the dual Deligne representation V (ξ) of ξ is the 
maximal L-quotient of H1

ét(Y1(n)Q̄, L2r(1)) ⊗Zp
L on which the dual Hecke operator T ′

	

acts as a	(ξ) for each prime � (cf. Section 2.2). As explained in [17, Section 3], there is 
a natural isomorphism si between the Qp-linear extension of Si(i) and that of Li and 
one writes

prξ : H1
ét(Y1(n)Q̄,S2r(r + 1))Qp

−→ V (ξ) ⊗ χ−r
cyc = V(ξ)

for the composition of the ξ-isotypic projection with the map induced by s2r. Define

zE(ξ) = prξ∗ ◦ HSét ◦ iE∗(xr
Ey

r
E) ∈ Sel(H,V(ξ))

to be the image of the invariant xr
Ey

r
E under the composition prξ∗ ◦ HSét ◦ iE∗, where 

prξ∗ is the map induced in GF -cohomology by prξ and

HSét : H2
ét(Y1(n)F ,S2r(r + 1)) −→ H1(GF , H

1
ét(Y1(n)Q̄,S2r)(r + 1))

is the morphism arising from the Hochschild–Serre spectral sequence. The fact that zE(ξ)
belongs to the Bloch–Kato Selmer group Sel(F, V(ξ)) is a consequence of [40, Theorem 
5.9]. Moreover, because ξ is a form of level Γ0(n) and the isomorphism class of the pair 
(E, Z · tn) defines an H-rational point of the modular curve Y0(n), the class zE(ξ) is 
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fixed by the action of Gal(F/H) on Sel(F, V(ξ)), hence can naturally be viewed as an 
element of the Selmer group of V(ξ) over the Hilbert class field H of K. Define finally 
the Heegner class of (ξ, K) by

zK(ξ) = TraceH/K

(
zE(ξ)

)
∈ Sel(K,V(ξ)).

4.5. Comparison between Beilinson–Flach and Heegner classes

Set V(f, g) = V (f, g)(1 −ko/2). As explained in Section 1.1, evaluation at an integer i
in W induces a morphism χi

cyc from H1
Iw,bal(Q(μp∞), V (f, g)) to H1(Q, V (f, g)(−j)) (cf. 

the definition of the character [·] : G∞ −→ O(W)∗ in Section 2.4). Recall the balanced 
Iwasawa class cBFα

f⊗g introduced in Section 4.3 and define

cBFα
f⊗g = χko/2−1

cyc
(
cBFα

f⊗g

)
∈ H1(Q,V(f, g)).

Let up in OK [1/p]∗ be a generator of phK , with hK the class number of K.

Theorem 4.3. Assume that the complex Hecke L-series L(f, s) vanishes at the central 
critical point s = ko/2. Then the class cBFα

f⊗g belongs to the Bloch–Kato Selmer group 
Sel(Q, V(f, g)) and the equality

logp(up)·
〈
logp

(
resp

(
cBFα

f⊗g

))
, ωf ⊗ ηg

〉
fg

= log2
ωf

(
resp

(
zK(f)

))
,

holds in L up to multiplication by an explicit non-zero constant in the number field 
K(an(fα); n � 1).

The proof of Theorem 4.3 occupies the rest of this section.

4.5.1. This subsection briefly describes the main result of [9]. With the notations of 
Section 4.4, set n = Nf , ξ = f and write Nf = n.

Denote by Lp(f) the square-root anticyclotomic p-adic L-function associated in Sec-
tion 5 of [9] to the level-Γ0(Nfp

r) newform f , the prime p of K and the data (Nf , E, ωE), 
where ωE is a non-zero invariant differential in Γ(E, Ω1

E/H). It is a continuous Cp-valued 

function defined on a suitable p-adic completion Σ̂cc(f) of the set Σcc(f) of algebraic 
Hecke characters of K with conductor dividing Nf , trivial central character and infinity 
type (ko +a, −a) with a in Z. For each character χ in Σcc(f) of infinity type (ko + j, −j)
with j � 0, the square Lp(f, χ)2 of the value of Lp(f) at χ is a non-zero explicit multi-
ple of the central critical value L(f, χ̄−1, 0) of the Rankin–Selberg convolution of f and 
the theta series of weight ko + 1 + 2j associated with Nko+j · χ̄−1. We refer to [9] for 
the precise interpolation property satisfied by Lp(f), whose square is denoted there by 
Lp(f). (Note that Section 5 of [9] assumes that p does not divide the conductor of f , but 
the constructions and results readily generalise to the present semistable setting. More 
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generally, one can easily define a Cp-valued continuous function Lp(f) on Uf × Σ̂cc(f)
which restricts to Lp(fk) at each classical point k in U cl

f .)
Note that the character Nko/2 does not belong to the interpolation domain of Lp(f). 

The main result Theorem 5.13 of [9] and its extension [18, Theorem 2.11] to the p-
semistable setting yield the identity

(ko/2 − 1)! · Lp(f,Nko/2) =
(

1 − α

pko/2

)(
1 − β

pko/2

)
· logωf

(
resp(zK(f))

)
. (31)

Recall that α and β are the roots of the p-th Hecke polynomial of f , ordered in such a 
way that ordp(α) � ordp(β). In particular β is zero if f is p-new (i.e. if r = 1) and the 
Euler factors which appear in the previous equation are non-zero.

4.5.2. The aim of this subsection is to prove the following

Lemma 4.4. One has the equality

logp(up) · Lp(g,f)(ko, 1, ko/2) = B · Lp(f,Nko/2)2,

where B = B(f, K) is an explicit non-zero element of K(an(f); n � 1).

Proof. In the proof write U cl
g for the set of integers in Ug which are congruent to one 

modulo qL − 1 (where qL is the cardinality of the residue field of L, cf. Section 4.2). Set 
X cl = {ko} ×U cl

g and let X cl
∞ be the set of pairs (ko, l) in X cl such that l � ko/2 +1. For 

each x = (ko, l) in X cl set (cf. Equation (21))

νx = Nko/2−l+1 · ψ2l−2 : IK −→ C∗.

Note that νx has infinity type (ko + jx, −jx) with jx = l − (ko/2 + 1), so that jx � 0
precisely if x belongs to X cl

∞.
For each x = (ko, l) in X cl

∞ the character νx belongs to the interpolation domain of 
Lp(fk). According to [9, Section 5] (and the functional equation satisfied by Rankin 
L-series) one has

Lp(f, νx)2 = C1(l)
(

Ωp

Ω∞

)4l−4

π2l−3Γ(l − ko/2)Γ(ko/2 + l − 1) ·

·
(

1 − α

νx(p̄)

)2 (
1 − β

νx(p̄)

)2

L
(
f ⊗ ϑ(ψ2l−2), ko/2 + l − 1

)
. (32)

Here Ωp = Ωp(E, ωE) in C∗
p and Ω∞ = Ω∞(E, ωE) in C∗ are the p-adic and complex 

periods associated in [9] with the fixed pair (E, ωE) and C1 = C1(f, K) is a unit in Og

such that, for each l in Ug ∩ Z, the value C1(l) is a non-zero explicit element of the 
number field K(an(f); n � 1).
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If x = (ko, l) belongs to X cl
∞, then the classical triple

κ = (ko, 2l − 1, ko/2 + l − 1)

belongs to the interpolation domain of Lp(g, f), and (cf. [26, Theorem 2.7.4])

Lp(g,f)(κ) = Γ(l − ko/2)Γ(ko/2 + l − 1)
π2l−1(−i)2l−1−ko24l−3

(
1 − α

νx(p̄)

)2 (
1 − β

νx(p̄)

)2

(
1 − μl(p)p−1

)(
1 − μl(p̄)−1

) ·
·
L
(
f ⊗ ϑ(ψ2l−2), ko/2 + l − 1

)〈
ϑ(ψ2l−2), ϑ(ψ2l−2)

〉
−dK

, (33)

where μl denotes the inverse of the algebraic Hecke character ψc
4l−4 ·N1−2l. After setting 

C2(l) = C1(l) · (−i)2l−1−ko · 24l−3, Equations (32) and (33) yield the identity

C2(l)−1 · Lp(f, νx)2 = Lp(g,f)(κ) · (34)

·
(
π · Ωp

Ω∞

)4l−4 (
1 − μl(p)p−1)(1 − μl(p̄)−1)〈ϑ(ψ2l−2), ϑ(ψ2l−2)

〉
−dK

.

Let Lp(K) be the Katz p-adic L-function associated to (K, p) in [23]. It is a continuous 
Cp-valued function on a suitable p-adic completion Σ̂K of the set ΣK of algebraic Hecke 
characters of K of trivial conductor and infinity type (a, b) with a � 1 and b � 0. 
The value of Lp(K) at χ in ΣK is an explicit multiple of the algebraic part of the 
complex special value L(χ−1, 0). We refer to Section 3.2 of [20] for a description of the 
interpolation property which characterises Lp(K). In particular, Lemmas 3.7 and 3.8 of 
[20] yield the formula

(
π · Ωp

Ω∞

)4l−4 (
1 − μl(p)p−1)(1 − μl(p̄)−1)〈ϑ(ψ2l−2), ϑ(ψ2l−2)

〉
−dK

= C3(l) · Lp(K,μl),

where C3 = C3(K) is a unit in Og such that C3(l) is an elementary explicit scalar in K∗

for each l in U cl ∩ Z. For x = (ko, l) in X cl
∞ and κ = (ko, 2l − 1, ko/2 + l − 1), Equation

(34) can then be rewritten as

C (l) · Lp(f, νx)2 = Lp(K,μl) · Lp(g,f)(κ),

where the unit C = C (f, K) in Og is defined to be the product of the inverses of the 
units C2 and C3.

Define B = B(f, K) in K(an(f); n � 1)∗ by the formula (p − 1) · B = 2p · C (1). Let 
xn = (ko, ln) be any sequence in X cl

∞ which converges to (ko, 1) in the p-adic topology 
(e.g. ln = 1 +(qL−1)pc(n) with limn→∞ c(n) = +∞ in the archimedean topology). Then 
κn = (ko, 2ln − 1, ko/2 + ln − 1) (resp., νxn

, μln) is a sequence of classical points in the 
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interpolation domain of Lp(g, f) (resp., Lp(f), Lp(K)) converging to (ko, 1, ko/2) (resp., 
Nko/2, N). Taking x = xn in the previous displayed equation and then taking the limit 
for n tending to infinity yields

2
(
1 − p−1)−1 · Lp(K,N) · Lp(g,f)(ko, 1, ko/2) = B · Lp(f,Nko/2)2.

Together with Katz’s p-adic analogue of the Kronecker limit formula:

2
(
1 − p−1)−1 · Lp(K,N) = logp(up)

(cf. [23, Sections 10.4 and 10.5]) this concludes the proof of the lemma. �
4.5.3. Assume from now on that the Hecke L-series L(f, s) vanishes at s = ko/2.

Lemma 4.5. The Beilinson–Flach element cBFα
f⊗g belongs to the Bloch–Kato Selmer 

group Sel(Q, V(f, g)), and one has the identity

Lp(g,f)(ko, 1, ko/2) = C ·
〈
logp(resp(cBFα

f⊗g)), ωf ⊗ ηg
〉
fg

for an explicit non-zero constant C in the number field Q(α).

Proof. Set

V(fα, g) = V(fα) ⊗L V (g) and D(fα, g) = D†
rig,L(V(fα, g)).

For a and b in {∅, +, −} define F abD(fα, g) as in Section 2.4, using the triangulations 
on D(fα) and D(g) = RL ⊗L V (g) defined in Equation (2). Denote by

cBF(fα ⊗ g) ∈ H1(Q,V(fα, g))

the specialisation of cBF(f ⊗ g) at the classical triple

ς = (ko, 1, ko/2 − 1).

As the Beilinson–Flach element cBF(f ⊗ g) belongs to the balanced Selmer group 
H1

Iw,bal(Q(μp∞), V (f , g)), its image in H1
Iw(Qp(μp∞), F ∅−D(f , g)) under the compo-

sition p−g ◦ resp (cf. Section 2.4) arises from a unique element

cBF(f ⊗ g)+− ∈ H1
Iw(Qp(μp∞),F+−V (f , g)).

Denote by

cBF(fα ⊗ g)+− ∈ H1(Qp,F
+−D(fα, g))
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the specialisation of cBF(f ⊗g)+− at ς. Exchanging the roles of f and g in the previous 
discussion one defines similarly the local cohomology class

cBF(fα ⊗ g)−+ ∈ H1(Qp,F
−+D(fα, g)).

Evaluating both sides of the explicit reciprocity laws (cf. Proposition 2.3)

Lg(resp(cBF(f ⊗ g))) = Ng,c · Lp(g,f , 1 + s)

and

Lf (resp(cBF(f ⊗ g))) = Nf ,c · Lp(f , g, 1 + s)

at the classical triple ς = (ko, 1, ko/2 − 1) yields respectively the formulae

Lp(g,f)(ko, 1, ko/2) = E ·
〈
logp(cBF(fα ⊗ g)+−), ωfα ⊗ ηg

〉
fαg

(35)

and

Lp(f , g)(ko, 1, ko/2) = E ′ ·
〈
exp∗

p(cBF(fα ⊗ g)−+), ηfα ⊗ ωg

〉
fαg

(36)

where

E =

(
1 − α

pko/2

)
(
1 − pko/2−1

α

)
Ng,c(ς)(ko/2 − 1)!

and E ′ =
(ko/2 − 1)!

(
1 − pko/2−1

α

)
Nf ,c(ς)

(
1 − α

pko/2

) .

(Note that Nf ,c(ς), Ng,c(ς) and the four Euler factors in the previous equation are 
all non-zero under the current non-exceptionality assumption ap(f) 	= pko/2−1.) The 
value of Lp(f , g) at the classical triple (ko, 1, ko/2) is a multiple of the complex L-value 
L(f ⊗ g, ko/2), which in turn is a multiple of L(f, ko/2). By assumption L(f, ko/2) is 
zero, hence so is cBF(fα⊗ g)−+ by Equation (36). Since cBF(fα⊗ g)−− is zero (because 

cBF(f ⊗ g) is a balanced class), this implies that the global class cBF(fα ⊗ g) belongs 
to the Selmer group Sel(Q, V(fα, g)), hence

〈
logp(cBF(fα ⊗ g)+−), ωfα ⊗ ηg

〉
fαg

=
〈
logp

(
resp

(
cBF(fα ⊗ g)

))
, ωfα ⊗ ηg

〉
fαg

. (37)

By definition the class cBFα
f⊗g is an explicit non-zero multiple of the image of cBF(fα⊗

g) under the map induced by the p-stabilisation isomorphism Πfα∗ : V (fα) −→ V (f). 
The lemma then follows from Equations (35) and (37). �

4.5.4. Theorem 4.3 is a direct consequence of the Bertolini–Darmon–Prasanna p-adic 
Gross–Zagier formula (31), Lemma 4.4 and Lemma 4.5.
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4.6. Conclusion of the proof

This section concludes the proof of Theorem B (when f is not p-exceptional).
Recall the non-zero p-adic number Ωg,γ introduced in Equation (25) and set

�g,γ = 2 ·
〈
v−g , ηg

〉
g

and L(g) = Ωg,γ/�g,γ .

Then L(g) is a non-zero element of L∗ and is independent of the choice of the isomorphism 
γ made in Equation (23). Since f is not p-exceptional and p splits in K/Q, the twist 
f ⊗ εK is not p-exceptional, hence Lp(fα ⊗ εK , ko/2) is equal to L(f, εK , ko/2)alg (cf. 
Section 1.1) up to multiplication by non-zero explicit scalar in Q(α). As by assumption 
L(f, s), and hence Lp(fα), vanishes at s = ko/2, Theorems 4.2 and 4.3 prove that the 
identity

L(f, εK , ko/2)alg · logωf

(
resp

(
ζKato
f

))
= L(g)

logp(up)
· log2

ωf

(
resp

(
zK(f)

))
(38)

holds in L up to multiplication by a non-zero explicit scalar in the number field 
K(an(fα); n � 1). Theorem B is a consequence of the previous equation and the

Lemma 4.6. The ratio between L(g) and logp(up) belongs to Q∗.

Proof. We give an indirect proof of Lemma 4.6 which uses Equation (38) and Theo-
rem 3.1. Consider the set SK of negative integers D satisfying the following properties.

1. D is a square-free negative integer congruent to 5 modulo 8.
2. Each prime divisor of D splits in K and p splits in Q(

√
D).

3. There exists a canonical Hecke character χD of Q(
√
D) such that L(χD · εK , s) does 

not vanish at s = 1.

The set SK is infinite. Indeed, the first two conditions are easily seen to be satisfied 
by infinitely many negative integers D. Moreover a theorem of Rohlrich [48, Page 551]
guarantees that the subtler condition 3 is satisfied by each square-free negative integer 
D congruent to 5 modulo 8 such that −D is sufficiently large relative to dK . (Recall 
from Section 3 that L(χD, s) has sign −1 in its functional equation, hence L(χD · εK , s)
has sign +1.)

For each D in SK write fχD
for the weight-two theta series of level Γ0(D2) associated 

with a canonical Hecke character χD satisfying the above condition 3. Let AχD
and ωχD

be as in Section 3. Since L(χD · εK , s) is equal to L(fχD
, εK , s), condition 2 implies 

that L(fχD
, εK , ko/2)alg is a non-zero element of the number field EχD

generated by the 
values of χD, hence Equation (38) gives

logωχD

(
resp

(
ζKato
AχD

))
= cχD

· L(g)
log (u ) · log2

ωχD
(zK(fχD

))

p p



M. Bertolini et al. / Advances in Mathematics 398 (2022) 108172 45
for a non-zero algebraic constant cχD
in EχD

. The GQ-representation V (fχD
) is canoni-

cally isomorphic to V (AχD
) and by construction zK(fχD

) is the image under the global 
Kummer map of the trace from H to K of a Heegner point in AχD

(H) ⊗ZQ. In addition, 
since L(fχD

, s) = L(χD, s) has sign −1 in its functional equation, this Heegner point is 
rational over Q. In summary, we can rewrite the previous equation as

logωχD

(
resp

(
ζKato
AχD

))
= L(g)

logp(up)
· log2

ωχD
(PχD

)

for a global rational point PχD
in AχD

(Q) ⊗Z Q(
√
D). On the other hand Theorem 3.1

yields the identity

logωχD

(
resp

(
ζKato
AχD

))
= log2

ωχD

(
PχD

)
for a generator PχD

of the EχD
-vector space AχD

(Q) ⊗Z Q(
√
D). The previous two 

equations imply that the ratio between L(g) and logp(up) belongs to E∗
χD

. Assume that 
|D| is prime. The definition of χD shows that the intersection of the fields Eχσ

D
over the 

Galois orbit of χD is equal to K, so that

Q =
⋂

D inSK

ED

and Lemma 4.6 follows. �
5. Proof of Theorem B: the p-exceptional case

This section contains the proof of Theorem B in the p-exceptional case, viz. when 
f = fα is new at p and its p-th Fourier coefficient ap(f) = α is equal to pko/2−1.

Throughout this section f = fα and g denote the Coleman families introduced respec-
tively in Sections 4.1 and 4.2. One fixes an integer c � 2 coprime to pdKNf and denotes 
by BF(f ⊗ g) the Beilinson–Flach element cBF(f ⊗ g) constructed in Proposition 2.3. 
(As in the previous section the choice of c is not relevant.)

5.1. Comparison between Beilinson–Flach and Beilinson–Kato elements

Denote by

BF(f ⊗ g) = χko/2−1
cyc

(
BF(f ⊗ g)

)
∈ H1(Q, V (f , g)(1 − ko/2))

the image of BF(f ⊗ g) under the morphism induced in cohomology by evaluation at 
ko/2 − 1 on O(W). Proposition 5.3.4 and Theorem 5.4.2 of [32] give

BF(f ⊗ g) =
(

1 − pko/2−1 )
· BF(f ⊗ g) (39)
ap(f)ap(g)
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for a canonical improved Beilinson–Flach class

BF(f ⊗ g) ∈ H1(Q, V (f , g)(1 − ko/2))

unramified outside p. Define

BF(f ⊗ g) = ρko,1
(
BF(f ⊗ g)

)
∈ H1(Q,V(f, g))

to be the specialisation of BF(f ⊗ g) at weights (ko, 1).

Theorem 5.1. Assume that L(f, s) vanishes at s = ko/2 and let L(g) in L∗ be as in 
Section 4.6. Then BF(f ⊗ g) and ζKato

f belong to the Selmer groups Sel(Q, V(f, g)) and 
Sel(Q, V(f)) respectively and the equality

L(g) ·
〈
logp

(
resp

(
BF(f ⊗ g)

))
, ωf ⊗ ηg

〉
fg

= L(f, εK , ko/2)alg · logωf

(
resp

(
ζKato
f

))
holds in L up to multiplication by an explicit non-zero constant in the number field 
K(an(f); n � 1).

Proof. Using the techniques of [17] one can construct, for χ = 1, εK , an element

ζKato
f ,χ ∈ H1

Iw(Q(μp∞), V (f) ⊗ χ)

which specialise to λk · ζKato
fk,χ

at each classical weight k in U cl
f , where λk is a non-zero 

element of L with λko
= 1. Here the classes ζKato

fk,χ
in H1

Iw(Q(μp∞), V (fk) ⊗χ) are defined 
as in Section 4.3 and one identifies V (fk) with V (fk) via the p-stabilisation isomorphism 
Πfk∗. (We remark that when f is p-ordinary, the existence of ζKato

f ,χ is proved in [41].)
The restriction of the Mazur–Kitagawa p-adic L-function Lp(f⊗χ) (cf. Section 4.3) to 

the line s = ko/2 −1 factors in Of as the product of the analytic Euler factor 1 − pko/2−1

ap(f)
and the improved p-adic L-function Lp(f ⊗ χ) (cf. [21,12]). If

BF(f ⊗ g) = (id ⊗ ρ1)∗(BF(f ⊗ g)) ∈ H1(Q, V (f , g)(1 − ko/2))

is the image of BF(f ⊗ g) under the map induced in cohomology by

id ⊗ ρ1 : V (f , g) −→ V (f , g) = V (f) ⊗L V (g),

then one has

C−1 · Ωg,γ · BF(f ⊗ g) = Lp(f ⊗ εK) · ζKato
f ⊗ vg,1 + Lp(f) · ζKato

f ,εK ⊗ vg,εK

for a unit C in Of with C (ko) a non-zero explicit element of K(an(f); n � 1). Since 
H1(Q, V (f , g)(1 − ko/2)) is torsion free, this follows by applying Theorem 4.2 to fk (in 
place of f) for each good classical point k in U cl

f .
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Since Lp(f ⊗χ)(ko) is equal to the product of L(f, χ, ko/2)alg and a non-zero explicit 
constant in Q(α), evaluating the previous equation at k = ko and using the assumption 
L(f, ko/2) = 0 one gets the identity

Ωg,γ · BF(f ⊗ g) = cK · L(f, εK , ko/2)alg · ζKato
f ⊗ vg,1

for an explicit cK in K(an(f); n � 1)∗. Finally, the assumption L(f, ko/2) = 0 and Kato’s 
explicit reciprocity law imply that ζKato

f is a Selmer class (cf. the proof of Theorem 16.6 
of [24]). The statement follows. �
5.2. Comparison between Beilinson–Flach and Heegner classes

In the present exceptional zero scenario, Theorem 4.3 admits the following variant.

Theorem 5.2. Assume that L(f, s) vanishes at s = ko/2, so that BF(f ⊗ g) is a Selmer 
class. Then the equality

logp(up)·
〈
logp

(
resp

(
BF(f ⊗ g)

))
, ωf ⊗ ηg

〉
fg

= log2
ωf

(
resp

(
zK(f)

))
holds in L up to multiplication by an explicit non-zero constant in the number field 
K(an(fα); n � 1).

Proof. Equations (31) and Lemma 4.4 hold also in the present exceptional-zero setting. 
Moreover BF(f ⊗ g) is crystalline at p by Theorem 5.1. As in the proof of Theorem 4.3, 
one is then reduced to show that the equality

Lg

(
resp

(
BF(f ⊗ g)

))
(ko, 1, ko/2 − 1) =

〈
logp

(
resp

(
BF(f ⊗ g)

))
, ωf ⊗ ηg

〉
fg

(40)

holds up to multiplication by an explicit non-zero element of K(an(f); n � 1).
Let � : O(Uf × Ug × W) −→ O(Uf × Ug) be the morphism sending the analytic 

function F (k, l, s) to its restriction F (k, l, k − ko/2 − 1) to the plane s = k − ko/2 − 1. 
Let V�(f , g) be the base change of V (f , g)⊗̂Qp

O(W)(ε−1
∞ ) along � and let BF�(f ⊗ g)

be the image of BF(f ⊗ g) under the morphism induced by �. Using the techniques of 
[17, Section 8.3] one proves that

BF�(f ⊗ g) =
(

1 − ap(g) · pko/2−1

ap(f)

)
· BF�(f ⊗ g) (41)

for a canonical improved class BF�(f ⊗ g) in H1(Q, V�(f , g)). This improved class is 
unramified outside p and belongs to the kernel of the composition

H1(Q, V�(f , g)) → H1(Qp, V�(f , g)) � H1(Qp, D�(f , g)) → H1(Qp,F
−−D�(f , g)),
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where F ··D�(f , g) is the base change of F ··D(f , g) along �, the first arrow is restriction 
at p and the second is induced by the projection D�(f , g) −→ F−−D�(f , g). It follows 
that the image of resp

(
BF�(f⊗g)

)
in H1(Qp, F ∅−D�(f , g)) arises from a unique element 

BF�(f ⊗ g)+− in H1(Qp, F+−D�(f , g)). Define

BF�(f ⊗ g) ∈ H1(Q,V(g, h)) and BF�(f ⊗ g)+− ∈ H1(Qp,F
+−D(f, g))

to be the specialisations of BF�(f ⊗ g) and BF�(f ⊗ g)+− respectively at weights 
(ko, 1, ko/2 −1). Equation (41) and the interpolation formula satisfied by Lg (cf. Theorem 
7.1.4 of [32]) show that

Lg

(
resp

(
BF(f ⊗ g)

))
(ko, 1, ko/2 − 1)

is equal to

(−1)ko/2−1 (1 − p−1)
(ko/2 − 1)! ·

〈
logp

(
BF�(f ⊗ g)+−), ωf ⊗ ηg

〉
fg

.

Comparing the two factorisations of the restriction of BF(f ⊗ g) to the line

(k, l, s) = (ko, l, ko/2 − 1)

arising from Equations (39) and (41) yields the identity

BF(f ⊗ g) = −BF�(f ⊗ g)

in H1(Q, V(f, g)). In particular BF�(f ⊗ g) is crystalline at p, and Equation (40) (and 
then the statement) follows from the previous two equations. �
5.3. Conclusion of the proof

In the present p-exceptional setting, Theorem B is a direct consequence of Theo-
rem 5.1, Theorem 5.2 and Lemma 4.6.
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